1
|
He C, Li Y, Zhou Z, Wei Y, Zhu Y, Han Y, Li Y, Yang R, Xu K. The role of neuropeptide prothoracicotropic hormone (PTTH) - Torso in pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106139. [PMID: 39477593 DOI: 10.1016/j.pestbp.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The neuropeptide prothoracicotropic hormone (PTTH) plays a key role in regulating ecdysone synthesis and promoting insect metamorphosis. Pyriproxyfen is a juvenile hormone analogue. We previously reported that pyriproxyfen disrupts ecdysone secretion and inhibits larval-pupal metamorphosis in silkworms. However, the specific molecular mechanisms by which pyriproxyfen interferes with ecdysone signaling remain to be elucidated. Herein, the RNA-seq analysis on the ecdysone-secretion organ prothoracic gland (PG) was conducted following pyriproxyfen exposure. A total of 3774 differentially expressed genes (DEGs) were identified, with 1667 up-regulated and 2107 down-regulated. KEGG analysis showed that DEGs were enriched in the MAPK signaling pathway, a conserved pathway activated by PTTH binding to Torso, which regulates the ecdysone synthesis. qRT-PCR results indicated a significant up-regulation in PTTH transcription level, while the transcription levels of torso and downstream MAPK pathway genes, Ras2, Raf and ERK, were down-regulated 24 h post-pyriproxyfen treatment. Consistent with these transcriptional changes, PTTH titers in the brain also increased following pyriproxyfen treatment. These results suggest that pyriproxyfen induces abnormal metamorphosis in silkworms by impairing PTTH-Torso signaling. This study enhances our understanding of the molecular mechanisms of pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms, and also provides insights for developing detoxification strategies for juvenile hormone analog pesticides to non-target organisms.
Collapse
Affiliation(s)
- Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhenfeng Zhou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yirong Han
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yifei Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Rifeng Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
2
|
Chen Y, Li J, Niu K, Peng Y, Song Q, Feng Q. G-quadruplex is involved in the regulation of BmSGF1 expression in the Silkworm, Bombyx mori. INSECT SCIENCE 2024; 31:1440-1452. [PMID: 38439572 DOI: 10.1111/1744-7917.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024]
Abstract
Advanced DNA structures, such as the G-quadruplex (G4) and the i-motif, are widely but not randomly present in the genomes of many organisms. A G4 structure was identified in the promoter of the silk gland factor-1 gene (SGF1), which is the main regulatory gene for silk production in Bombyx mori. In this study, a BmSGF1 G4-/- homozygous mutant was generated with the G4 sequence knocked out. The promoter activity of BmSGF1 was lowered in the BmSGF1 G4-/- mutant. Pyridostatin (PDS) stabilized the G4 structure and increased the promoter activity of BmSGF1, whereas anti-sense oligonucleotide (ASO) complementary to the G4 sequence suppressed the promoter activity of BmSGF1. Compared with wild-type larvae, the deletion of the BmSGF1 G4 structure decreased both the expression of BmSGF1 and the fibroin heavy chain gene BmFib-H in the posterior silk gland and the weight of the cocoons. Overall, these results suggest that the promoter G4 structure of BmSGF1 participates in the transcription regulation of the BmSGF1 gene in the silkworm.
Collapse
Affiliation(s)
- Yanfei Chen
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kangkang Niu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qisheng Song
- Division of Plant Science & Technology, University of Missouri, Columbia, Missouri, USA
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Cao J, Tao C, Qin X, Wu K, Yang H, Liu C, Cheng T. PI3K-Akt-SGF1-Dimm pathway mediates the nutritional regulation of silk protein synthesis in Bombyx mori. Int J Biol Macromol 2024; 278:134650. [PMID: 39128739 DOI: 10.1016/j.ijbiomac.2024.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The efficient synthesis of silk protein is heavily reliant on the ingestion of massive nutrients during the peak growth phase in the silkworm. However, the molecular mechanism of nutritional regulation of silk protein synthesis remains unknown. In this study, we investigated the impact of nutrient deficiency on the synthesis of silk protein. Nutritional deficiency led to a reduction in silk yield, accompanied by decreased levels of silk proteins and fibroin heavy chain (FibH)-activating transcription factors SGF1 and Dimm. Furthermore, insulin enhanced the protein levels of SGF1 and Dimm, which can be attenuated by specific inhibitors of PI3K. Co-immunoprecipitation analysis showed that the nutrient pathway factor protein kinase B (Akt) could interact with SGF1 protein. Knockdown of Akt reduced the phosphorylation level of SGF1 and impedes its nuclear translocation. Further studies revealed that SGF1 was directly bound to Fkh site in the 22-43 region upstream of ATG of Dimm gene to activate its transcription. In conclusion, during the peak growth phase, nutrition promotes the massive synthesis of silk protein through the PI3K-Akt-SGF1-Dimm pathway. This study offers valuable insights into the efficient synthesis of silk proteins and establishes a theoretical foundation for improving silk yield.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Keli Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Lv JL, Zheng KY, Wang XY, Li MW. Advances in the extracellular signal-regulated kinase signaling pathway in silkworms, Bombyx mori (Lepidoptera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22054. [PMID: 37700521 DOI: 10.1002/arch.22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.
Collapse
Affiliation(s)
- Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Sericultural Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| |
Collapse
|
5
|
He J, Wang P, Wang Z, Feng D, Zhang D. TRPM7-Mediated Ca2+ Regulates Mussel Settlement through the CaMKKβ-AMPK-SGF1 Pathway. Int J Mol Sci 2023; 24:ijms24065399. [PMID: 36982474 PMCID: PMC10049526 DOI: 10.3390/ijms24065399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
Many marine invertebrates have planktonic larval and benthic juvenile/adult stages. When the planktonic larvae are fully developed, they must find a favorable site to settle and metamorphose into benthic juveniles. This transition from a planktonic to a benthic mode of life is a complex behavioral process involving substrate searching and exploration. Although the mechanosensitive receptor in the tactile sensor has been implicated in sensing and responding to surfaces of the substrates, few have been unambiguously identified. Recently, we identified that the mechanosensitive transient receptor potential melastatin-subfamily member 7 (TRPM7) channel, highly expressed in the larval foot of the mussel Mytilospsis sallei, was involved in substrate exploration for settlement. Here, we show that the TRPM7-mediated Ca2+ signal was involved in triggering the larval settlement of M. sallei through the calmodulin-dependent protein kinase kinase β/AMP-activated protein kinase/silk gland factor 1 (CaMKKβ-AMPK-SGF1) pathway. It was found that M. sallei larvae preferred the stiff surfaces for settlement, on which TRPM7, CaMKKβ, AMPK, and SGF1 were highly expressed. These findings will help us to better understand the molecular mechanisms of larval settlement in marine invertebrates, and will provide insights into the potential targets for developing environmentally friendly antifouling coatings for fouling organisms.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (P.W.); (D.F.)
| | - Zhixuan Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (P.W.); (D.F.)
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Zhang H, Kong W, Zhao X, Xie Y, Luo D, Chen S. Comprehensive analysis of PHGDH for predicting prognosis and immunotherapy response in patients with endometrial carcinoma. BMC Med Genomics 2023; 16:29. [PMID: 36803157 PMCID: PMC9942409 DOI: 10.1186/s12920-023-01463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND PHGDH (Phosphoglycerate Dehydrogenase) is the first branch enzyme in the serine biosynthetic pathway and plays a vital role in several cancers. However, little is known about the clinical significance of PHGDH in endometrial cancer. METHODS Clinicopathological data of endometrial cancer were downloaded from the Cancer Genome Atlas database (TCGA). First, the expression of PHGDH in pan-cancer was investigated, as well as the expression and prognostic value of PHGDH in endometrial cancer. The effect of PHGDH expression on the prognosis of endometrial cancer was analyzed by Kaplan-Meier plotter and Cox regression. The relationship between PHGDH expression and clinical characteristics of endometrial cancer was investigated by logistic regression. Receiver operating characteristic (ROC) curves and nomograms were developed. Possible cellular mechanisms were explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the Gene Ontology (GO), and gene set enrichment analysis (GSEA). Finally, TIMER and CIBERSORT were used to analyze the relationship between PHGDH expression and immune infiltration. CellMiner™ was used to analyze the drug sensitivity of PHGDH. RESULTS The results showed that PHGDH expression was significantly higher in endometrial cancer tissues than in normal tissues at mRNA and protein levels. Kaplan-Meier survival curves showed that patients in the high expression group had shorter overall survival (OS) and disease free survival (DFS) than patients in the low PHGDH expression group. Multifactorial COX regression analysis further supported that high PHGDH expression was an independent risk factor associated with prognosis in patients with endometrial cancer. The results showed estrogen response, mTOR, K-RAS, and epithelial mesenchymal transition (EMT) were differentially elevated in the high-expression group of the PHGDH group. CIBERSORT analysis showed that PHGDH expression is related to the infiltration of multiple immune cells. When PHGDH is highly expressed, the number of CD8+T cells decreases. CONCLUSION PHGDH plays a vital role in the development of endometrial cancer, which is related to tumor immune infiltration, and can be used as an independent diagnostic and prognostic marker for endometrial cancer.
Collapse
Affiliation(s)
- He Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006 Beijing, China
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006, Beijing, China.
| | - Xiaoling Zhao
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006 Beijing, China
| | - Yunkai Xie
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006 Beijing, China
| | - Dan Luo
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006 Beijing, China
| | - Shuning Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, 100006 Beijing, China
| |
Collapse
|
7
|
Zhao H, Long S, Liu S, Yuan D, Huang D, Xu J, Ma Q, Wang G, Wang J, Li S, Tian L, Li K. Atg1 phosphorylation is activated by AMPK and indispensable for autophagy induction in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103888. [PMID: 36493962 DOI: 10.1016/j.ibmb.2022.103888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Phosphorylation is a key post-translational modification in regulating autophagy in yeast and mammalians, yet it is not fully illustrated in invertebrates such as insects. ULK1/Atg1 is a functionally conserved serine/threonine protein kinase involved in autophagosome initiation. As a result of alternative splicing, Atg1 in the silkworm, Bombyx mori, is present as three mRNA isoforms, with BmAtg1c showing the highest expression levels. Here, we found that BmAtg1c mRNA expression, BmAtg1c protein expression and phosphorylation, and autophagy simultaneously peaked in the fat body during larval-pupal metamorphosis. Importantly, two BmAtg1c phosphorylation sites were identified at Ser269 and Ser270, which were activated by BmAMPK, the major energy-sensing kinase, upon stimulation with 20-hydroxyecdysone and starvation; additionally, these Atg1 phosphorylation sites are evolutionarily conserved in insects. The two BmAMPK-activated phosphorylation sites in BmAtg1c were found to be required for BmAMPK-induced autophagy. Moreover, the two corresponding DmAtg1 phosphorylation sites in the fruit fly, Drosophila melanogaster, are functionally conserved for autophagy induction. In conclusion, AMPK-activated Atg1 phosphorylation is indispensable for autophagy induction and evolutionarily conserved in insects, shedding light on how various groups of organisms differentially regulate ULK1/Atg1 phosphorylation for autophagy induction.
Collapse
Affiliation(s)
- Haigang Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; ChemPartner PharmaTech Co., Ltd, Jiangmen, 529081, China; Quantum Hi-Tech (Guangdong) Biological Co., Ltd, Jiangmen, 529081, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jing Xu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuqin Ma
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Ling Tian
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
8
|
Xiao R, Yuan Y, Xia H, Ge Q, Chen L, Zhu F, Xu J, Wang X, Fan Y, Wang Q, Yang Y, Chen K. Comparative transcriptome and proteome reveal synergistic functions of differentially expressed genes and proteins implicated in an over-dominant silkworm heterosis of increased silk yield. INSECT MOLECULAR BIOLOGY 2022; 31:551-567. [PMID: 35445454 DOI: 10.1111/imb.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
We previously observed an over-dominant silkworm heterosis of increased yield in a cross of Bombyx mori nuclear polyhydrosis virus-resistant strain NB with a susceptible strain 306. In the present study, we found that heterosis also exists in crosses of NB with other susceptible strains, indicating it is a more general phenomenon. We performed comparative transcriptome and proteome and identified 1624 differentially expressed genes (DEGs) and 298 differentially expressed proteins (DEPs) in silk glands between parents and F1 hybrids, of which 24 DEGs/DEPs showed consistent expression at mRNA and protein levels revealed by Venn joint analysis. Their expressions are completely non-additive, mainly transgressive and under low-parent, suggesting recombination of parental genomes may be the major genetic mechanism for the heterosis. GO and KEGG analyses revealed that they may function in generally similar but distinctive aspects of metabolisms and processes with signal transduction and translation being most affected. Notably, they may not only up-regulate biosynthesis and transport of silk proteins but also down-regulate other unrelated processes, synergistically and globally remodelling the silk gland to increase yield and cause the heterosis. Our findings contribute insights into the understanding of silkworm heterosis and silk gland development and provide targets for transgenic manipulation to further increase the silk yield.
Collapse
Affiliation(s)
- Rui Xiao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueqi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yixuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Chen T, Sun Q, Ma Y, Zeng W, Liu R, Qu D, Huang L, Xu H. A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing. Mol Genet Genomics 2020; 295:1227-1237. [PMID: 32524299 DOI: 10.1007/s00438-020-01691-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
The silk gland of the silkworm Bombyx mori is a specialized organ where silk proteins are efficiently synthesized under precise regulation that largely determines the properties of silk fibers. To understand the genes involved in the regulation of silk protein synthesis, considerable research has focused on the transcripts expressed in silk glands; however, the complete transcriptome profile of this organ has yet to be elucidated. Here, we report a full-length silk gland transcriptome obtained by PacBio single-molecule long-read sequencing technology. In total, 11,697 non-redundant transcripts were identified in mixed samples of silk glands dissected from larvae at five developmental stages. When compared with the published reference, the full-length transcripts optimized the structures of 3002 known genes, and a total of 9061 novel transcripts with an average length of 2171 bp were detected. Among these, 1403 (15.5%) novel transcripts were computationally revealed to be lncRNAs, 8135 (89.8%) novel transcripts were annotated to different protein and nucleotide databases, and 5655 (62.4%) novel transcripts were predicted to have complete ORFs. Furthermore, we found 1867 alternative splicing events, 2529 alternative polyadenylation events, 784 fusion events and 6596 SSRs. This study provides a comprehensive set of reference transcripts and greatly revises and expands the available silkworm transcript data. In addition, these data will be very useful for studying the regulatory mechanisms of silk protein synthesis.
Collapse
Affiliation(s)
- Tao Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Nanjing, 212018, Jiangsu, China
| | - Qiwei Sun
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Dawei Qu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lihua Huang
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
ERK1 indicates good prognosis and inhibits breast cancer progression by suppressing YAP1 signaling. Aging (Albany NY) 2019; 11:12295-12314. [PMID: 31848326 PMCID: PMC6949071 DOI: 10.18632/aging.102572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is a well-characterized signaling pathway during the development of various cancer types. ERK1 and ERK2, the two kinase effectors of MAPK cascade, exhibit high similarity. However, it is still unknown whether these two kinases are functionally different or in contrast functionally redundant during the development of breast cancer. We found that ERK1 expression levels were significantly lower in basal breast cancer compared with luminal breast cancer and normal breast tissues. RNA sequencing data suggested that ERK1 was associated with Hippo signaling pathway and cell proliferation in breast cancer cells. The gene set enrichment analysis (GSEA) further showed enrichment for YAP1 signaling pathway in breast cancer cell lines and tumors with low expression of ERK1. Silencing of ERK1 elevated YAP1 expression and TEAD activity in breast cancer cells. Additionally, ERK1 inhibited breast cancer cell proliferation via regulation of YAP1. The Kaplan-Meier analysis of data in patients with breast cancer suggested that, higher expression of ERK1 was associated with better prognosis, whereas, higher expression of ERK2 predicted poorer prognosis. These findings unveiled the role of ERK1 on regulation of YAP1 signaling pathway, indicating ERK1 as a negative regulator of breast cancer progression.
Collapse
|
11
|
Zhao W, Ma L, Cai C, Gong X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int J Biol Sci 2019; 15:1571-1581. [PMID: 31360100 PMCID: PMC6643212 DOI: 10.7150/ijbs.34211] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Excessive inflammation induced by various risk factors is associated with the development of bronchopulmonary dysplasia (BPD). Caffeine exerts potent anti-inflammatory effects as a clinical preventive medicine for BPD. Recently, NLRP3 inflammasome activation has been demonstrated to be essential for the pathogenesis of BPD. In the present study, we aimed to investigate the effects of caffeine on NLRP3 inflammasome activation in LPS-induced THP-1 macrophages and to explore the underlying the detailed mechanism. We found that caffeine significantly reduced NLRP3 expression, ASC speck formation, and caspase 1 cleavage and therefore decreased IL-1β and IL-18 secretion in THP-1 macrophages. Caffeine also markedly decreased the phosphorylation levels of MAPK and NF-κB pathway members, further suppressing the translocation of NF-κB in THP-1 macrophages. Moreover, silencing of the caffeine-antagonized adenosine A2a receptor (A2aR) significantly decreased cleaved caspase 1 expression in THP-1 macrophages by reducing ROS production. Given these findings, we conclude that caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB signaling and A2aR-associated ROS production in LPS-induced THP-1 macrophages.
Collapse
Affiliation(s)
- Weiming Zhao
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Hu Q, Zhu Z, Zhao D, Zeng B, Zheng S, Song Q, Deng H, Feng Q. Bombyx mori transcription factors FoxA and SAGE divergently regulate the expression of wing cuticle protein gene 4 during metamorphosis. J Biol Chem 2018; 294:632-643. [PMID: 30429222 DOI: 10.1074/jbc.ra118.004395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
Stage-specific gene expression governs metamorphosis of the silkworm, Bombyx mori. B. mori wing cuticle protein gene 4 (BmWCP4) is an essential gene for wing disc development expressed specifically during pupation. BmWCP4 transcription is suppressed at the larval stage by unknown mechanisms, which we sought to elucidate here. Bioinformatics analysis predicted seven potential Forkhead box (Fox) cis-regulatory elements (CREs) in the BmWCP4 promoter region, and we found that Fox CRE6 contributes to suppression of BmWCP4 expression. Electrophoretic mobility shift (EMSA) and DNA pull-down assays revealed that BmFoxA suppressed activity at the BmWCP4 promoter by specifically binding to the Fox CRE6. The expression level of BmFoxA in the wing discs was higher during the larval stage than at the pupal stage. In contrast, expression of another transcription factor, BmSAGE, increased over the course of development. Of note, the hormone 20-hydroxyecdysone (20E), which governs molting in insects, suppressed BmFoxA expression in the wing discs and up-regulated that of BmSage EMSA and cell co-transfection assays indicated that BmSAGE interacted with BmFoxA and suppressed its binding to the Fox CRE6, thereby releasing BmFoxA-mediated suppression of BmWCP4 In summary, higher BmFoxA expression during the larval stage suppresses BmWCP4 expression by binding to the Fox CRE6 on the BmWCP4 promoter. During metamorphosis, BmSAGE forms a complex with BmFoxA to relieve this repression, initiating BmWCP4 expression. Taken together, this study reveals a switchlike role for BmFoxA in regulating BmWCP4 expression and provides new insights into the regulatory regulation of wing disc development in insects.
Collapse
Affiliation(s)
- Qihao Hu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Zidan Zhu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Danhui Zhao
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Baojuan Zeng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Sichun Zheng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Qisheng Song
- the Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Huimin Deng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| | - Qili Feng
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China and
| |
Collapse
|