1
|
Farhadi A, Tang S, Huang M, Yu Q, Xu C, Li E. Identification of key immune and stress related genes and pathways by comparative analysis of the gene expression profile under multiple environmental stressors in pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108695. [PMID: 36935045 DOI: 10.1016/j.fsi.2023.108695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Water salinity, pH, and nitrite concentration are considered environmental factors affecting the growth rate, survival, health, and physiological conditions of aquatic animals. The identification of key genes that are involved in the response to environmental stressors is essential for controlling stress in aquatic animals and sustainable aquaculture. In this study, RNA sequencing was performed to identify the differentially expressed genes (DEGs) and biological pathways that are involved in the response of the hepatopancreas to environmental stressors, including low salinity stress, nitrite stress, low pH stress, and high pH stress. The DEGs were enriched in biological pathways related to immune response, energy metabolism, oxidative stress response, hemostasis, and enzymatic activity of the hepatopancreas. In addition to the identification of DEGs related to each stressor, some DEGs were found to be expressed among all groups. The most important overlapping DEGs under multiple stressors were juvenile hormone esterase-like protein 2 (JHE-like), myosin light chain, C-type lectin 2, myosin-9-like, anti-lipopolysaccharide factor 1 (ALF-1), peroxisomal acyl-coenzyme An oxidase 1-like (ACX1), hepatic lectin-like, venom phosphodiesterase 2-like, hemolymph clottable protein-like (CP), cathepsin L, and Ras-like protein 2. The results of the present study provide additional information regarding the transcriptional response of the hepatopancreas to low salinity, nitrite, low pH, and high pH stress. Moreover, the discovery of several overlapping DEGs among different stressors provided a better understanding of the molecular function of the hepatopancreas.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shangshang Tang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Maoxian Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qiuran Yu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Zagmignan A, Mendes YC, Mesquita GP, dos Santos GDC, Silva LDS, de Souza Sales AC, Castelo Branco SJDS, Junior ARC, Bazán JMN, Alves ER, de Almeida BL, Santos AKM, Firmo WDCA, Silva MRC, Cantanhede Filho AJ, de Miranda RDCM, da Silva LCN. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients 2023; 15:nu15041059. [PMID: 36839417 PMCID: PMC9962425 DOI: 10.3390/nu15041059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Endotoxemia is a condition caused by increasing levels of lipopolysaccharide (LPS) characterized by an impaired systemic response that causes multiple organ dysfunction. Lacticaseibacillus rhamnosus ATCC 9595 is a strain with probiotic potential which shows immunomodulatory properties. The incorporation of this bacterium in food rich in bioactive compounds, such as cupuaçu juice (Theobroma grandiflorum), could result in a product with interesting health properties. This work evaluated the effects of the oral administration of cupuaçu juice fermented with L. rhamnosus on the outcome of LPS-induced endotoxemia in mice. C57BL/6 mice (12/group) received oral doses (100 µL) of saline solution and unfermented or fermented cupuaçu juice (108 CFU/mL). After 5 days, the endotoxemia was induced by an intraperitoneal injection of LPS (10 mg/kg). The endotoxemia severity was evaluated daily using a score based on grooming behavior, mobility, presence of piloerection, and weeping eyes. After 6 h and 120 h, the mice (6/group) were euthanized for analysis of cell counts (in peritoneal lavage and serum) and organ weight. L. rhamnosus grew in cupuaçu juice and produced organic acids without the need for supplementation. The bacteria counts were stable in the juice during storage at 4 °C for 28 days. The fermentation with L. rhamnosus ATCC 9595 changed the metabolites profile of cupuaçu juice due to the biotransformation and enhancement of some compounds. In general, the administration of L. rhamnosus-fermented juice allowed a significant improvement in several characteristics of endotoxemic status (weight loss, hypothermia, severity index, cell migration). In addition, treatment with fermented juice significantly reduced the weight of the spleen, liver, intestine, and kidneys compared to the saline-treated endotoxemic group. Taken together, our data show that short-term intake therapy of cupuaçu juice fermented with L. rhamnosus ATCC 9595 can reduce systemic inflammation in an experimental model of LPS-induced endotoxemia in mice.
Collapse
Affiliation(s)
- Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Laboratório de Microbiologia Ambiental, Universidade CEUMA, São Luís 65075-120, Brazil
- Correspondence:
| | - Yasmim Costa Mendes
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | | | | | - Edinalva Rodrigues Alves
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | - Anne Karoline Maiorana Santos
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | - Wellyson da Cunha Araújo Firmo
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Centro de Ciências da Saúde, Campus Imperatriz, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz 65900-000, MA, Brazil
| | | | - Antônio José Cantanhede Filho
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | | | | |
Collapse
|
3
|
Wang X, Rao J, Tan Z, Xun T, Zhao J, Yang X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in hepatocytes. Front Pharmacol 2022; 13:1043836. [PMID: 36353494 PMCID: PMC9637984 DOI: 10.3389/fphar.2022.1043836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/11/2023] Open
Abstract
Cytochrome P450 (CYP450) enzymes are membrane-bound blood proteins that are vital to drug detoxification, cell metabolism, and homeostasis. CYP450s belonging to CYP families 1-3 are responsible for nearly 80% of oxidative metabolism and complete elimination of approximately 50% of all common clinical drugs in humans liver hepatocytes. CYP450s can affect the body's response to drugs by altering the reaction, safety, bioavailability, and toxicity. They can also regulate metabolic organs and the body's local action sites to produce drug resistance through altered drug metabolism. Genetic polymorphisms in the CYP gene alone do not explain ethnic and individual differences in drug efficacy in the context of complex diseases. The purpose of this review is to summarize the impact of new inflammatory-response signaling pathways on the activity and expression of CYP drug-metabolizing enzymes. Included is a summary of recent studies that have identified drugs with the potential to regulate drug-metabolizing enzyme activity. Our goal is to inspire the development of clinical drug treatment processes that consider the impact of the inflammatory environment on drug treatment, as well as provide research targets for those studying drug metabolism.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zhiyi Tan
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
4
|
Wang T, Wang Z, Yang Z, Cui X, Yan L, Xu Z, Liu X. Effect of the Fermentation Broth of the Mixture of Pueraria lobata, Lonicera japonica, and Crataegus pinnatifida by Lactobacillus rhamnosus 217-1 on Liver Health and Intestinal Flora in Mice With Alcoholic Liver Disease Induced by Liquor. Front Microbiol 2021; 12:722171. [PMID: 34484163 PMCID: PMC8416100 DOI: 10.3389/fmicb.2021.722171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this work, we discovered a new fermentation broth that can prevent and regulate alcoholic liver disease (ALD) and intestinal flora, which fermented the mixture of Pueraria lobata, Lonicera japonica, and Crataegus pinnatifida by Lactobacillus rhamnosus 217-1. The contents of polyphenols, puerarin, total isoflavones, and amino acids were significantly increased. Animal experiments showed that the fermentation broth could improve the liver indexes of ALD mice model, increase the activity of superoxide dismutase and glutathione in liver tissue, and reduce the level of malondialdehyde (MDA). Furthermore, the fermentation broth can reduce the levels of serum lipopolysaccharide (LPS), inflammatory factors interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Importantly, intestinal flora analysis showed that the fermentation broth could increase the abundance of Lactobacillales and reduce the production of Gram-negative bacteria, thereby reducing the abnormal increase in bacterial diversity caused by alcohol. In conclusion, we may have discovered a new functional food raw material with great application potential. The above findings indicate that the fermentation broth can actively regulate the intestinal flora and improve liver inflammation. The underlying mechanism might be that the fermentation broth could enhance intestinal permeability and reduce the inflammatory signals and LPS transmitted through the gut-liver axis, thereby reducing the oxidative stress and inflammation of the liver caused by alcohol.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhe Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhipeng Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Xin Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Liang Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
5
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
6
|
Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Rac1, A Potential Target for Tumor Therapy. Front Oncol 2021; 11:674426. [PMID: 34079763 PMCID: PMC8165220 DOI: 10.3389/fonc.2021.674426] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| |
Collapse
|
7
|
Doğanyiğit Z, Okan A, Kaymak E, Pandır D, Silici S. Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/ HMGB-1/ NF-κB pathway. Biomed Pharmacother 2020; 125:109967. [DOI: 10.1016/j.biopha.2020.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
|
8
|
Feng Y, Ma M, Zhang X, Liu D, Wang L, Qian C, Wei G, Zhu B. Characterization of small GTPase Rac1 and its interaction with PAK1 in crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 87:178-183. [PMID: 30639478 DOI: 10.1016/j.fsi.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) participates in many biological processes. In this study, a Rac1 gene was identified in the crayfish Procambarus clarkii with an open reading frame of 579 bp that encoded 192 amino acids. This predicted 21.4 kDa protein was highly homologous to those in other invertebrates. Real-time PCR analysis revealed that Pc-Rac1 was expressed in all examined tissues with the highest expression level in hemocytes. The transcriptional expression level of Pc-Rac1 was significantly upregulated in hemocytes and hepatopancreas after lipopolysaccharide (LPS) or polyinosinic: polycytidylic acid (poly I: C) induction. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis suggested that a recombinant Pc-Rac1 protein was successfully expressed in E. coli. Far-western blot analysis demonstrated that Rac1 can interact with the PBD domain of p21-activated kinase 1 (PAK1). RNA interference of Pc-Rac1 affected the mRNA expression levels of immune-related genes lectin, Toll, crustin, TNF, ALF and cactus. These results suggest that Pc-Rac1 is involved in the innate immune responses in P. clarkii.
Collapse
Affiliation(s)
- Yuanyuan Feng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Maolin Ma
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Die Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Cen Qian
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guoqing Wei
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Porcine lactoferrin-derived peptide LFP-20 modulates immune homoeostasis to defend lipopolysaccharide-triggered intestinal inflammation in mice. Br J Nutr 2019; 121:1255-1263. [DOI: 10.1017/s0007114519000485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe performance of immune system is vital for defending the body from pathogens, and it plays a crucial role in health homoeostasis. In a previous study, we have shown that LFP-20, a twenty-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, modulated inflammatory response in colitis. Here, we further investigated the effects of LFP-20 on immune homoeostasis to elucidate the mechanism of its anti-inflammation action. A lipopolysaccharide (LPS)-triggered systemic inflammatory response mice model was established. On the basis of observed mucosal lesions and apoptosis in small intestine, we found increased macrophage and neutrophil infiltration in ileum after LPS stimulation. Expectedly, LFP-20 pre-treatment attenuated the LPS-mediated immune disorders in ileum. Moreover, the flow cytometry results indicated pre-treatment with LFP-20 sustained the balance of CD3+CD8+ T cells, B cells and natural killer cells in LPS-triggered immune disturbance. Simultaneously, we demonstrated LFP-20 modulated the secretion of both activated Th1-related IL-12p70, interferon-γ, TNF-α and Th2-related IL-4, IL-5 and IL-6. Furthermore, we found LFP-20 facilitated a balanced Th1 and Th2 response, which triggered cellular defence mechanisms and induced B cells to produce opsonising antibodies belonging to certain IgG subclasses to defend against LPS stimulation. Collectively, our study indicated pre-treatment with LFP-20 could defend against LPS-triggered systemic inflammatory response in mice via modulating immune homoeostasis.
Collapse
|