1
|
Ishii T, Kajimoto T, Kikkawa S, Narasaki S, Noguchi S, Imamura S, Harada K, Hide I, Tanaka S, Tsutsumi YM, Sakai N. Protein kinase C (PKC) inhibitor Calphostin C activates PKC in a light-dependent manner at high concentrations via the production of singlet oxygen. Eur J Pharmacol 2024; 984:177036. [PMID: 39368603 DOI: 10.1016/j.ejphar.2024.177036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Calphostin C (Cal-C) is a protein kinase C (PKC) inhibitor that binds to its C1 domain. The aim of the present study was to elucidate the action of Cal-C in addition to PKC inhibition. First, we confirmed that Cal-C at low concentrations (<200 nM) inhibit phorbol ester-induced PKC translocation and G-protein-coupled receptor (GPCR)-mediated PKC activation. Cal-C at higher concentrations (>2 μM) increased intracellular calcium ion concentrations ([Ca2+]i) in a concentration-dependent manner. The origin of this increase is the mobilization of the endoplasmic reticulum (ER), which does not involve GPCR or ryanodine receptors. Cal-C at high concentrations also cause structural changes in the ER, such as the formation of vacuoles and aggregates, and calcium leakage from the ER. At 2 μM, Cal-C translocated a calcium-sensitive PKCα. Studies using a C-kinase activity reporter and a myristoylated alanine-rich protein kinase C substrate fused with green fluorescent protein (GFP) have also revealed that Cal-C at high concentrations activate PKC in living cells. Additionally, the PKC-activating effects of Cal-C were light-dependent. Finally, studies using Si-DMA, an indicator of singlet oxygen, showed that Cal-C at high concentrations generated singlet oxygen, causing structural changes in the ER and leakage of calcium into the cytosol, which triggered PKC activation. This study confirms the novel action of Cal-C, solely considered a PKC inhibitor. Cal-C acted as a PKC inhibitor at low concentrations and a PKC activator at high concentrations by generating singlet oxygen in a light-dependent manner, suggesting that Cal-C can be used in photodynamic therapy.
Collapse
Affiliation(s)
- Tomomi Ishii
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yasuo M Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
2
|
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024; 16:1523. [PMID: 39771502 PMCID: PMC11728496 DOI: 10.3390/pharmaceutics16121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations. OBJECTIVE The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone. METHODS Cytotoxicity was assessed in two cellular models: monolayer (2D) and 3D. For this purpose, spheroids of two cell lines, primary dermal fibroblasts (HDFa) and adult human epidermal cell keratinocytes (HaCat), were developed and characterized following criteria on cell viability, shape, diameter, and number of cells. The survival percentages of Caenorhabditis elegans and Galleria mellonella were evaluated at 1 and 7 days, respectively. RESULTS The findings indicated that all the assessed platforms are appropriate for investigating PDT toxicity. Furthermore, 2-hydroxychalcone demonstrated low toxicity in the absence of light and when mediated by PDT across a range of in vitro (2D and 3D cultures) and in vivo (invertebrate animal models, including G. mellonella and C. elegans) models. CONCLUSION There was a strong correlation between the in vitro and in vivo tests, with similar toxicity results, particularly in the 3D models and C. elegans, where the concentration for 50% viability was approximately 100 µg/mL.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
- Department of Public Health, School of Veterinary, Universidade Eduardo Modlane (UEM), Maputo 257, Mozambique
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Jenyffie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| |
Collapse
|
3
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Nardin C, Peres C, Putti S, Orsini T, Colussi C, Mazzarda F, Raspa M, Scavizzi F, Salvatore AM, Chiani F, Tettey-Matey A, Kuang Y, Yang G, Retamal MA, Mammano F. Connexin Hemichannel Activation by S-Nitrosoglutathione Synergizes Strongly with Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing. Cancers (Basel) 2021; 13:cancers13205062. [PMID: 34680212 PMCID: PMC8533914 DOI: 10.3390/cancers13205062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bystander effects depend on direct cell-cell communication and/or paracrine signaling mediated by the release of soluble factors into the extracellular environment and may greatly influence therapy outcome. Although the limited data available suggest a role for intercellular gap junction channels, far less is known about the role of connexin hemichannels. Here, we investigated bystander effects induced by photodynamic therapy in syngeneic murine melanoma models in vivo. We determined that (i) photoactivation of a photosensitizer triggered calcium-dependent cell death pathways in both irradiated and bystander tumor cells; (ii) hemichannel activity and adenosine triphosphate release were key factors for the induction of bystander cell death; and (iii) bystander cell killing and antitumor response elicited by photodynamic therapy were greatly enhanced by combination treatment with S-nitrosoglutathione, which promoted hemichannel opening in these experimental conditions. Therefore, these findings in a preclinical model have important translational potential. Abstract In this study, we used B16-F10 cells grown in the dorsal skinfold chamber (DSC) preparation that allowed us to gain optical access to the processes triggered by photodynamic therapy (PDT). Partial irradiation of a photosensitized melanoma triggered cell death in non-irradiated tumor cells. Multiphoton intravital microscopy with genetically encoded fluorescence indicators revealed that bystander cell death was mediated by paracrine signaling due to adenosine triphosphate (ATP) release from connexin (Cx) hemichannels (HCs). Intercellular calcium (Ca2+) waves propagated from irradiated to bystander cells promoting intracellular Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria and rapid activation of apoptotic pathways. Combination treatment with S-nitrosoglutathione (GSNO), an endogenous nitric oxide (NO) donor that biases HCs towards the open state, greatly potentiated anti-tumor bystander killing via enhanced Ca2+ signaling, leading to a significant reduction of post-irradiation tumor mass. Our results demonstrate that HCs can be exploited to dramatically increase cytotoxic bystander effects and reveal a previously unappreciated role for HCs in tumor eradication promoted by PDT.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Claudia Colussi
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI)-CNR, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Flavia Mazzarda
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Anna Maria Salvatore
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Francesco Chiani
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Abraham Tettey-Matey
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Mauricio A. Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago 7780272, Chile;
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
5
|
The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112208. [PMID: 33989888 DOI: 10.1016/j.jphotobiol.2021.112208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) is based on the production of the cytotoxic reactive oxygen species (ROS) by light irradiation of a photosensitizer dye in the presence of molecular oxygen. Along with photochemical ROS production, it becomes evident that PDT induces massive secondary production of ROS which is registered long after the irradiation is completed. We created cell lines of human epidermoid carcinoma with the cytoplasmic and mitochondrial localization of protein sensor HyPer sensitive to hydrogen peroxide to compare its concentration in two cellular compartments. The lag-period between irradiation and accumulation of hydrogen peroxide in cells was registered; its duration was dose-dependent and increased up to 80 min when lowering the exposition dose from 50 to 15 J/cm2. We have shown that localization of the photosensitizer determines the spatiotemporal pattern of the cell response to PDT: secondary hydrogen peroxide accumulation in cell cytoplasm induced by photodynamic treatment with lysosome-localized phtalocyianine Photosens occurs several minutes prior to that in mitochondria; on the contrary, membranotropic arylcyanoporphyrazine dye leads to massive mitochondrial hydrogen peroxide production followed by its cytoplasmic accumulation. We hypothesize that photosensitizers with various physicochemical properties and intracellular localization can trigger different patterns not only of primary but also secondary ROS production leading to different cell fate outcomes.
Collapse
|
6
|
Zou M, Zhao Y, Ding B, Jiang F, Chen Y, Ma P, Lin J. NIR-triggered biodegradable MOF-coated upconversion nanoparticles for synergetic chemodynamic/photodynamic therapy with enhanced efficacy. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00252j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) is often limited by the overexpression of glutathione (GSH) in the tumor microenvironment (TME) and the penetration depth of visible light.
Collapse
Affiliation(s)
- Man Zou
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P. R. China
- State Key Laboratory of Rare Earth Resource Utilization
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yeqing Chen
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jun Lin
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P. R. China
- State Key Laboratory of Rare Earth Resource Utilization
| |
Collapse
|
7
|
Soe TH, Watanabe K, Ohtsuki T. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Molecules 2020; 26:E36. [PMID: 33374732 PMCID: PMC7793540 DOI: 10.3390/molecules26010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application.
Collapse
Affiliation(s)
- Tet Htut Soe
- Department of Biotechnology, Mandalay Technological University, Patheingyi, Mandalay 05072, Myanmar;
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan;
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan;
| |
Collapse
|
8
|
Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020; 5:E53. [PMID: 33066431 PMCID: PMC7709684 DOI: 10.3390/biomimetics5040053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chlorophylls, which are chlorin-type photosensitizers, are known as the key building blocks of nature and are fundamental for solar energy metabolism during the photosynthesis process. In this regard, the utilization of bioinspired chlorin analogs as photosensitizers for photodynamic therapy constitutes an evolutionary topic of research. Moreover, carbon nanomaterials have been widely applied in photodynamic therapy protocols due to their optical characteristics, good biocompatibility, and tunable systematic toxicity. Herein, we review the literature related to the applications of chlorin-based photosensitizers that were functionalized onto carbon nanomaterials for photodynamic and photothermal therapies against cancer. Rather than a comprehensive review, we intended to highlight the most important and illustrative examples over the last 10 years.
Collapse
Affiliation(s)
- Lucas D. Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil;
| | | |
Collapse
|
9
|
Pavlíčková V, Jurášek M, Rimpelová S, Záruba K, Sedlák D, Šimková M, Kodr D, Staňková E, Fähnrich J, Rottnerová Z, Bartůněk P, Lapčík O, Drašar P, Ruml T. Oxime-based 19-nortestosterone-pheophorbide a conjugate: bimodal controlled release concept for PDT. J Mater Chem B 2020; 7:5465-5477. [PMID: 31414695 DOI: 10.1039/c9tb01301f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy has become a feasible direction for the treatment of both malignant and non-malignant diseases. It has been in the spotlight since FDA regulatory approval was granted to several photosensitizers worldwide. Nevertheless, there are still strong limitations in the targeting specificity that is vital to prevent systemic toxicity. Here, we report the synthesis and biological evaluation of a novel bimodal oxime conjugate composed of a photosensitizing drug, red-emitting pheophorbide a, and nandrolone (NT), a steroid specifically binding the androgen receptor (AR) commonly overexpressed in various tumors. We characterized the physico-chemical properties of the NT-pheophorbide a conjugate (NT-Pba) and singlet oxygen generation. Because light-triggered therapies have the potential to provide important advances in the treatment of hormone-sensitive cancer, the biological potential of this novel specifically-targeted photosensitizer was assessed in prostatic cancer cell lines in vitro using an AR-positive (LNCaP) and an AR-negative/positive cell line (PC-3). U-2 OS cells, both with and without stable AR expression, were used as a second cell line model. Interestingly, we found that the NT-Pba conjugate was not only photodynamically active and AR-specific, but also that its phototoxic effect was more pronounced compared to pristine pheophorbide a. We also examined the intracellular localization of NT-Pba. Live-cell fluorescence microscopy provided clear evidence that the NT-Pba conjugate localized in the endoplasmic reticulum and mitochondria. Moreover, we performed a competitive localization study with the excess of nonfluorescent NT, which was able to displace fluorescent NT-Pba from the cell interior, thereby further confirming the binding specificity. The oxime ether bond degradation was assayed in living cells by both real-time microscopy and a steroid receptor reporter assay using AR U-2 OS cells. Thus, NT-Pba is a promising candidate for both the selective targeting and eradication of AR-positive malignant cells by photodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lermontova SA, Lyubova TS, Ladilina EY, Plekhanov VI, Balalaeva IV, Boyarskii VP, Klapshina LG. New Cyanoarylporphyrazines with High Sensitivity of Photophysical Parameters to Viscosity as Promising Agents for Photodynamic Therapy. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220020140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Photosensitizer Activation Drives Apoptosis by Interorganellar Ca 2+ Transfer and Superoxide Production in Bystander Cancer Cells. Cells 2019; 8:cells8101175. [PMID: 31569545 PMCID: PMC6829494 DOI: 10.3390/cells8101175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
In cells, photosensitizer (PS) activation by visible light irradiation triggers reactive oxygen species (ROS) formation, followed by a cascade of cellular responses involving calcium (Ca2+) and other second messengers, resulting in cell demise. Cytotoxic effects spread to nearby cells not exposed to light by poorly characterized so-called "bystander effects". To elucidate the mechanisms involved in bystander cell death, we used both genetically encoded biosensors and fluorescent dyes. In particular, we monitored the kinetics of interorganellar Ca2+ transfer and the production of mitochondrial superoxide anion (O2-∙) and hydrogen peroxide (H2O2) in irradiated and bystander B16-F10 mouse melanoma cancer cells. We determined that focal PS photoactivation in a single cell triggers Ca2+ release from the endoplasmic reticulum (ER) also in the surrounding nonexposed cells, paralleled by mitochondrial Ca2+ uptake. Efficient Ca2+ efflux from the ER was required to promote mitochondrial O2-∙ production in these bystander cells. Our results support a key role for ER-mitochondria communication in the induction of ROS-mediated apoptosis in both direct and indirect photodynamical cancer cell killing.
Collapse
|
12
|
Soe TH, Nanjo T, Watanabe K, Ohtsuki T. Relation of Photochemical Internalization to Heat, pH and Ca 2+ Ions. Photochem Photobiol 2019; 95:1395-1402. [PMID: 31359440 DOI: 10.1111/php.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
The inefficient endosomal escape of drugs or macromolecules is a major obstacle to achieving successful delivery to therapeutic targets. An efficient approach to circumvent this barrier is photochemical internalization (PCI), which uses light and photosensitizers for endosomal escape of the delivered macromolecules. The PCI mechanism is related to photogenerated singlet oxygen, but the mechanism is still unclear. In this study, we examined the relation of PCI to heat, pH and Ca2+ ions using cell penetrating peptide (CPP)-cargo-photosensitizer (Alexa546 or Alexa633) conjugates. A cell temperature changing experiment demonstrated that heat (thermal mechanism) does not significantly contribute to the photoinduced endosomal escape. Inhibition of V-ATPase proton pump activity and endosomal pH upregulation indicated that PCI-mediated endosomal escape needs endosomal acidification prior to photoirradiation. Imaging of the CPP-cargo-photosensitizer and Ca2+ ions during photostimulation showed that intracellular calcium increase is not the cause of the endosomal escape of the complex. The increment is mainly due to Ca2+ influx. These findings show the importance of extra- and intracellular milieu conditions in the PCI mechanism and enrich our understanding of PCI-related changes in cell.
Collapse
Affiliation(s)
- Tet Htut Soe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Tomotaka Nanjo
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takashi Ohtsuki
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Parys JB, Bultynck G. Calcium signaling in health, disease and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1657-1659. [DOI: 10.1016/j.bbamcr.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
López-Marín N, Mulet R, Rodríguez R. Photodynamic therapy: Toward a systemic computational model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:201-213. [PMID: 30396131 DOI: 10.1016/j.jphotobiol.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 10/25/2018] [Indexed: 01/13/2023]
Abstract
We have designed a systemic model to understand the effect of Photodynamic Therapy (PDT) on long time scales. The model takes into account cell necrosis due to oxygen reactive species, cell apoptosis through the caspase pathway and the competition between healthy and tumor cells. We attempted to describe the system using state of the art computational techniques (necrosis and apoptosis) and simple models that allow a deeper understanding of the long time scale processes involved (healing and tumor growth). We analyzed the influence of the surface and tumor depth on the effectiveness of different treatment plans and we proposed, for the set of parameters used in this work, an optimum timing between sessions of PDT.
Collapse
Affiliation(s)
- N López-Marín
- Group of Complex Systems and Statistical Physics, Department of General Physics, Physics Faculty, University of Havana, La Habana, CP 10400, Cuba.
| | - R Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, La Habana, CP 10400, Cuba.
| | - R Rodríguez
- Department of Computational Medicine, National Institute of Nephrology, La Habana CP 10600, Cuba
| |
Collapse
|
15
|
Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:13-22. [DOI: 10.1016/j.mrrev.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
|