1
|
Niharika DG, Salaria P, Reddy MA. Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies. Mol Divers 2024:10.1007/s11030-024-11026-0. [PMID: 39560899 DOI: 10.1007/s11030-024-11026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a crucial target due to its substantial contribution in various cellular processes. Dysfunctional GSK-3β activity can lead to ion channel disturbances, sustain abnormal excitability, and contribute to the pathogenesis of epilepsy and other GSK-3β-related disorders. A set of 82 pyrazole analogs was utilized to study its structural features using a three-dimensional quantitative structure-activity relationship (3D-QSAR), virtual screening, molecular docking, and molecular dynamics. The QSAR model, validated using internal and external methods, demonstrated robustness with a high correlation coefficient r2training = 0.99, cross-validation coefficient q2 = 0.79, r2test = 0.69, and r2external = 0.74. The "Average of Actives" in the Activity Atlas model identified 17 molecules as active. Subsequent pharmacophore-based virtual screening of 17 actives yielded 70 compounds, which were selected as the prediction set to determine the potential GSK-3β inhibitors. Docking studies pinpointed compound P66 as the promising lead compound, with a docking score of - 10.555 kcal/mol. These findings were further supported by electrostatic potential (ESP), electrostatic complementarity (EC), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analyses. Furthermore, a 500 ns molecular dynamics (MD) simulation confirmed the structural and conformational stability of the lead complex throughout the simulation period. As a result, this study suggests that compound P66 holds the potential to be a potent lead candidate for the inhibition of GSK-3β, offering a novel therapeutic approach for GSK-3β related disorders, including epilepsy.
Collapse
Affiliation(s)
- Desu Gayathri Niharika
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - M Amarendar Reddy
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
2
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
3
|
Cheng N, Bai R, Li L, Zhang X, Kan X, Liu J, Qi Y, Li S, Hui Z, Chen J. The influence of biological rhythms on the initial onset of status epilepticus in critically ill inpatients and the study of its predictive Model. Chronobiol Int 2024; 41:789-801. [PMID: 38738753 DOI: 10.1080/07420528.2024.2351490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
This study aims to explore the relationship between the circadian rhythms of critically ill patients and the incidence of Status Epilepticus (SE), and to develop a predictive model based on circadian rhythm indicators and clinical factors. We conducted a diurnal rhythm analysis of vital sign data from 4413 patients, discovering significant differences in the circadian rhythms of body temperature, blood oxygen saturation, and heart rate between the SE and non-SE groups, which were correlated with the incidence of SE. We also employed various machine learning algorithms to identify the ten most significant variables and developed a predictive model with strong performance and clinical applicability. Our research provides a new perspective and methodology for the study of biological rhythms in critically ill patients, offering new evidence and tools for the prevention and treatment of SE. Our findings are consistent or similar to some in the literature, while differing from or supplementing others. We observed significant differences in the vital signs of epileptic patients at different times of the day across various diagnostic time groups, reflecting the regulatory effects of circadian rhythms. We suggest heightened monitoring and intervention of vital signs in critically ill patients, especially during late night to early morning hours, to reduce the risk of SE and provide more personalized treatment plans.
Collapse
Affiliation(s)
- Nan Cheng
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Ruoxue Bai
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Lan Li
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Xu Zhang
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Xiaoru Kan
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Jinghan Liu
- Department of First Clinical Medicine, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yujie Qi
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Shaowei Li
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Zhenliang Hui
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Jun Chen
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Cheng Z, Han T, Yao J, Wang K, Dong X, Yu F, Huang H, Han M, Liao Q, He S, Lyu W, Li Q. Targeting glycogen synthase kinase-3β for Alzheimer's disease: Recent advances and future Prospects. Eur J Med Chem 2024; 265:116065. [PMID: 38160617 DOI: 10.1016/j.ejmech.2023.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Senile plaques induced by β-amyloid (Aβ) abnormal aggregation and neurofibrillary tangles (NFT) caused by tau hyperphosphorylation are important pathological manifestations of Alzheimer's disease (AD). Glycogen synthase kinase-3 (GSK-3) is a conserved kinase; one member GSK-3β is highly expressed in the AD brain and involved in the formation of NFT. Hence, pharmacologically inhibiting GSK-3β activity and expression is a good approach to treat AD. As summarized in this article, multiple GSK-3β inhibitors has been comprehensively summarized over recent five years. However, only lithium carbonate and Tideglusib have been studied in clinical trials of AD. Besides ATP-competitive and non-ATP-competitive inhibitors, peptide inhibitors, allosteric inhibitors and other types of inhibitors have gradually attracted more interest. Moreover, considering the close relationship between GSK-3β and other targets involved in cholinergic hypothesis, Aβ aggregation hypothesis, tau hyperphosphorylation hypothesis, oxidative stress hypothesis, neuro-inflammation hypothesis, etc., diverse multifunctional molecules and multi-target directed ligands (MTDLs) have also been disclosed. We hope that these recent advances and critical perspectives will facilitate the discovery of safe and effective GSK-3β inhibitors for AD treatment.
Collapse
Affiliation(s)
- Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Tianyue Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Jingtong Yao
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kaixuan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Menglin Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, People's Republic of China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Shehata SA, Kolieb E, Ali DA, Maher SA, Korayem HE, Ibrahim MA, Nafie MS, Ameen SH. Selenium alleviates modafinil-induced neurobehavioral toxicity in rat via PI3K/Akt/mTOR/GSK3B signaling pathway and suppression of oxidative stress and apoptosis: in vivo and in silico study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:458-480. [PMID: 38015391 DOI: 10.1007/s11356-023-31093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Nonmedical use of modafinil (MOD) led to increased rates of overdose toxicity, road accidents, addiction, withdrawal, suicide, and mental illnesses. The current study aims to determine the probable MOD brain toxicity and elucidate the possible role of selenium (Se) in ameliorating the neurotoxicity in rat models. Fifty-four male Albino rats were randomly assigned into nine groups. The groups were G1 (control negative), G2 (Se0.1), G3 (Se0.2), G4 (MOD300), G5 (MOD600), G6 (Se0.1 + MOD300), G7 (Se0.2 + MOD300), G8 (Se0.1 + MOD600), and G9 (Se0.2 + MOD600). After finishing the experiment, blood and brain tissue were harvested for biochemical and histological investigation. Neurobehavior parameters were assessed. Tissue neurotransmitter levels and oxidative stress markers were assessed. Gene expression of PI3K/Akt/mTOR-GSK3B, orexin, and orexin receptor2 was measured by qRT-PCR. Histological and immunohistochemistry assessments, as well as molecular docking, were carried out. MOD-induced neurobehavioral toxicity exhibited by behavioral and cognitive function impairments, which are associated with decreased antioxidant activities, increased MDA levels, and decreases in neurotransmitter levels. Brain levels of mRNA expression of PI3K, Akt, and mTOR were decreased, while GS3K, orexin, and orexin receptors were significantly elevated. These disturbances were confirmed by histopathological brain changes with increased silver and Bax immunostaining and decreased crystal violet levels. MOD induced neurotoxic effects in a dose-dependent manner. Compared with the MOD groups, SE coadministration significantly attenuates MOD-induced toxic changes. Docking study shows the protective role of Se as an apoptosis inhibitor and inflammation inhibitor. In conclusion, Se could be used as a biologically effective antioxidant compound to protect from MOD neurobehavioral toxicity in Wistar rats by reversing behavioral alterations, inflammation, apoptosis, and oxidative injury.
Collapse
Affiliation(s)
- Shaimaa A Shehata
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman Kolieb
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Horeya Erfan Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahrous A Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, 72341, Aljouf, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Shimaa H Ameen
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharqia, Egypt
| |
Collapse
|
6
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
7
|
Fan D, Wu H, Luan G, Wang Q. The distribution and heterogeneity of excitability in focal epileptic network potentially contribute to the seizure propagation. Front Psychiatry 2023; 14:1137704. [PMID: 36998622 PMCID: PMC10043226 DOI: 10.3389/fpsyt.2023.1137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionExisting dynamical models can explain the transmigration mechanisms involved in seizures but are limited to a single modality. Combining models with networks can reproduce scaled epileptic dynamics. And the structure and coupling interactions of the network, as well as the heterogeneity of both the node and network activities, may influence the final state of the network model.MethodsWe built a fully connected network with focal nodes prominently interacting and established a timescale separated epileptic network model. The factors affecting epileptic network seizure were explored by varying the connectivity patterns of focal network nodes and modulating the distribution of network excitability.ResultsThe whole brain network topology as the brain activity foundation affects the consistent delayed clustering seizure propagation. In addition, the network size and distribution heterogeneity of the focal excitatory nodes can influence seizure frequency. With the increasing of the network size and averaged excitability level of focal network, the seizure period decreases. In contrast, the larger heterogeneity of excitability for focal network nodes can lower the functional activity level (average degree) of focal network. There are also subtle effects of focal network topologies (connection patterns of excitatory nodes) that cannot be ignored along with non-focal nodes.DiscussionUnraveling the role of excitatory factors in seizure onset and propagation can be used to understand the dynamic mechanisms and neuromodulation of epilepsy, with profound implications for the treatment of epilepsy and even for the understanding of the brain.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Hongyu Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Guoming Luan
- Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guoming Luan, ; Qingyun Wang,
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
- *Correspondence: Guoming Luan, ; Qingyun Wang,
| |
Collapse
|
8
|
Liu X, Yu J, Luo Y, Dong H. Novel hybrid virtual screening protocol based on pharmacophore and molecular docking for discovery of GSK-3β inhibitors. Chem Biol Drug Des 2023; 101:326-339. [PMID: 35762873 DOI: 10.1111/cbdd.14111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 01/14/2023]
Abstract
GSK-3β is a member of the GSKs subfamily and plays a major role in the regulation of transcriptional elongation, which has attracted widespread attention as a therapeutic target for AD. In this study, by combining pharmacophore-based virtual screening and kinase inhibition assays, we have successfully identified four small molecules that inhibit GSK-3β activity at micromolar potency. These hit compounds showed drug-like properties according to Lipinski's rule of five and ADMET. An inter-complex interaction study showed that all hit compounds adapted well to the ATP pocket of the GSK-3β protein. Among them, hits 2 and 4 displayed considerable inhibitory activities with IC50 value of 0.74 ± 0.04 μM and 2.32 ± 0.84 μM respectively. Overall, the discovered GSK-3β inhibitors act as new chemical leads to develop improved inhibitors that block the interaction of GSK-3β, and the hybrid virtual screening strategy designed in this study provides an important reference for design and synthesis novel selective GSK-3β inhibitors.
Collapse
Affiliation(s)
- Xiaochang Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Jiaxue Yu
- Department of Pharmacy, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Yongyan Luo
- Department of Pharmacy, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Haojian Dong
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary, Guangzhou, China.,Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangzhou, China.,Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
11
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
12
|
Ebrahim Amini A, Miyata T, Lei G, Jin F, Rubie E, Bradley CA, Woodgett JR, Collingridge GL, Georgiou J. Specific Role for GSK3α in Limiting Long-Term Potentiation in CA1 Pyramidal Neurons of Adult Mouse Hippocampus. Front Mol Neurosci 2022; 15:852171. [PMID: 35782378 PMCID: PMC9247355 DOI: 10.3389/fnmol.2022.852171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3β, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in synaptic plasticity. However, the relative roles of GSK3 paralogs in synaptic plasticity remains controversial. Here, we used hippocampal slices obtained from adult mice to determine the role of each paralog in CA3−CA1 long-term potentiation (LTP) of synaptic transmission, a form of plasticity critically required in learning and memory. Conditional Camk2a Cre-driven neuronal deletion of the Gsk3a gene, but not Gsk3b, resulted in enhanced LTP. There were no changes in basal synaptic function in either of the paralog-specific knockouts, including several measures of presynaptic function. Therefore, GSK3α has a specific role in serving to limit LTP in adult CA1, a postsynaptic function that is not compensated by GSK3β.
Collapse
Affiliation(s)
- Aeen Ebrahim Amini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tsukiko Miyata
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gang Lei
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Fuzi Jin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Elizabeth Rubie
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Clarrisa A. Bradley
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - James R. Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- *Correspondence: James R. Woodgett,
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Graham L. Collingridge,
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- John Georgiou,
| |
Collapse
|
13
|
Banach E, Jaworski T, Urban-Ciećko J. Early synaptic deficits in GSK-3β overexpressing mice. Neurosci Lett 2022; 784:136744. [PMID: 35718239 DOI: 10.1016/j.neulet.2022.136744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction is the prominent feature of many neuropsychiatric and neurological diseases, in which glycogen synthase kinase 3β (GSK-3β) has been shown to play a role. Overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural brain deficits characteristic for manic phase of bipolar disorder (BD). Yet, the mechanisms underlying GSK-3β-induced synaptic dysfunction have not been fully elucidated. The aim of the present study was to dissect the effect of GSK-3β overactivity on synaptic function in adolescent (3-week-old) mice. We found that overactivity of GSK-3β in adolescent transgenic mice leads to an alteration in dendritic spines morphology of granule cells in dentate gyrus (DG) without changes in overall spine density. There was an increase in the number of thin, presumably immature dendritic spines in GSK-3β[S9A] mice. Subsequent electrophysiological analysis showed changes in excitatory synaptic transmission manifested by an increase of inter-event intervals of miniature excitatory postsynaptic currents (mEPSCs) in DG granule cells and an increase in the number of silent (unfunctional) synapses at the perforant path-DG pathway in GSK-3β[S9A] mice. Altogether, our data indicate that GSK-3β overactivity leads to synaptic deficits in adolescent, GSK-3β[S9A] mice. These data might provide potential mechanisms underlying GSK-3β-induced synaptic dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
14
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
15
|
Young Seo G, Neal ES, Han F, Vidovic D, Nooru-Mohamed F, Dienel GA, Sullivan MA, Borges K. Brain glycogen content is increased in the acute and interictal chronic stages of the mouse pilocarpine model of epilepsy. Epilepsia Open 2022; 7:361-367. [PMID: 35377551 PMCID: PMC9159246 DOI: 10.1002/epi4.12599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glucose is the main brain fuel in fed conditions, while astrocytic glycogen is used as supplemental fuel when the brain is stimulated. Brain glycogen levels are decreased shortly after induced seizures in rodents, but little is known about how glycogen levels are affected interictally in chronic models of epilepsy. Reduced glutamine synthetase activity has been suggested to lead to increased brain glycogen levels in humans with chronic epilepsy. Here, we used the mouse pilocarpine model of epilepsy to investigate whether brain glycogen levels are altered, both acutely and in the chronic stage of the model. One day after pilocarpine‐induced convulsive status epilepticus (CSE), glycogen levels were higher in the hippocampal formation, cerebral cortex, and cerebellum. Opposite to expected, this was accompanied by elevated glutamine synthetase activity in the hippocampus but not the cortex. Increased interictal glycogen amounts were seen in the hippocampal formation and cerebral cortex in the chronic stage of the model (21 days post‐CSE), suggesting long‐lasting alterations in glycogen metabolism. Glycogen solubility in the cerebral cortex was unaltered in this epilepsy mouse model. Glycogen synthase kinase 3 beta (Gsk3b) mRNA levels were reduced in the hippocampal formations of mice in the chronic stage, which may underlie the elevated brain glycogen content in this model. This is the first report of elevated interictal glycogen levels in a chronic epilepsy model. Increased glycogen amounts in the brain may influence seizure susceptibility in this model, and this warrants further investigation.
Collapse
Affiliation(s)
- Gi Young Seo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Elliott S Neal
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Felicity Han
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Diana Vidovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fathima Nooru-Mohamed
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, 72205.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA, 87131
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, 4072, Australia
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
16
|
Alves SS, da Silva Junior RMP, Delfino-Pereira P, Pereira MGAG, Vasconcelos I, Schwaemmle H, Mazzei RF, Carlos ML, Espreafico EM, Tedesco AC, Sebollela A, Almeida SS, de Oliveira JAC, Garcia-Cairasco N. A Genetic Model of Epilepsy with a Partial Alzheimer's Disease-Like Phenotype and Central Insulin Resistance. Mol Neurobiol 2022; 59:3721-3737. [PMID: 35378696 DOI: 10.1007/s12035-022-02810-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-β. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | | | - Polianna Delfino-Pereira
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | | | - Israel Vasconcelos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Hanna Schwaemmle
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Maiko Luiz Carlos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Antônio Claudio Tedesco
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - José Antônio Cortes de Oliveira
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Av. Dos Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil.
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Av. Dos Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
17
|
Banach E, Szczepankiewicz A, Kaczmarek L, Jaworski T, Urban-Ciećko J. Dysregulation of miRNAs levels in GSK3β overexpressing mice and the role of miR-221-5p in synaptic function. Neuroscience 2022; 490:287-295. [PMID: 35331845 DOI: 10.1016/j.neuroscience.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3β (GSK-3β) is a highly expressed kinase in the brain, where it has an important role in synaptic plasticity. Aberrant activity of GSK-3β leads to synaptic dysfunction which results in the development of several neuropsychiatric and neurological diseases. Notably, overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural defects characteristic for neurological and psychiatric disorders. However, the mechanisms by which GSK-3β regulates synaptic functions are not clearly known. Here, we investigate the effects of GSK-3β overactivity on neuronal miRNA expression in the mouse hippocampus. We found that GSK-3β overactivity downregulates miRNA network with a potent effect on miR-221-5p (miR-221*). Next, characterization of miR-221* function in primary hippocampal cell culture transfected by miR-221* inhibitor, showed no structural changes in dendritic spine shape and density. Using electrophysiological methods, we found that downregulation of miR-221* increases excitatory synaptic transmission in hippocampal neurons, probably via postsynaptic mechanisms. Thus, our data reveal potential mechanism by which GSK-3β and miRNAs might regulate synaptic function and therefore also synaptic plasticity.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | - Leszek Kaczmarek
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
Aourz N, Van Leuven F, Allaoui W, Van Eeckhaut A, De Bundel D, Smolders I. Unraveling the Effects of GSK-3β Isoform Modulation against Limbic Seizures and in the 6 Hz Electrical Kindling Model for Epileptogenesis. ACS Chem Neurosci 2022; 13:796-805. [PMID: 35253420 DOI: 10.1021/acschemneuro.1c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two closely related glycogen synthase kinase-3 (GSK-3) isoforms have been identified in mammals: GSK-3α and GSK-3β. GSK-3β is the most prominent in the central nervous system and was previously shown to control neuronal excitability. We previously demonstrated that indirubin and its structural analogue and the nonselective GSK-3 inhibitor BIO-acetoxime exerted anticonvulsant effects in acute seizure models in zebrafish, mice, and rats. We here examined for the first time the anticonvulsant effect of TCS2002, a specific and potent inhibitor of GSK-3β, in two models for limbic seizures: the pilocarpine rat model for focal seizures and the acute 6 Hz corneal mouse model for refractory seizures. Next, we additionally used the 6 Hz kindling model to establish differences in seizure susceptibility and seizure progression in mice that either overexpress human GSK-3β (GSK-3β OE) or lack GSK-3β (GSK-3β-/-) in neurons. We demonstrate that TCS2002 exerts anticonvulsant actions against pilocarpine- and 6 Hz-evoked seizures. Compared to wild-type littermates, GSK-3β OE mice are less susceptible to seizures but are more rapidly kindled. Interestingly, compared to GSK-3β+/+ mice, neuronal GSK-3β-/- mice show increased susceptibility to 6 Hz-induced seizures. These contrasting observations suggest compensatory neurodevelopmental mechanisms that alter seizure susceptibility in GSK-3β OE and GSK-3β-/- mice. Although the pronounced anticonvulsant effects of selective and acute GSK-3β inhibition in the 6 Hz model identify GSK-3β as a potential drug target for pharmacoresistant seizures, our data on the sustained disruption of GSK-3β activity in the transgenic mice suggest a role for GSK-3 in kindling and warrants further research into the long-term effects of selective pharmacological GSK-3β inhibition.
Collapse
Affiliation(s)
- Najat Aourz
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information/Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Fred Van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Wissal Allaoui
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information/Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information/Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information/Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information/Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
19
|
Gao T, Gao C, Liu Z, Wang Y, Jia X, Tian H, Lu Q, Guo L. Inhibition of Noncanonical Ca 2+ Oscillation/Calcineurin/GSK-3β Pathway Contributes to Anti-Inflammatory Effect of Sigma-1 Receptor Activation. Neurochem Res 2022; 47:264-278. [PMID: 34468932 DOI: 10.1007/s11064-021-03439-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Further understanding the mechanism for microglia activation is necessary for developing novel anti-inflammatory strategies. Our previous study found that the activation of sigma-1 receptor can effectively inhibit the neuroinflammation, independent of the canonical mechanisms, such as NF-κB, JNK and ERK inflammatory pathways. Thus, it is reasonable that an un-identified, non-canonical pathway contributes to the activation of microglia. In the present study, we found that a sigma-1 receptor agonist of 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) suppressed lipopolysaccharide (LPS) elevated nitric oxide (NO) content in BV-2 microglia culture supernatant and LPS-raised mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) in BV-2 microglia. Moreover, PRE-084 alleviated LPS-increased Ser 9 de-phosphorylation of glycogen synthase kinase-3 beta (GSK-3β), LPS-elevated catalytic activity of calcineurin, and LPS-raised percent and frequency of Ca2+ oscillatory BV-2 cells. We further found that the inhibitory effect of PRE-084 was reversed by a calcineurin activator of chlorogenic acid and a GSK-3β activator of pyrvinium. Moreover, an IP3 receptor inhibitor of 2-aminoethoxydiphenyl borate mimicked the anti-inflammatory activity of PRE-084. Thus, we identified a noncanonical pro-neuroinflammary pathway of Ca2+ oscillation/Calcineurin/GSK-3β and the inhibition of this pathway is necessary for the anti-inflammatory activity of sigma-1 receptor activation.
Collapse
Affiliation(s)
- Tianyu Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ce Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Zhidong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming, 650000, Yunnan Province, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, China.
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
20
|
Mdivi-1 Modulates Macrophage/Microglial Polarization in Mice with EAE via the Inhibition of the TLR2/4-GSK3β-NF-κB Inflammatory Signaling Axis. Mol Neurobiol 2021; 59:1-16. [PMID: 34618332 DOI: 10.1007/s12035-021-02552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Macrophage/microglial modulation plays a critical role in the pathogenesis of multiple sclerosis (MS), which is an inflammatory disorder of the central nervous system. Dynamin-related protein 1 is a cytoplasmic molecule that regulates mitochondrial fission. It has been proven that mitochondrial fission inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, can relieve experimental autoimmune encephalomyelitis (EAE), a preclinical animal model of MS. Whether macrophages/microglia are involved in the pathological process of Mdivi-1-treated EAE remains to be determined. Here, we studied the anti-inflammatory effect of Mdivi-1 on mice with oligodendrocyte glycoprotein peptide35-55 (MOG35-55)-induced EAE. We found that Drp1 phosphorylation at serine 616 in macrophages/microglia was decreased with Mdivi-1 treatment, which was accompanied by decreased antigen presentation capacity of the macrophages/microglia in the EAE mouse spinal cord. The Mdivi-1 treatment caused macrophage/microglia to produce low levels of proinflammatory molecules, such as CD16/32, iNOS, and TNF-α, and high levels of anti-inflammatory molecules, such as CD206, IL-10, and Arginase-1, suggesting that Mdivi-1 promoted the macrophage/microglia shift from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, Mdivi-1 was able to downregulate the expression of TRL2, TRL4, GSK-3β, and phosphorylated NF-κB-p65 and prevent NF-κB-mediated IL-1β and IL-6 production. In conclusion, these results indicate that Mdivi-1 significantly alleviates inflammation in mice with EAE by promoting M2 polarization by inhibiting TLR2/4- and GSK3β-mediated NF-κB activation.
Collapse
|
21
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:cells10071595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel’s complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
22
|
Chang C, Wang SH, Xu LN, Su XL, Zeng YF, Wang P, Zhang LR, Han SN. Glycogen synthase kinase 3 beta inhibitor SB216763 improves Kir2.1 expression after myocardia infraction in rats. J Interv Card Electrophysiol 2021; 63:239-248. [PMID: 33611692 DOI: 10.1007/s10840-021-00963-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Abnormal ion channel currents caused by myocardial electrical remodeling is one of the main causes of malignant arrhythmias. Glycogen synthase kinase 3β (GSK-3β) is the main therapeutic target following ischemia as it regulates nerve cell channels. However, few studies have investigated its role in myocardial electrical remodeling. The present study aimed to investigate the role of GSK-3β in a rat myocardial infarction (MI)-induced electrical remodeling and potential effects on cardiac ionic channels including KCNJ2/Kir2.1/IK1. METHODS Ligation of the left anterior descending artery in rats was performed to establish a MI model. The rats were randomly divided into three groups, the sham, MI, and MI + SB group. The animals in the latter group were administered SB216763 (GSK-3β inhibitor) at a dose of 0.6 mg·kg-1·day-1. The ventricular function was assessed by echocardiography, electrocardiography, and histological analysis 7 days post-surgery. Serum was collected to measure lactate dehydrogenase and cardiac troponin I levels, and the mRNA and protein levels of the KCNJ2/Kir2.1/IK1 channel in the heart tissues were assessed. H9c2 cells were cultured to examine the effects of SB216763 on the protein expression of Kir2.1 channel under hypoxic conditions. RESULTS The results revealed that SB216763 ameliorated acute cardiac injury and improved myocardial dysfunction. Moreover, SB216763 increased the mRNA and protein expression of Kir2.1 during MI. Furthermore, SB216763 treatment abrogated the decreased expression of Kir2.1 in H9c2 cells under hypoxic conditions. CONCLUSIONS GSK-3β inhibition upregulates Kir2.1 expression in a rat model of MI.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi-Fan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Peng Wang
- Basic Medical Department, School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|