1
|
Byrt CS, Zhang RY, Magrath I, Chan KX, De Rosa A, McGaughey S. Exploring aquaporin functions during changes in leaf water potential. FRONTIERS IN PLANT SCIENCE 2023; 14:1213454. [PMID: 37615024 PMCID: PMC10442719 DOI: 10.3389/fpls.2023.1213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Maintenance of optimal leaf tissue humidity is important for plant productivity and food security. Leaf humidity is influenced by soil and atmospheric water availability, by transpiration and by the coordination of water flux across cell membranes throughout the plant. Flux of water and solutes across plant cell membranes is influenced by the function of aquaporin proteins. Plants have numerous aquaporin proteins required for a multitude of physiological roles in various plant tissues and the membrane flux contribution of each aquaporin can be regulated by changes in protein abundance, gating, localisation, post-translational modifications, protein:protein interactions and aquaporin stoichiometry. Resolving which aquaporins are candidates for influencing leaf humidity and determining how their regulation impacts changes in leaf cell solute flux and leaf cavity humidity is challenging. This challenge involves resolving the dynamics of the cell membrane aquaporin abundance, aquaporin sub-cellular localisation and location-specific post-translational regulation of aquaporins in membranes of leaf cells during plant responses to changes in water availability and determining the influence of cell signalling on aquaporin permeability to a range of relevant solutes, as well as determining aquaporin influence on cell signalling. Here we review recent developments, current challenges and suggest open opportunities for assessing the role of aquaporins in leaf substomatal cavity humidity regulation.
Collapse
|
2
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
3
|
Su Y, Liu Z, Sun J, Wu C, Li Y, Zhang C, Zhao L. Genome-Wide Identification of Maize Aquaporin and Functional Analysis During Seed Germination and Seedling Establishment. FRONTIERS IN PLANT SCIENCE 2022; 13:831916. [PMID: 35154233 PMCID: PMC8828918 DOI: 10.3389/fpls.2022.831916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/07/2022] [Indexed: 05/10/2023]
Abstract
Water uptake facilitates the initiation of seed germination. It is presumed that aquaporin (AQP)-mediated water inflow contributes to seed germination, but the genetic evidence is still lacking. This study aimed at genome-wide identification of ZmAQPs and further determined the physiological functions. Following a comprehensive search, a total of 41 ZmAQPs were identified according to the latest genome database. Through bioinformatic approaches, the physicochemical characteristics, phylogenetic relationships, and structural features of ZmAQPs were analyzed. The gene expression analysis of 20 high-resolution and multi-tissues samples showed that ZmAQPs had distinct spatiotemporal and tissue-specific expression profiles during seed germination and early seedling development. We then focused on the aquaporin of maize tonoplast intrinsic protein 3 (ZmTIP3), which is specifically expressed in germinating seed. A mutant zmtip3-1 with disruption of the ZmTIP3-1 gene showed shorter shoot and root length, and decreased seedling dry weight compared with the control (W22). The result revealed that ZmTIP3-1 improved the absolute content of seed protein and promoted storage reserves mobilization, suggesting that ZmTIP3 may be a positive regulator of seed vigor. This work provides valuable clues for understanding the function and possible regulatory mechanism of ZmAQPs in seed germination and seedling growth.
Collapse
|
4
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
5
|
Zhang Z, Ke D, Hu M, Zhang C, Deng L, Li Y, Li J, Zhao H, Cheng L, Wang L, Yuan H. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis. PLANT MOLECULAR BIOLOGY 2019; 100:265-283. [PMID: 30989446 DOI: 10.1007/s11103-019-00857-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Symbiotic nitrogen fixation in root nodules of grain legumes is essential for high yielding. Protein phosphorylation/dephosphorylation plays important role in root nodule development. Differences in the phosphoproteomes may either be developmental specific and related to nitrogen fixation activity. An iTRAQ-based quantitative phosphoproteomic analyses during nodule development enables identification of specific phosphorylation signaling in the Lotus-rhizobia symbiosis. During evolution, legumes (Fabaceae) have evolved a symbiotic relationship with rhizobia, which fix atmospheric nitrogen and produce ammonia that host plants can then absorb. Root nodule development depends on the activation of protein phosphorylation-mediated signal transduction cascades. To investigate possible molecular mechanisms of protein modulation during nodule development, we used iTRAQ-based quantitative proteomic analyses to identify root phosphoproteins during rhizobial colonization and infection of Lotus japonicus. 1154 phosphoproteins with 2957 high-confidence phosphorylation sites were identified. Gene ontology enrichment analysis of functional groups of these genes revealed that the biological processes mediated by these proteins included cellular processes, signal transduction, and transporter activity. Quantitative data highlighted the dynamics of protein phosphorylation during nodule development and, based on regulatory trends, seven groups were identified. RNA splicing and brassinosteroid (BR) signaling pathways were extensively affected by phosphorylation, and most Ser/Arg-rich (SR) proteins were multiply phosphorylated. In addition, many proposed kinase-substrate pairs were predicted, and in these MAPK6 substrates were found to be highly enriched. This study offers insights into the regulatory processes underlying nodule development, provides an accessible resource cataloging the phosphorylation status of thousands of Lotus proteins during nodule development, and develops our understanding of post-translational regulatory mechanisms in the Lotus-rhizobia symbiosis.
Collapse
Affiliation(s)
- Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Danxia Ke
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Chi Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Lijun Deng
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yuting Li
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiuli Li
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Hai Zhao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Cheng
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Lei Wang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Hongyu Yuan
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| |
Collapse
|
6
|
|
7
|
Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2778-2787. [DOI: 10.1016/j.bbamem.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 08/07/2016] [Indexed: 11/17/2022]
|
8
|
Bellati J, Champeyroux C, Hem S, Rofidal V, Krouk G, Maurel C, Santoni V. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics 2016; 15:3473-3487. [PMID: 27609422 PMCID: PMC5098044 DOI: 10.1074/mcp.m116.060087] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.
Collapse
Affiliation(s)
- Jorge Bellati
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Chloé Champeyroux
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Sonia Hem
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Valérie Rofidal
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Gabriel Krouk
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Véronique Santoni
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
9
|
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in Plants. Physiol Rev 2015; 95:1321-58. [DOI: 10.1152/physrev.00008.2015] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| |
Collapse
|
10
|
Fan W, Li J, Jia J, Wang F, Cao C, Hu J, Mu Z. Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:28-34. [PMID: 26000467 DOI: 10.1016/j.plaphy.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA. Similar to ABA, lower concentration of pyrabactin induced a remarkable increase in Lpr as well as in the gene expression of the plasma membrane intrinsic protein (ZmPIP) aquaporin and in the ZmPIP2; 1/2; 2 protein abundance. The pyrabactin-induced enhancement of Lpr was abolished by H2O2 application, indicating that pyrabactin regulates Lpr by modulating ZmPIP at transcriptional, translational and post-translational (activity) level. Pyrabactin-mediated water transport and ZmPIP gene expression were phosphorylation-dependent, suggesting that ABA-PYR1-(PP2C)-protein kinase-AQP signaling pathway may be involved in this process. As we know this is the first established ABA signaling transduction pathway that mediated water transport in roots. This observation further addressed the importance of PYR1/PYLs ABA receptor in regulating plant water use efficiency from the under ground level. Except inhibiting transpiration in leaves, our result introduces the exciting possibility of application ABA agonists for regulating roots water uptake in field, with a species- and dose dependent manner.
Collapse
Affiliation(s)
- Wenqiang Fan
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jia Li
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jia Jia
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Fei Wang
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Cuiling Cao
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjiang Hu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Li G, Boudsocq M, Hem S, Vialaret J, Rossignol M, Maurel C, Santoni V. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity. PLANT, CELL & ENVIRONMENT 2015; 38:1312-20. [PMID: 25366820 DOI: 10.1111/pce.12478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Marie Boudsocq
- Saclay Plant Sciences, Institut des Sciences du Végétal, UPR2355, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, 91198, France
| | - Sonia Hem
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle, UR1199, 1 Place Viala, Montpellier Cedex 1, 34060, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, INRA/CNRS/SupAgro/UM2, UMR 5004, 2 Place Viala, Montpellier Cedex 1, 34060, France
| |
Collapse
|
12
|
Jang HY, Rhee J, Carlson JE, Ahn SJ. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1401-12. [PMID: 25046761 DOI: 10.1016/j.jplph.2014.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 05/08/2023]
Abstract
Aquaporin (AQP) proteins are involved in water homeostasis in cells at all taxonomic levels of life. Phosphorylation of some AQPs has been proposed to regulate water permeability via gating of the channel itself. We analyzed plasma membrane intrinsic proteins (PIP) from Camelina and characterized their biological functions under both stressful and favorable conditions. A three-dimensional theoretical model of the Camelina AQP proteins was built by homology modeling which could prove useful in further functional characterization of AQPs. CsPIP2;1 was strongly and constitutively expressed in roots and leaves of Camelina, suggesting that this gene is related to maintenance of homeostasis during salt and drought stresses. CsPIP2s exhibited water channel activity in Xenopus oocytes. We then examined the roles of CsPIP2;1 phosphorylation at Ser273 and Ser277 in the regulation of water permeability using phosphorylation mutants. A single deletion strain of CsPIP2;1 was generated to serve as the primary host for testing AQP expression constructs. A Ser277 to alanine mutation (to prevent phosphorylation) did not change CsPIP2;1 water permeability while a Ser273 mutation to alanine did affect water permeability. Furthermore, a CsPIP2;1 point mutation when ectopically expressed in yeast resulted in lower growth in salt and drought conditions compared with controls, and confirmation of Ser273 as the phosphorylation site. Our results support the idea that post-translational modifications in the Ser273 regulatory domains of the C-terminus fine tune water flux through CsPIP2;1.
Collapse
Affiliation(s)
- Ha-Young Jang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jiye Rhee
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic
| | - John E Carlson
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
13
|
Li G, Santoni V, Maurel C. Plant aquaporins: roles in plant physiology. Biochim Biophys Acta Gen Subj 2013; 1840:1574-82. [PMID: 24246957 DOI: 10.1016/j.bbagen.2013.11.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. SCOPE OF REVIEW Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. MAJOR CONCLUSIONS In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. GENERAL SIGNIFICANCE Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France.
| |
Collapse
|
14
|
Functional Classification of Plant Plasma Membrane Transporters. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Vera-Estrella R, Bohnert HJ. Physiological Roles for the PIP Family of Plant Aquaporins. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:1-17. [PMID: 20666220 DOI: 10.1007/978-1-4419-6315-4_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aquaporins (AQPs) were discovered as channels facilitatingwater movement across cellular membranes. Whereas much of the research has focused on characterizing AQPs with respect to cell water homeostasis, recent discoveries in terms of the transport selectivity of AQP homologs has shed new light on their physiological roles. In fact, whereas some AQPs behave as "strict" water channels, others can conduct a wide range ofnonpolar solutes, such as urea or glycerol and even more unconventional permeants, such as the nonpolar gases carbon dioxide and nitric oxide, the polar gas ammonia, the reactive oxygen species hydrogen peroxide and the metalloids antimonite, arsenite, boron and silicon. This suggests that AQPs are also key players in various physiological processes not related to water homeostasis. The function, regulation and biological importance of AQPs in the different kingdoms is reviewed in this chapter, with special emphasis on animal and plant AQPs.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Universit4 catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
17
|
Structural and Functional Analysis of SoPIP2;1 Mutants Adds Insight into Plant Aquaporin Gating. J Mol Biol 2009; 387:653-68. [DOI: 10.1016/j.jmb.2009.01.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/23/2022]
|
18
|
Boursiac Y, Prak S, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Santoni V, Maurel C. The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins. PLANT SIGNALING & BEHAVIOR 2008; 3:1096-8. [PMID: 19704504 PMCID: PMC2634465 DOI: 10.4161/psb.3.12.7002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/16/2008] [Indexed: 05/19/2023]
Abstract
Aquaporins, which facilitate the diffusion of water across biological membranes, are key molecules for the regulation of water transport at the cell and organ levels. We recently reported that hydrogen peroxide (H(2)O(2)) acts as an intermediate in the regulation of Arabidopsis root water transport and aquaporins in response to NaCl and salicylic acid (SA).1 Its action involves signaling pathways and an internalization of aquaporins from the cell surface. The present addendum connects these findings to another recent work which describes multiple phosphorylations in the C-terminus of aquaporins expressed in the Arabidopsis root plasma membrane.2 A novel role for phosphorylation in the process of salt-induced relocalization of AtPIP2;1, one of the most abundant root aquaporins, was unraveled. Altogether, the data delineate reactive oxygen species (ROS)-dependent signaling mechanisms which, in response to a variety of abiotic and biotic stresses, can trigger phosphorylation-dependent PIP aquaporin intracellular trafficking and root water transport downregulation.
Collapse
Affiliation(s)
- Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Y, Ma H, Liu G, Zhang D, Ban Q, Zhang G, Xu C, Yang C. Generation and analysis of expressed sequence tags from a NaHCO3-treated Limonium bicolor cDNA library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:977-986. [PMID: 18640047 DOI: 10.1016/j.plaphy.2008.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 06/01/2008] [Accepted: 06/03/2008] [Indexed: 05/26/2023]
Abstract
Limonium bicolor, a halophytic species of Plumbaginaceae, can thrive in saline or saline-alkali (sodic) soil, demonstrating that it has developed an efficient saline-alkali resistance system, and is an ideal material for the study of saline-alkali tolerance. In order to identify and characterize the complexity of this adaptation, expressed sequence tags (ESTs) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were conducted. We constructed a cDNA library of L. bicolor exposed to 0.4M NaHCO3 for 48h, and obtained 2358 ESTs, representing 1735 unique genes. A BLASTX search revealed that 1393 ESTs, representing 873 unique genes, showed significant similarity (E-values <10(-4)) to protein sequences in the non-redundant database. These ESTs were further grouped into 12 functional categories according to their functional annotation. The most abundant categories were metabolism (18.74%), photosynthesis (14.86%), unknown classification (12.20%), defense (12.20%), and transport facilitation (10.19%). In total, 286 putative abiotic stress related transcripts, representing 121 unique genes, were identified. Among them, the two most abundant genes encoded metallothionein (EH794553) and lipid transfer protein (EH794695), each of which accounted for 1.4% of the total ESTs. The expression of 18 putative stress-related genes were further analyzed in roots and leaves of L. bicolor using real-time RT-PCR, and 14 genes were differentially expressed by more than 2-fold as a result of the NaHCO3 stress. The results of this study may contribute to our understanding of the molecular mechanism of saline-alkali tolerance in L. bicolor.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Azad AK, Katsuhara M, Sawa Y, Ishikawa T, Shibata H. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. PLANT & CELL PHYSIOLOGY 2008; 49:1196-208. [PMID: 18567892 DOI: 10.1093/pcp/pcn095] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Life Science and Biotechnology, Shimane University, Shimane, 690-8504 Japan
| | | | | | | | | |
Collapse
|
21
|
Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes. Biol Cell 2008; 100:355-63. [PMID: 18167118 DOI: 10.1042/bc20070132] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.
Collapse
|
22
|
Katsuhara M, Hanba YT, Shiratake K, Maeshima M. Expanding roles of plant aquaporins in plasma membranes and cell organelles. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1-14. [PMID: 32688752 DOI: 10.1071/fp07130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 06/11/2023]
Abstract
Aquaporins facilitate water transport across biomembranes in a manner dependent on osmotic pressure and water-potential gradient. The discovery of aquaporins has facilitated research on intracellular and whole-plant water transport at the molecular level. Aquaporins belong to a ubiquitous family of membrane intrinsic proteins (MIP). Plants have four subfamilies: plasma-membrane intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), and small basic intrinsic protein (SIP). Recent research has revealed a diversity of plant aquaporins, especially their physiological functions and intracellular localisation. A few PIP members have been reported to be involved in carbon dioxide permeability of cells. Newly identified transport substrates for NIP members of rice and Arabidopsis thaliana have been demonstrated to transport silicon and boron, respectively. Ammonia, glycerol, and hydrogen peroxide have been identified as substrates for plant aquaporins. The intracellular localisation of plant aquaporins is diverse; for example, SIP members are localised on the ER membrane. There has been much progress in the research on the functional regulation of water channel activity of PIP members including phosphorylation, formation of hetero-oligomer, and protonation of histidine residues under acidic condition. This review provides a broad overview of the range of potential aquaporins, which are now believed to participate in the transport of several small molecules in various membrane systems in model plants, crops, flowers and fruits.
Collapse
Affiliation(s)
- Maki Katsuhara
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Yuko T Hanba
- Centre for Bioresource Field Science, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masayoshi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Maurel C, Verdoucq L, Luu DT, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:595-624. [PMID: 18444909 DOI: 10.1146/annurev.arplant.59.032607.092734] [Citation(s) in RCA: 701] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Aquaporins are channel proteins present in the plasma and intracellular membranes of plant cells, where they facilitate the transport of water and/or small neutral solutes (urea, boric acid, silicic acid) or gases (ammonia, carbon dioxide). Recent progress was made in understanding the molecular bases of aquaporin transport selectivity and gating. The present review examines how a wide range of selectivity profiles and regulation properties allows aquaporins to be integrated in numerous functions, throughout plant development, and during adaptations to variable living conditions. Although they play a central role in water relations of roots, leaves, seeds, and flowers, aquaporins have also been linked to plant mineral nutrition and carbon and nitrogen fixation.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, SupAgro/INRA/CNRS/UM2 UMR 5004, F-34060 Montpellier Cedex 1, France.
| | | | | | | |
Collapse
|
24
|
Kikawada T, Saito A, Kanamori Y, Fujita M, Snigórska K, Watanabe M, Okuda T. Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:514-20. [PMID: 18082130 DOI: 10.1016/j.bbamem.2007.11.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/02/2007] [Accepted: 11/07/2007] [Indexed: 12/11/2022]
Abstract
Aquaporin, AQP, is a channel protein that allows water to permeate across cell membranes. Larvae of the sleeping chironomid, Polypedilum vanderplanki, can withstand complete dehydration by entering anhydrobiosis, a state of suspended animation; however, the mechanism by which water flows out of the larval body during dehydration is still unclear. We isolated two cDNAs (PvAqp1 and PvAqp2) encoding water-selective aquaporins from the chironomid. When expressed in Xenopus oocytes, PvAQP1 and PvAQP2 facilitated permeation of water but not glycerol. Northern blots and in situ hybridization showed that expression of PvAqp1 was dehydration-inducible and ubiquitous whereas that of PvAqp2 was dehydration-repressive and fat body-specific. These data suggest distinct roles for these aquaporins in P. vanderplanki, i.e., PvAqp2 controls water homeostasis of fat body during normal conditions and PvAqp1 is involved in the removal of water during induction of anhydrobiosis.
Collapse
Affiliation(s)
- Takahiro Kikawada
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634 Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Maurel C. Plant aquaporins: novel functions and regulation properties. FEBS Lett 2007; 581:2227-36. [PMID: 17382935 DOI: 10.1016/j.febslet.2007.03.021] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 01/04/2023]
Abstract
Aquaporins are water channel proteins of intracellular and plasma membranes that play a crucial role in plant water relations. The present review focuses on the most recent findings concerning the molecular and cellular properties of plant aquaporins. The mechanisms of transport selectivity and gating (i.e. pore opening and closing) have recently been described, based on aquaporin structures at atomic resolution. Novel dynamic aspects of aquaporin subcellular localisation have been uncovered. Also, some aquaporin isoforms can transport, besides water, physiologically important molecules such as CO(2), H(2)O(2), boron or silicon. Thus, aquaporins are involved in many great functions of plants, including nutrient acquisition, carbon fixation, cell signalling and stress responses.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Agro-M/CNRS/INRA/UM2 UMR 5004, Place Viala, F-34060 Montpellier Cedex 1, France.
| |
Collapse
|