1
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Salloum Z, Dauner K, Li YF, Verma N, Valdivieso-González D, Almendro-Vedia V, Zhang JD, Nakka K, Chen MX, McDonald J, Corley CD, Sorisky A, Song BL, López-Montero I, Luo J, Dilworth JF, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3. eLife 2024; 13:e85964. [PMID: 38602170 PMCID: PMC11186637 DOI: 10.7554/elife.85964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Statins are known to be anti-inflammatory, but the mechanism remains poorly understood. Here, we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the adenosine triphosphate (ATP) synthase in the inner mitochondrial membrane and changes the proton gradient in the mitochondria. This activates nuclear factor kappa-B (NF-κB) and Jmjd3 expression, which removes the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus lipopolysaccharide (M1), macrophages, either treated with statins in vitro or isolated from statin-fed mice, express lower levels proinflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL-4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
Affiliation(s)
- Zeina Salloum
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kristin Dauner
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Yun-feng Li
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Neha Verma
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - David Valdivieso-González
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - John D Zhang
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Mei Xi Chen
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Jeffrey McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Jie Luo
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Jeffrey F Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Xiaohui Zha
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Departments of Medicine and of Biochemistry, Microbiology & Immunology, University of OttawaOttawaCanada
| |
Collapse
|
3
|
Saiioum Z, Dauner K, Li YF, Verma N, Almendro-Vedia V, Valdivieso Gonzalez D, Zhang DJ, Nakka K, McDonald J, Sorisky A, Song BL, Lopez Montero I, Luo J, Dilworth J, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523264. [PMID: 36711703 PMCID: PMC9881925 DOI: 10.1101/2023.01.09.523264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stains are known to be anti-inflammatory, but the mechanism remains poorly understood. Here we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the ATP synthase in the inner mitochondrial membrane (IMM) and changes the proton gradient in the mitochondria. This activates NFkB and Jmjd3 expression to remove the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus LPS (M1), both macrophages treated with statins in vitro or isolated from statin-treated mice in vivo, express lower levels pro-inflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
|
4
|
Sarkar P, Chattopadhyay A. Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin. ACS Chem Neurosci 2023; 14:3855-3868. [PMID: 37804226 DOI: 10.1021/acschemneuro.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
Abstract
Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
5
|
Day CA, Kang M. The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane. MEMBRANES 2023; 13:membranes13050492. [PMID: 37233553 DOI: 10.3390/membranes13050492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The plasma membrane of mammalian cells is involved in a wide variety of cellular processes, including, but not limited to, endocytosis and exocytosis, adhesion and migration, and signaling. The regulation of these processes requires the plasma membrane to be highly organized and dynamic. Much of the plasma membrane organization exists at temporal and spatial scales that cannot be directly observed with fluorescence microscopy. Therefore, approaches that report on the membrane's physical parameters must often be utilized to infer membrane organization. As discussed here, diffusion measurements are one such approach that has allowed researchers to understand the subresolution organization of the plasma membrane. Fluorescence recovery after photobleaching (or FRAP) is the most widely accessible method for measuring diffusion in a living cell and has proven to be a powerful tool in cell biology research. Here, we discuss the theoretical underpinnings that allow diffusion measurements to be used in elucidating the organization of the plasma membrane. We also discuss the basic FRAP methodology and the mathematical approaches for deriving quantitative measurements from FRAP recovery curves. FRAP is one of many methods used to measure diffusion in live cell membranes; thus, we compare FRAP with two other popular methods: fluorescence correlation microscopy and single-particle tracking. Lastly, we discuss various plasma membrane organization models developed and tested using diffusion measurements.
Collapse
Affiliation(s)
- Charles A Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Minchul Kang
- Department of Mathematics, Texas A&M-Commerce, Commerce, TX 75428, USA
| |
Collapse
|
6
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
7
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
8
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
9
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Cholesterol-Dependent Dynamics of the Serotonin 1A Receptor Utilizing Single Particle Tracking: Analysis of Diffusion Modes. J Phys Chem B 2022; 126:6682-6690. [PMID: 35973070 DOI: 10.1021/acs.jpcb.2c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are signaling hubs in cell membranes that regulate a wide range of physiological processes and are popular drug targets. Serotonin1A receptors are important members of the GPCR family and are implicated in neuropsychiatric disorders. Cholesterol is a key constituent of higher eukaryotic membranes and is believed to contribute to the segregated distribution of membrane constituents into domains. To explore the role of cholesterol in lateral dynamics of GPCRs, we utilized single particle tracking (SPT) to monitor diffusion of serotonin1A receptors under acute and chronic cholesterol-depleted conditions. Our results show that the short-term diffusion coefficient of the receptor decreases upon cholesterol depletion, irrespective of the method of cholesterol depletion. Analysis of SPT trajectories revealed that relative populations of receptors undergoing various modes of diffusion change upon cholesterol depletion. Notably, in cholesterol-depleted cells, we observed an increase in the confined population of the receptor accompanied by a reduction in diffusion coefficient for chronic cholesterol depletion. These results are supported by our recent work and present observations that show polymerization of G-actin in response to chronic cholesterol depletion. Taken together, our results bring out the interdependence of cholesterol and actin cytoskeleton in regulating diffusion of GPCRs in membranes.
Collapse
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | | |
Collapse
|
10
|
Sarkar P, Chattopadhyay A. Statin-induced Increase in Actin Polymerization Modulates GPCR Dynamics and Compartmentalization. Biophys J 2022:S0006-3495(22)00708-1. [DOI: 10.1016/j.bpj.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
|
11
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
12
|
Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A. Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. J Lipid Res 2022; 63:100206. [PMID: 35390404 PMCID: PMC9096963 DOI: 10.1016/j.jlr.2022.100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
13
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
14
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
15
|
Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A. A molecular sensor for cholesterol in the human serotonin 1A receptor. SCIENCE ADVANCES 2021; 7:7/30/eabh2922. [PMID: 34301606 PMCID: PMC8302130 DOI: 10.1126/sciadv.abh2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 05/10/2023]
Abstract
The function of several G protein-coupled receptors (GPCRs) exhibits cholesterol sensitivity. Cholesterol sensitivity of GPCRs could be attributed to specific sequence and structural features, such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif, that facilitate their cholesterol-receptor interaction. In this work, we explored the molecular basis of cholesterol sensitivity exhibited by the serotonin1A receptor, the most studied GPCR in the context of cholesterol sensitivity, by generating mutants of key residues in CRAC motifs in transmembrane helix 2 (TM2) and TM5 of the receptor. Our results show that a lysine residue (K101) in one of the CRAC motifs is crucial for sensing altered membrane cholesterol levels. Insights from all-atom molecular dynamics simulations showed that cholesterol-sensitive functional states of the serotonin1A receptor are associated with reduced conformational dynamics of extracellular loops of the receptor. These results constitute one of the first reports on the molecular mechanism underlying cholesterol sensitivity of GPCRs.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | | |
Collapse
|
16
|
Environment-Sensitive Fluorescence of 7-Nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-Labeled Ligands for Serotonin Receptors. Molecules 2021; 26:molecules26133848. [PMID: 34202630 PMCID: PMC8270269 DOI: 10.3390/molecules26133848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Serotonin is a neurotransmitter that plays a crucial role in the regulation of several behavioral and cognitive functions by binding to a number of different serotonin receptors present on the cell surface. We report here the synthesis and characterization of several novel fluorescent analogs of serotonin in which the fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group is covalently attached to serotonin. The fluorescent ligands compete with the serotonin1A receptor specific radiolabeled agonist for binding to the receptor. Interestingly, these fluorescent ligands display a high environmental sensitivity of their fluorescence. Importantly, the human serotonin1A receptor stably expressed in CHO-K1 cells could be specifically labeled with one of the fluorescent ligands with minimal nonspecific labeling. Interestingly, we show by spectral imaging that the NBD-labeled ligand exhibits a red edge excitation shift (REES) of 29 nm when bound to the receptor, implying that it is localized in a restricted microenvironment. Taken together, our results show that NBD-labeled serotonin analogs offer an attractive fluorescent approach for elucidating the molecular environment of the serotonin binding site in serotonin receptors. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these fluorescent ligands would be useful in future studies involving serotonin receptors.
Collapse
|
17
|
Kułak-Bejda A, Bejda G, Lech M, Waszkiewicz N. Are Lipids Possible Markers of Suicide Behaviors? J Clin Med 2021; 10:jcm10020333. [PMID: 33477435 PMCID: PMC7830691 DOI: 10.3390/jcm10020333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
Suicides and suicidal behaviors are very important causes of mortality and morbidity and have become a serious global problem. More than 800,000 people die from suicide every year. Previous researches have established that lipids play an important role in the pathogenesis of suicide. Moreover, lipid levels might be a biological marker of suicide. A lot of researchers have tried to identify biological markers that might be related to depressive disorder, bipolar disorder or schizophrenia and suicidal behavior. It was also important to consider the usefulness of an additional tool for prevention actions. Metabolic deregulation, particularly low total cholesterol and low-density lipoproteins-cholesterol levels may cause higher suicide risk in patients with these psychiatric disorders.
Collapse
Affiliation(s)
- Agnieszka Kułak-Bejda
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
- Correspondence:
| | - Grzegorz Bejda
- Faculty of General Medicine, School of Medical Science in Bialystok, 15-875 Bialystok, Poland;
| | - Magdalena Lech
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland; (M.L.); (N.W.)
| |
Collapse
|
18
|
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin 1A receptor: Insights from acute cholesterol depletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158882. [PMID: 33429076 DOI: 10.1016/j.bbalip.2021.158882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-β-cyclodextrin (MβCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MβCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
19
|
Usman MA, Ibrahim MA, Salman AA, Sallau AB. Depletion of cholesterol could be associated with modulation of progesterone but not other sex hormone levels during Plasmodium falciparum infection in humans: a cross-sectional study from Zaria, Nigeria. Parasitol Res 2020; 119:4143-4150. [PMID: 32951142 DOI: 10.1007/s00436-020-06826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
In order for Plasmodium falciparum to grow and survive in its host, membrane biogenesis, fueled by host cholesterol, is essential for these processes. Consistent with this essential role, more insights into the cholesterol pathway would enhance the current understanding of the pathophysiology of malaria infection. To explore its broader potential, we conducted a cross-sectional study and assayed for the serum levels of cholesterol, vitamin D, progesterone, testosterone, estradiol and bile acid in both P. falciparum-infected patients and apparently healthy sex-matched participants. Our results revealed that the levels of cholesterol, vitamin D, progesterone, testosterone and estradiol in P. falciparum-infected patients were significantly (p < 0.05) lower compared to those in control groups whereas the level of bile acid in P. falciparum-infected patients was significantly (p < 0.05) higher compared to that in control groups. Additionally, cholesterol and the metabolic products with the exception of bile acid had a significant (p < 0.05) association with the parasite density in P. falciparum-infected patients with moderate and high P. falciparum infections. Furthermore, all the metabolic products of cholesterol had an insignificant (p > 0.05) association with the cholesterol in P. falciparum-infected patients with the exception of progesterone which showed a significant (p < 0.05) association with cholesterol in the malaria-infected female patients. Data from the present study demonstrated that progesterone depletion in P. falciparum-infected female patients could be a consequence of P. falciparum-induced decrease in cholesterol.
Collapse
|
20
|
Structural Stringency and Optimal Nature of Cholesterol Requirement in the Function of the Serotonin1A Receptor. J Membr Biol 2020; 253:445-457. [DOI: 10.1007/s00232-020-00138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
21
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|
22
|
Kumar GA, Chattopadhyay A. Statin-Induced Chronic Cholesterol Depletion Switches GPCR Endocytosis and Trafficking: Insights from the Serotonin 1A Receptor. ACS Chem Neurosci 2020; 11:453-465. [PMID: 31880914 DOI: 10.1021/acschemneuro.9b00659] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is a key regulatory mechanism adopted by G protein-coupled receptors (GPCRs) to modulate downstream signaling responses within a stringent spatiotemporal regime. Although the role of membrane lipids has been extensively studied in the context of the function, organization, and dynamics of GPCRs, their role in receptor endocytosis remains largely unexplored. Cholesterol, the predominant sterol in higher eukaryotes, plays a crucial role in maintaining the structure and organization of cell membranes and is involved in essential cellular processes in health and disease. The serotonin1A receptor is a representative GPCR involved in neuronal development and in neuropsychiatric disorders such as anxiety and depression. We recently combined quantitative flow cytometric and confocal microscopic approaches to demonstrate that the serotonin1A receptor undergoes clathrin-mediated endocytosis upon agonist stimulation and subsequently traffics along the endosomal recycling pathway. In this work, we show that statin-induced chronic cholesterol depletion switches the endocytic pathway of the serotonin1A receptor from clathrin- to caveolin-mediated endocytosis. Interestingly, under these conditions, a significant proportion of endocytosed receptors is rerouted toward lysosomal degradation. To the best of our knowledge, these results constitute one of the first comprehensive reports on the role of membrane cholesterol in GPCR endocytosis and trafficking. These results are significant in our overall understanding of the modulatory effects of membrane lipids on GPCR endocytosis and trafficking and could provide novel insight in developing therapeutic interventions against neuropsychiatric disorders such as depression.
Collapse
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
23
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
24
|
Janáček J, Brejchová J, Svoboda P. Determination of δ-opioid receptor molecules mobility in living cells plasma membrane by novel method of FRAP analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1346-1354. [PMID: 31071299 DOI: 10.1016/j.bbamem.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is the preferred method for analyzing the lateral mobility of fluorescently-tagged proteins in the plasma membranes (PMs) of live cells. FRAP experiments are described as being easy to perform; however, the analysis of the acquired data can be difficult. The evaluation procedure must be properly combined with the imaging setup of the confocal microscope to provide unbiased results. With the aim of increasing the accuracy of determining the diffusion coefficient (D) and mobile fraction (Mf) of PM proteins, we developed a novel method for FRAP analysis in the equatorial plane of the cell. This method is based on the calculation of photobleaching characteristics, derived from the light intensity profile and optical parameters of the confocal microscope, and on the model of fluorescent molecule diffusion in PM regions outside of the focal plane. Furthermore, cell movement artifacts in the FRAP data are ameliorated by using a region of interest, which is not fixed but instead moves adaptively in coordination with the movement of cells. When this method was used to determine the mobility of the δ-opioid receptor-eYFP in HEK293 cells, a highly significant decrease in receptor mobility was detected in cholesterol-depleted cells. This decrease was fully reversible by the replenishment of cholesterol levels. Our results demonstrate the crucial role played by cholesterol in the dynamic organization of δ-opioid receptors in the PM under in vivo conditions. Our method may be applied for the determination of the D and Mf values of other PM proteins.
Collapse
Affiliation(s)
- Jiří Janáček
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Jana Brejchová
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
25
|
Kumar GA, Sarkar P, Jafurulla M, Singh SP, Srinivas G, Pande G, Chattopadhyay A. Exploring Endocytosis and Intracellular Trafficking of the Human Serotonin1A Receptor. Biochemistry 2019; 58:2628-2641. [DOI: 10.1021/acs.biochem.9b00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Md. Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Gopal Pande
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
26
|
Sarkar P, Chattopadhyay A. Exploring membrane organization at varying spatiotemporal resolutions utilizing fluorescence-based approaches: implications in membrane biology. Phys Chem Chem Phys 2019; 21:11554-11563. [DOI: 10.1039/c9cp02087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Representative experimental approaches based on dynamic fluorescence microscopy to analyze organization and dynamics of membrane lipids and proteins.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | | |
Collapse
|
27
|
Shaik FA, Medapati MR, Chelikani P. Cholesterol modulates the signaling of chemosensory bitter taste receptor T2R14 in human airway cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L45-L57. [PMID: 30358435 DOI: 10.1152/ajplung.00169.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bitter taste receptors (T2Rs) are a group of 25 chemosensory receptors expressed at significant levels in the human airways. In human airways, bitter taste receptor 14 (T2R14)-mediated physiological response in ameliorating obstructive airway disorders is an active area of investigation. Therefore, understanding various factors regulating the structure and function of T2R14 will be beneficial. We hypothesize that membrane lipids like cholesterol play a regulatory role in T2R14 signaling in airway cells. We confirmed the expression and signaling of T2R14 in primary human airway smooth muscle (HASM) cells and the human airway epithelial cell line (NuLi-1) using immunoblot analysis and intracellular calcium concentration mobilization experiments, respectively. Next, T2R14 signaling was examined in membrane cholesterol-altered environments by methyl-β-cyclodextrin or cholesterol oxidase treatments. In the cells analyzed, cholesterol depletion affected the agonist-induced T2R14 signaling, and cholesterol replenishment rescued its efficacy. An alternative approach for cholesterol depletion (with cholesterol oxidase pretreatment) also negatively affected the agonist potency at T2R14 in HASM cells. To understand the molecular mechanism of interaction between cholesterol and T2R14, we used site-directed mutagenesis coupled with functional assays and examined the role of putative cholesterol-binding motifs (CRAC and CARC) in T2R14. Functional characterization of wild-type and mutant T2R14 receptors suggests that amino acid residues K110, F236, and L239 are crucial in T2R14-cholesterol functional interaction. In conclusion, our results show that cholesterol influences the T2R14 signaling efficacy by forming direct interactions with the receptor and consequently plays a regulatory role in T2R14-mediated signaling in human airway cells.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
28
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
29
|
Small-Molecule Modulation of Lipid-Dependent Cellular Processes against Cancer: Fats on the Gunpoint. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6437371. [PMID: 30186863 PMCID: PMC6114229 DOI: 10.1155/2018/6437371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
Lipid cell membrane composed of various distinct lipids and proteins act as a platform to assemble various signaling complexes regulating innumerous cellular processes which are strongly downregulated or altered in cancer cells emphasizing the still-underestimated critical function of lipid biomolecules in cancer initiation and progression. In this review, we outline the current understanding of how membrane lipids act as signaling hot spots by generating distinct membrane microdomains called rafts to initiate various cellular processes and their modulation in cancer phenotypes. We elucidate tangible drug targets and pathways all amenable to small-molecule perturbation. Ranging from targeting membrane rafts organization/reorganization to rewiring lipid metabolism and lipid sorting in cancer, the work summarized here represents critical intervention points being attempted for lipid-based anticancer therapy and future directions.
Collapse
|
30
|
|
31
|
Segoviano-Mendoza M, Cárdenas-de la Cruz M, Salas-Pacheco J, Vázquez-Alaniz F, La Llave-León O, Castellanos-Juárez F, Méndez-Hernández J, Barraza-Salas M, Miranda-Morales E, Arias-Carrión O, Méndez-Hernández E. Hypocholesterolemia is an independent risk factor for depression disorder and suicide attempt in Northern Mexican population. BMC Psychiatry 2018; 18:7. [PMID: 29334911 PMCID: PMC5769344 DOI: 10.1186/s12888-018-1596-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cholesterol has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence about crucial requirement of neuron membrane cholesterol in the organization and function of the 5-HT1A serotonin receptor. For this, low cholesterol level has been reported to be associated with depression and suicidality. However there have been inconsistent reports about this finding and the exact relationship between these factors remains controversial. Therefore, we investigated the link between serum cholesterol and its fractions with depression disorder and suicide attempt in 467 adult subjects in Mexican mestizo population. METHODS Plasma levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined in 261 MDD patients meeting the DSM-5 criteria for major depressive disorder (MDD), 59 of whom had undergone an episode of suicide attempt, and 206 healthy controls. RESULTS A significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol and triglyceride serum levels was observed in the groups of MDD patients and suicide attempt compared to those without suicidal behavior (p < 0.05). After adjusting for covariates, lower cholesterol levels were significantly associated with MDD (OR 4.229 CI 95% 2.555 - 7.000, p<.001) and suicide attempt (OR 5.540 CI 95% 2.825 - 10.866, p<.001) CONCLUSIONS: These results support the hypothesis that lower levels of cholesterol are associated with mood disorders like MDD and suicidal behavior. More mechanistic studies are needed to further explain this association.
Collapse
Affiliation(s)
- Marcela Segoviano-Mendoza
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Manuel Cárdenas-de la Cruz
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - José Salas-Pacheco
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | | | - Osmel La Llave-León
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Francisco Castellanos-Juárez
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Jazmín Méndez-Hernández
- 0000 0001 2157 0393grid.7220.7Departamento de Biotecnología, Universidad Autónoma Metropolitana, Ciudad de México, México Zip Code 09340,
| | - Marcelo Barraza-Salas
- 0000 0000 8724 8383grid.412198.7Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Zip Code 34000, Durango, México
| | - Ernesto Miranda-Morales
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Oscar Arias-Carrión
- grid.414754.7Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Zip Code 14080, Ciudad de México, México
| | - Edna Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico. .,Subdirección de Investigación en Salud, Servicios de Salud de Durango, Zip Code 34000., Durango, México.
| |
Collapse
|
32
|
Mohole M, Prasanna X, Sengupta D, Chattopadhyay A. Molecular Signatures of Cholesterol Interaction with Serotonin Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:151-160. [DOI: 10.1007/978-981-13-3065-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Chakraborty H, Jafurulla M, Clayton AHA, Chattopadhyay A. Exploring oligomeric state of the serotonin1A receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function. Faraday Discuss 2018; 207:409-421. [DOI: 10.1039/c7fd00192d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photobleaching image correlation spectroscopy (pbICS) reveals that membrane cholesterol modulates the oligomeric state of the serotonin1A receptor.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
- School of Chemistry
- Sambalpur University
| | - Md. Jafurulla
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | - Andrew H. A. Clayton
- Centre for Microphotonics
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn
| | | |
Collapse
|
34
|
Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion. Sci Rep 2017; 7:4484. [PMID: 28667339 PMCID: PMC5493612 DOI: 10.1038/s41598-017-04769-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023] Open
Abstract
Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.
Collapse
|
35
|
Deshpande SA, Pawar AB, Dighe A, Athale CA, Sengupta D. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association–diffusion models. Phys Biol 2017; 14:036002. [DOI: 10.1088/1478-3975/aa6b68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Membrane cholesterol oxidation in live cells enhances the function of serotonin 1A receptors. Chem Phys Lipids 2017; 203:71-77. [DOI: 10.1016/j.chemphyslip.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
|
37
|
Persons JE, Fiedorowicz JG. Depression and serum low-density lipoprotein: A systematic review and meta-analysis. J Affect Disord 2016; 206:55-67. [PMID: 27466743 PMCID: PMC6201299 DOI: 10.1016/j.jad.2016.07.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/26/2016] [Accepted: 07/16/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND A cross-sectional association between depression and serum low-density lipoprotein (LDL) has been noted in the literature. This study aims to employ meta-analytic techniques to clarify the relationship between depression and serum LDL. METHODS Published articles through April 2015 were identified through systematic query of PubMed with follow-up manual searches. Data from 36 studies reporting mean difference and 7 studies reporting odds ratios were analyzed separately. RESULTS Meta-analysis of studies modeling serum LDL as a continuous measure demonstrates overall significantly lower serum LDL in depression (Mean difference=-4.29, 95% CI=-8.19, -0.40, p=0.03). Meta-analysis of studies modeling serum LDL as a categorical measure demonstrates a marginally significant lower odds of depression in the presence of low serum LDL relative to high serum LDL (OR=0.90, 95% CI=0.80, 1.01, p=0.08). LIMITATIONS High heterogeneity was noted across sampled studies, which may be a function of variations in study design, participants sampled, or other factors. The potential for publication bias was also assessed. CONCLUSIONS This meta-analysis demonstrates a cross-sectional link between depression and low serum LDL.
Collapse
Affiliation(s)
- Jane E. Persons
- Department of Epidemiology College of Public Health,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA,Corresponding author (Jane E. Persons):
| | - Jess G. Fiedorowicz
- Department of Epidemiology College of Public Health,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA,François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
38
|
Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1289-1300. [PMID: 27600870 DOI: 10.1007/s00210-016-1293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
39
|
Patra SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, Chattopadhyay A. Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol 2016; 32:127-37. [PMID: 26508556 DOI: 10.3109/09687688.2015.1096971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Collapse
Affiliation(s)
- Swarna M Patra
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India .,b Department of Chemistry , RV College of Engineering , Bangalore , India
| | - Sudip Chakraborty
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | - Ganesh Shahane
- c CSIR-National Chemical Laboratory , Pune , India , and
| | | | - Durba Sengupta
- c CSIR-National Chemical Laboratory , Pune , India , and
| | - Prabal K Maiti
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
40
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
41
|
Kumar GA, Roy S, Jafurulla M, Mandal C, Chattopadhyay A. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2088-2096. [PMID: 27319380 DOI: 10.1016/j.bbamem.2016.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022]
Abstract
Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Saptarshi Roy
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Chitra Mandal
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
42
|
Cholesterol modulates bitter taste receptor function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2081-2087. [PMID: 27288892 DOI: 10.1016/j.bbamem.2016.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/20/2022]
Abstract
Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors.
Collapse
|
43
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
44
|
Persons JE, Robinson JG, Coryell WH, Payne ME, Fiedorowicz JG. Longitudinal study of low serum LDL cholesterol and depressive symptom onset in postmenopause. J Clin Psychiatry 2016; 77:212-20. [PMID: 26930520 PMCID: PMC4906804 DOI: 10.4088/jcp.14m09505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the relationship between serum low-density lipoprotein cholesterol (LDL-c) and subsequent depressive symptoms onset in postmenopausal women. We secondarily assessed serum high-density lipoprotein (HDL-c), total cholesterol, and triglycerides. METHOD This population-based prospective cohort study utilizes data from 24,216 women between 50 and 79 years of age who were participants of the Women's Health Initiative, which originally ran from 1993 to 2005 and has since incorporated 2 extension studies, with the most recent culminating in 2015. Fasting lipids were measured for all participants at baseline and for a subset through 6 years of follow-up. Depressive symptoms were characterized using the Burnam 8-item scale for depressive disorders (Center for Epidemiologic Studies-Depression/Diagnostic Interview Schedule short form) at baseline and during follow-up, using a cut point of 0.06 to indicate presence of depressive symptoms. RESULTS The lowest quintile of LDL-c was associated with an increased risk of subsequent depressive symptoms (hazard ratio [HR] = 1.25, 95% CI = 1.05-1.49, P = .01), and follow-up analyses demonstrated that the elevated risk appeared to be confined to the lowest decile (LDL-c < 100 mg/dL). Further, this elevated risk was moderated by lipid-lowering drug treatment. Elevated risk was demonstrated among those who reported no lipid-lowering medication use (HR = 1.23, 95% CI = 1.03-1.47, P = .02), but not among those reporting use (HR = 0.65, 95% CI = 0.18-2.29, P = .50). CONCLUSIONS Among postmenopausal women, untreated serum LDL-c below 100 mg/dL was associated with an increased risk of developing depressive symptoms. No excess risk was observed in those attaining LDL-c < 100 mg/dL with lipid-lowering therapy. These findings have important implications for risk assessment, treatment considerations, and mechanistic insight.
Collapse
Affiliation(s)
- Jane E Persons
- The University of Iowa, Department of Epidemiology, 145 N Riverside Dr, Iowa City, IA 52246
| | | | | | | | | |
Collapse
|
45
|
Meng XY, Mezei M, Cui M. Computational approaches for modeling GPCR dimerization. Curr Pharm Biotechnol 2015; 15:996-1006. [PMID: 25307013 DOI: 10.2174/1389201015666141013102515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/09/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Growing experimental evidences suggest that dimerization and oligomerization are important for G Protein- Coupled Receptors (GPCRs) function. The detailed structural information of dimeric/oligomeric GPCRs would be very important to understand their function. Although it is encouraging that recently several experimental GPCR structures in oligomeric forms have appeared, experimental determination of GPCR structures in oligomeric forms is still a big challenge, especially in mimicking the membrane environment. Therefore, development of computational approaches to predict dimerization of GPCRs will be highly valuable. In this review, we summarize computational approaches that have been developed and used for modeling of GPCR dimerization. In addition, we introduce a novel two-dimensional Brownian Dynamics based protein docking approach, which we have recently adapted, for GPCR dimer prediction.
Collapse
Affiliation(s)
| | | | - Meng Cui
- Institute of Quantitative Biology and Medicine, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
46
|
Brejchová J, Sýkora J, Ostašov P, Merta L, Roubalová L, Janáček J, Hof M, Svoboda P. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:781-96. [DOI: 10.1016/j.bbamem.2014.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023]
|
47
|
Prasanna X, Chattopadhyay A, Sengupta D. Role of lipid-mediated effects in β₂-adrenergic receptor dimerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:247-61. [PMID: 25408348 DOI: 10.1007/978-3-319-11280-0_16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xavier Prasanna
- CSIR-National Chemical Laboratory, Council of Scientific and Industrial Research, Dr. Homi Bhabha Road, Pune, 411 008, India
| | | | | |
Collapse
|
48
|
Chattopadhyay A, Jafurulla M. Novel insights in membrane biology utilizing fluorescence recovery after photobleaching. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:27-40. [PMID: 25408335 DOI: 10.1007/978-3-319-11280-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Leishmania donovani infection enhances lateral mobility of macrophage membrane protein which is reversed by liposomal cholesterol. PLoS Negl Trop Dis 2014; 8:e3367. [PMID: 25474261 PMCID: PMC4256160 DOI: 10.1371/journal.pntd.0003367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background The protozoan parasite Leishmania donovani (LD) reduces cellular cholesterol of the host possibly for its own benefit. Cholesterol is mostly present in the specialized compartment of the plasma membrane. The relation between mobility of membrane proteins and cholesterol depletion from membrane continues to be an important issue. The notion that leishmania infection alters the mobility of membrane proteins stems from our previous study where we showed that the distance between subunits of IFNγ receptor (R1 and R2) on the cell surface of LD infected cell is increased, but is restored to normal by liposomal cholesterol treatment. Methodology/Principal Findings We determined the lateral mobility of a membrane protein in normal, LD infected and liposome treated LD infected cells using GFP-tagged PLCδ1 as a probe. The mobility of PLCδ1 was computationally analyzed from the time lapse experiment using boundary distance plot and radial profile movement. Our results showed that the lateral mobility of the membrane protein, which is increased in infection, is restored to normal upon liposomal cholesterol treatment. The results of FRAP experiment lent further credence to the above notion. The membrane proteins are intimately linked with cellular actin and alteration of cellular actin may influence lateral mobility. We found that F-actin is decreased in infection but is restored to normal upon liposomal cholesterol treatment as evident from phalloidin staining and also from biochemical analysis by immunoblotting. Conclusions/Significances To our knowledge this is the first direct demonstration that LD parasites during their intracellular life cycle increases lateral mobility of membrane proteins and decreases F-actin level in infected macrophages. Such defects may contribute to ineffective intracellular signaling and other cellular functions. The protozoan parasites, Leishmania donovani, replicate within the macrophages of the mammalian hosts. During its intracellular lifecycle, the parasite induces a wide variety of defects in the membrane homeostasis. Membrane bound receptor molecules are important for interacting with external stimuli. Our study very clearly showed that there is an increase in the mobility of membrane protein coupled with decrease in F-actin in infected cells, which may be corrected by liposomal cholesterol treatment. This observation indicates that intracellular parasite may alter the membrane biology of infected cells which may dampen overall cellular function.
Collapse
|
50
|
Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. Biophys J 2014; 106:1290-300. [PMID: 24655504 DOI: 10.1016/j.bpj.2014.02.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.
Collapse
|