1
|
Kaur M, Arya P, Chosyang S, Singh B. Comprehending conformational changes in EmrE, multidrug transporter at different pH: insights from molecular dynamics simulations. J Biomol Struct Dyn 2024:1-14. [PMID: 38180013 DOI: 10.1080/07391102.2023.2298386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
EmrE is a small multidrug resistance (SMR) pump of antiparallel topology that confers resistance to a broad range of polyaromatic cations in Escherichia coli. Atomic-level understanding of conformational changes for the selectivity of substrate and transport of a diverse array of drugs through the smallest known efflux pumps is crucial to multi-drug resistance. Therefore, the present study aims to provide insights into conformational changes during the transport through EmrE transporter at different pH. Molecular dynamics simulations have been carried out on the complete structure of EmrE in the absence of substrate. Computational analyses such as secondary structure, principal component, dynamic cross-correlation matrix, and hydrogen bond calculations have been performed. Analysis of MD trajectories in this study revealed pH-dependent interactions that influenced the structural dynamics of EmrE. Notably, at high pH, Glu14 and Tyr60 in both monomers formed electrostatic interactions, while these interactions decreased significantly at a low pH. Interestingly, a kink at helix 3 (H3) and dual open conformation of EmrE at low pH were also observed in contrast to a closed state discerned towards the periplasmic side at high pH. Significant interactions between C-terminal residues and residues at the edge of H1 & Loop1 and H3 & Loop3 were identified, suggesting their role in stabilizing the closed conformation of EmrE at the periplasmic end under high pH conditions. The present study enhances our understanding of EmrE's conformational changes, shedding light on the pH-dependent mechanisms that are likely to impact its function in multi-drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Preeti Arya
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Stanzin Chosyang
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Balvinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
3
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Jurasz J, Bagiński M, Czub J, Wieczór M. Molecular mechanism of proton-coupled ligand translocation by the bacterial efflux pump EmrE. PLoS Comput Biol 2021; 17:e1009454. [PMID: 34613958 PMCID: PMC8523053 DOI: 10.1371/journal.pcbi.1009454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes. EmrE is a prototypical bacterial multidrug transporter (MDR) that confers resistance to drugs and antiseptics. Due to its structural simplicity, its mechanism of ligand recognition and translocation are relevant for a wide class of transporters. This proton-coupled antiport expels aromatic cations from the cytoplasm using the alternating access mechanism, achieving impressive levels of efficiency and robustness. Our protonation-specific free energy profiles, Grotthuss wire analyses and equilibrium simulations show how a deceivingly simple system can exchange ions with robustness and precision, hopefully inspiring rational efforts to design new MDR inhibitors.
Collapse
Affiliation(s)
- Jakub Jurasz
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
- Molecular Modeling and Bioinformatics Group, IRB Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
5
|
Jain MG, Rajalakshmi G, Madhu PK, Agarwal V, Mote KR. Overcoming Prohibitively Large Radiofrequency Demands for the Measurement of Internuclear Distances with Solid-State NMR under Fast Magic-Angle Spinning. J Phys Chem B 2020; 124:1444-1451. [DOI: 10.1021/acs.jpcb.9b11849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mukul G. Jain
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - G. Rajalakshmi
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - P. K. Madhu
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| |
Collapse
|
6
|
Jain MG, Rajalakshmi G, Equbal A, Mote KR, Agarwal V, Madhu PK. Sine-squared shifted pulses for recoupling interactions in solid-state NMR. J Chem Phys 2017; 146:244201. [PMID: 28668030 DOI: 10.1063/1.4986791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Collapse
Affiliation(s)
- Mukul G Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - G Rajalakshmi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
7
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
8
|
Affiliation(s)
- Charles R Sanders
- Department of Biochemistry and Department of Medicine, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37027
| |
Collapse
|
9
|
Hellmich UA, Mönkemeyer L, Velamakanni S, van Veen HW, Glaubitz C. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3158-65. [PMID: 26449340 DOI: 10.1016/j.bbamem.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022]
Abstract
ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.
Collapse
Affiliation(s)
- Ute A Hellmich
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany.
| | - Leonie Mönkemeyer
- Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany; Department of Biophysical Chemistry, J.W. Goethe University, Frankfurt, Germany
| | | | | | - Clemens Glaubitz
- Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany; Department of Biophysical Chemistry, J.W. Goethe University, Frankfurt, Germany; Cluster of Excellence Macromolecular Complexes Frankfurt, Germany.
| |
Collapse
|
10
|
Dutta S, Morrison EA, Henzler-Wildman KA. Blocking dynamics of the SMR transporter EmrE impairs efflux activity. Biophys J 2015; 107:613-620. [PMID: 25099800 DOI: 10.1016/j.bpj.2014.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/30/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
EmrE is a small multidrug resistance transporter that has been well studied as a model for secondary active transport. Because transport requires the protein to convert between at least two states open to opposite sides of the membrane, it is expected that blocking these conformational transitions will prevent transport activity. We have previously shown that NMR can quantitatively measure the transition between the open-in and open-out states of EmrE in bicelles. Now, we have used the antiparallel EmrE crystal structure to design a cross-link to inhibit this conformational exchange process. We probed the structural, dynamic, and functional effects of this cross-link with NMR and in vivo efflux assays. Our NMR results show that our antiparallel cross-link performs as predicted: dramatically reducing conformational exchange while minimally perturbing the overall structure of EmrE and essentially trapping EmrE in a single state. The same cross-link also impairs ethidium efflux activity by EmrE in Escherichia coli. This confirms the hypothesis that transport can be inhibited simply by blocking conformational transitions in a properly folded transporter. The success of our cross-linker design also provides further evidence that the antiparallel crystal structure provides a good model for functional EmrE.
Collapse
Affiliation(s)
- Supratik Dutta
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Kunert B, Gardiennet C, Lacabanne D, Calles-Garcia D, Falson P, Jault JM, Meier BH, Penin F, Böckmann A. Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 2014; 1:5. [PMID: 25988146 PMCID: PMC4428385 DOI: 10.3389/fmolb.2014.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/26/2014] [Indexed: 01/20/2023] Open
Abstract
We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments.
Collapse
Affiliation(s)
- Britta Kunert
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Carole Gardiennet
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Denis Lacabanne
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Daniel Calles-Garcia
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Pierre Falson
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Jean-Michel Jault
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | | | - François Penin
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| | - Anja Böckmann
- Labex Ecofect, Bases Moleculaires et Structurales des Systemes Infectieux, UMR 5086 CNRS, IBCP, Université de Lyon 1Lyon, France
| |
Collapse
|
12
|
Cho MK, Gayen A, Banigan J, Leninger M, Traaseth NJ. Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J Am Chem Soc 2014; 136:8072-80. [PMID: 24856154 PMCID: PMC4063181 DOI: 10.1021/ja503145x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 12/24/2022]
Abstract
EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (k(ex)) of ~300 s(-1) at 37 °C (millisecond motions), which is ~50-fold faster relative to the tetraphenylphosphonium (TPP(+)) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP(+) transport cycle is not the outward-inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP(+) substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond-microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.
Collapse
Affiliation(s)
| | | | - James
R. Banigan
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Maureen Leninger
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nathaniel J. Traaseth
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
13
|
Linser R, Sarkar R, Krushelnitzky A, Mainz A, Reif B. Dynamics in the solid-state: perspectives for the investigation of amyloid aggregates, membrane proteins and soluble protein complexes. JOURNAL OF BIOMOLECULAR NMR 2014; 59:1-14. [PMID: 24595988 DOI: 10.1007/s10858-014-9822-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Aggregates formed by amyloidogenic peptides and proteins and reconstituted membrane protein preparations differ significantly in terms of the spectral quality that they display in solid-state NMR experiments. Structural heterogeneity and dynamics can both in principle account for that observation. This perspectives article aims to point out challenges and limitations, but also potential opportunities in the investigation of these systems.
Collapse
Affiliation(s)
- Rasmus Linser
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Ong YS, Lakatos A, Becker-Baldus J, Pos KM, Glaubitz C. Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR. J Am Chem Soc 2013; 135:15754-62. [PMID: 24047229 DOI: 10.1021/ja402605s] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli EmrE, a homodimeric multidrug antiporter, has been suggested to offer a convenient paradigm for secondary transporters due to its small size. It contains four transmembrane helices and forms a functional dimer. We have probed the specific binding of substrates TPP(+) and MTP(+) to EmrE reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes by (31)P MAS NMR. Our NMR data show that both substrates occupy the same binding pocket but also indicate some degree of heterogeneity of the bound ligand population, reflecting the promiscuous nature of ligand binding by multidrug efflux pumps. Direct interaction between (13)C-labeled TPP(+) and key residues within the EmrE dimer has been probed by through-space (13)C-(13)C correlation spectroscopy. This was made possible by the use of solid-state NMR enhanced by dynamic nuclear polarization (DNP) through which a 19-fold signal enhancement was achieved. Our data provide clear evidence for the long assumed direct interaction between substrates such as TPP(+) and the essential residue E14 in transmembrane helix 1. Our work also demonstrates the power of DNP-enhanced solid-state NMR at low temperatures for the study for secondary transporters, which are highly challenging for conventional NMR detection.
Collapse
Affiliation(s)
- Yean Sin Ong
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Biochemistry, Goethe University Frankfurt , Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
15
|
Banigan JR, Gayen A, Traaseth NJ. Combination of ¹⁵N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. JOURNAL OF BIOMOLECULAR NMR 2013; 55:391-9. [PMID: 23539118 PMCID: PMC3747971 DOI: 10.1007/s10858-013-9724-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of (15)N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the (15)N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.
Collapse
Affiliation(s)
| | | | - Nathaniel J. Traaseth
- Author for correspondence: Nathaniel J. Traaseth 100 Washington Square East New York, NY 10003 Phone: (212) 992-9784
| |
Collapse
|
16
|
How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol Biol 2013; 914:65-86. [PMID: 22976023 DOI: 10.1007/978-1-62703-023-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Solid-state NMR is an established method for biophysical studies of membrane proteins within the lipid bilayers and an emerging technique for structural biology in general. In particular magic angle sample spinning has been found to be very useful for the investigation of large membrane proteins and their interaction with small molecules within the lipid bilayer. Using a number of examples, we illustrate and discuss in this chapter, which information can be gained and which experimental parameters need to be considered when planning such experiments. We focus especially on the interaction of diffusive ligands with membrane proteins.
Collapse
|
17
|
Banigan JR, Traaseth NJ. Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 2012; 116:7138-44. [PMID: 22582831 PMCID: PMC3418334 DOI: 10.1021/jp303269m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The time required for data acquisition and subsequent spectral assignment are limiting factors for determining biomolecular structure and dynamics using solid-state NMR spectroscopy. While strong magnetic dipolar couplings give rise to relatively broad spectra lines, the couplings also mediate the coherent magnetization transfer via the Hartmann-Hahn cross-polarization (HH-CP) experiment. This mechanism is used in nearly all backbone assignment experiments for carrying out polarization transfer between (1)H, (15)N, and (13)C. In this Article, we describe a general spectroscopic approach to use the residual or "afterglow" magnetization from the (15)N to (13)C selective HH-CP experiment to collect a second multidimensional heteronuclear data set. This approach allowed for the collection of two commonly used sequential assignment experiments (2D NCA and NCO or 3D NCACX and NCOCX) at the same time. Our "afterglow" technique was demonstrated with uniformly [(13)C,(15)N] and [1,3-(13)C] glycerol-labeled ubiquitin using instrumentation available on all standard solid-state NMR spectrometers configured for magic-angle-spinning. This method is compatible with several other sensitivity enhancement experiments and can be used as an isotopic filtering tool to reduce the spectral complexity and decrease the time needed for assignment.
Collapse
Affiliation(s)
- James R. Banigan
- Department of Chemistry, New York University, New York, NY 10003
| | | |
Collapse
|
18
|
Reif B. Deuterated peptides and proteins: structure and dynamics studies by MAS solid-state NMR. Methods Mol Biol 2012; 831:279-301. [PMID: 22167680 DOI: 10.1007/978-1-61779-480-3_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Perdeuteration and back substitution of exchangeable protons in microcrystalline proteins, in combination with recrystallization from D(2)O-containing buffers, significantly reduce (1)H, (1)H dipolar interactions. This way, amide proton line widths on the order of 20 Hz are obtained. Aliphatic protons are accessible either via specifically protonated precursors or by using low amounts of H(2)O in the bacterial growth medium. The labeling scheme enables characterization of structure and dynamics in the solid-state without dipolar truncation artifacts.
Collapse
Affiliation(s)
- Bernd Reif
- Munich Center for Integrated Protein Science (CIPSM) at Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
19
|
Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 2011; 481:45-50. [PMID: 22178925 PMCID: PMC3253143 DOI: 10.1038/nature10703] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 11/07/2011] [Indexed: 11/14/2022]
Abstract
Small multidrug resistance (SMR) transporters provide an ideal system to study the minimal requirements for active transport. EmrE is an E. coli SMR transporter that exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. FRET reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a “dynamic symmetry” that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.
Collapse
|
20
|
Henzler-Wildman K. Analyzing conformational changes in the transport cycle of EmrE. Curr Opin Struct Biol 2011; 22:38-43. [PMID: 22100111 DOI: 10.1016/j.sbi.2011.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/24/2022]
Abstract
The small multidrug resistance transporters represent a unique model system for studying the mechanism of secondary active transport and membrane protein evolution. However, this seemingly simple protein has been highly controversial. Recent studies have provided experimental evidence that EmrE exists as an asymmetric dimer that exchanges between identical inward-facing and outward-facing states. Re-examination of the published literature in light of these findings fills in many details of the microscopic steps in the transport cycle. Future work will need to examine how the symmetry observed in vitro affects EmrE function in the asymmetric environment of its native Escherichia coli membrane.
Collapse
Affiliation(s)
- Katherine Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
21
|
Forrest LR, Krämer R, Ziegler C. The structural basis of secondary active transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:167-88. [PMID: 21029721 DOI: 10.1016/j.bbabio.2010.10.014] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.
Collapse
Affiliation(s)
- Lucy R Forrest
- Structural Biology Department, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | | | |
Collapse
|
22
|
Abstract
AbstractIn order to fulfill their function, membrane transport proteins have to cycle through a number of conformational and/or energetic states. Thus, understanding the role of conformational dynamics seems to be the key for elucidation of the functional mechanism of these proteins. However, membrane proteins in general are often difficult to express heterologously and in sufficient amounts for structural studies. It is especially challenging to trap a stable energy minimum, e.g., for crystallographic analysis. Furthermore, crystallization is often only possible by subjecting the protein to conditions that do not resemble its native environment and crystals can only be snapshots of selected conformational states. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy are complementary methods that offer unique possibilities for studying membrane proteins in their natural membrane environment and for investigating functional conformational changes, lipid interactions, substrate-lipid and substrate-protein interactions, oligomerization states and overall dynamics of membrane transporters. Here, we review recent progress in the field including studies from primary and secondary active transporters.
Collapse
|
23
|
Linser R, Fink U, Reif B. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:89-93. [PMID: 18462963 DOI: 10.1016/j.jmr.2008.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/04/2008] [Accepted: 04/14/2008] [Indexed: 05/10/2023]
Abstract
Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the (15)N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken alpha-spectrin, which was re-crystallized in H(2)O/D(2)O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated Cu(II) to enable rapid data acquisition.
Collapse
Affiliation(s)
- Rasmus Linser
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | | | | |
Collapse
|