1
|
Inoue KI, Yamamoto T, Hatori Y, Hiraide T, Ye S. Hydrolysis of phospholipid monolayers by phospholipase A2 revealed by heterodyne-detected sum frequency generation (HD-SFG) spectroscopy. J Chem Phys 2024; 161:154704. [PMID: 39404221 DOI: 10.1063/5.0231282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 acyl ester linkage in phospholipid, producing lysophospholipid and fatty acid in the presence of Ca2+. The hydrolysis mediated by PLA2 has attracted much interest in various fields, such as pharmacy and biotechnology. It is recognized that PLA2 cannot hydrolyze phospholipid monolayers at high surface coverage. However, the origin of different PLA2 activities is not fully understood yet. The present study investigated the interaction between DPPC (16:0 PC) monolayer and PLA2 using heterodyne-detected sum frequency generation spectroscopy, which is interface-specific spectroscopy and highly sensitive to molecular symmetry based on a second-order nonlinear optical process. It was revealed that PLA2 adsorbs to the DPPC monolayer on the aqueous solution surface only when the surface coverage is low. The adsorption at the low surface coverage significantly changes the interfacial structures of PLA2 and the hydration, which are stabilized by the presence of Ca2+. Therefore, the restriction of the hydrolysis of phospholipid monolayers at high surface coverage can be rationalized by the inhabitation of the PLA2 adsorption. The present study deepens our molecular-level understanding of the hydrolysis of phospholipids by PLA2.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yosuke Hatori
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takeru Hiraide
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Perczyk P, Gawlak R, Broniatowski M. Interactions of fungal phospholipase Lecitase ultra with phospholipid Langmuir monolayers - Search for substrate specificity and structural factors affecting the activity of the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183687. [PMID: 34175298 DOI: 10.1016/j.bbamem.2021.183687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Inoculation of selected microbial species into the soils is one of the most effective means of bioremediation of soils polluted by persistent organic pollutants as well as of biocontrol of plant pests. However, this procedure turns out frequently to be ineffective due to the membrane-destructive enzymes secreted to the soil by the autochthonous microorganisms. Especial role play here phospholipases and among them phospholipase A1 (PLA1), Therefore, to explain the interactions of microbial membranes and PLA1 at molecular level and to find the correlation between the composition of the membrane and its resistance to PLA1 action we applied phospholipid Langmuir monolayers as model microbial membranes. As a representative soil extracellular PLA1 we applied Lecitase ultra which is a commercially available hybrid enzyme of PLA1 activity. With the application of specific sn1-ether-sn2-ester phospholipids we proved that Lecitase ultra has solely PLA1 activity; thus, can be applied as an effective model of soil PLA1s. Our studies proved that this enzyme has vast substrate specificity and can hydrolyze structural phospholipids regardless the structure of their polar headgroup. It turned out that the hydrolysis rate was controlled by the condensation of the model membranes. These built of the phospholipids with long saturated fatty acid chains were especially resistant to the action of this enzyme, whereas these formed by the 1-saturated-2-unsaturated-sn-glycero-3-phospholipids were readily degraded. Regarding the polar headgroup we proposed the following row of substrate preference of Lecitase ultra: phosphatidylglycerols > phosphatidylcholines > phosphatidylethanolamines > cardiolipins.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Roksana Gawlak
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Insights about α-tocopherol and Trolox interaction with phosphatidylcholine monolayers under peroxidation conditions through Brewster angle microscopy. Colloids Surf B Biointerfaces 2013; 111:626-35. [DOI: 10.1016/j.colsurfb.2013.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
|
4
|
De Tullio L, Fanani ML, Maggio B. Surface mixing of products and substrate of PLA2 in enzyme-free mixed monolayers reproduces enzyme-driven structural topography. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2056-63. [DOI: 10.1016/j.bbamem.2013.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 11/15/2022]
|
5
|
Pinheiro M, Arêde M, Giner-Casares JJ, Nunes C, Caio JM, Moiteiro C, Lúcio M, Camacho L, Reis S. Effects of a novel antimycobacterial compound on the biophysical properties of a pulmonary surfactant model membrane. Int J Pharm 2013; 450:268-77. [DOI: 10.1016/j.ijpharm.2013.03.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 10/26/2022]
|
6
|
Paiva D, Brezesinski G, Pereira MDC, Rocha S. Langmuir monolayers of monocationic lipid mixed with cholesterol or fluorocholesterol: DNA adsorption studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1920-1925. [PMID: 23356402 DOI: 10.1021/la304012e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monolayers of the cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) and cholesterol or heptafluorocholesterol were prepared, and their interaction with DNA was characterized. The mixture of DOTAP with each of the sterols at 1:1 molar ratios leads to monolayers in a liquid expanded state, similarly to that of DOTAP alone. The area per molecule of the mixtures was smaller than that expected according to the additivity rule applicable if the two components are either completely miscible or immiscible within the monolayer. The observed negative deviation from the additivity indicates the existence of additional attractive interactions between the components. The surface potential of DOTAP monolayer is positive (+560 mV). It decreases only slightly after the addition of cholesterol (+540 mV) but drastically after the addition of heptafluorocholesterol (+20 mV) in the 1:1 mixtures at a surface pressure of 35 mN/m. This difference is attributed to the negative dipole moment of the fluorinated component. The adsorption of DNA is similar for both systems, which supports the possibility of using fluorinated cholesterol as helper lipid in DNA transfection vectors.
Collapse
Affiliation(s)
- Diana Paiva
- LEPAE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | | | | |
Collapse
|
7
|
Kerth A, Brehmer T, Meister A, Hanner P, Jakob M, Klösgen RB, Blume A. Interaction of a Tat Substrate and a Tat Signal Peptide with Thylakoid Lipids at the Air-Water Interface. Chembiochem 2011; 13:231-9. [DOI: 10.1002/cbic.201100458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/09/2022]
|
8
|
Changes in PLA2 activity after interacting with anti-inflammatory drugs and model membranes: evidence for the involvement of tryptophan residues. Chem Phys Lipids 2011; 164:292-9. [DOI: 10.1016/j.chemphyslip.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022]
|
9
|
Schultz ZD, Levin IW. Vibrational spectroscopy of biomembranes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:343-66. [PMID: 21456972 DOI: 10.1146/annurev-anchem-061010-114048] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.
Collapse
Affiliation(s)
- Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
10
|
A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophys Chem 2010; 152:109-17. [DOI: 10.1016/j.bpc.2010.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022]
|
11
|
Effect of Membrane Structure on the Action of Polyenes II: Nystatin Activity along the Phase Diagram of Ergosterol- and Cholesterol-Containing POPC Membranes. J Membr Biol 2010; 237:41-9. [DOI: 10.1007/s00232-010-9301-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 08/27/2010] [Indexed: 01/14/2023]
|
12
|
Code C, Mahalka AK, Bry K, Kinnunen PK. Activation of phospholipase A2 by 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1593-600. [DOI: 10.1016/j.bbamem.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/26/2022]
|
13
|
Taking another look with fluorescence microscopy: Image processing techniques in Langmuir monolayers for the twenty-first century. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1289-300. [DOI: 10.1016/j.bbamem.2010.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/11/2009] [Accepted: 01/05/2010] [Indexed: 12/15/2022]
|
14
|
Ocampo J, Afanador N, Vives MJ, Moreno JC, Leidy C. The antibacterial activity of phospholipase A2 type IIA is regulated by the cooperative lipid chain melting behavior in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1021-8. [DOI: 10.1016/j.bbamem.2009.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/31/2009] [Accepted: 11/24/2009] [Indexed: 11/29/2022]
|
15
|
Mendelsohn R, Mao G, Flach CR. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:788-800. [PMID: 20004639 DOI: 10.1016/j.bbamem.2009.11.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 01/08/2023]
Abstract
Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered.
Collapse
Affiliation(s)
- Richard Mendelsohn
- Department of Chemistry, Newark College, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
16
|
Wiecław K, Korchowiec B, Corvis Y, Korchowiec J, Guermouche H, Rogalska E. Meloxicam and meloxicam-beta-cyclodextrin complex in model membranes: effects on the properties and enzymatic lipolysis of phospholipid monolayers in relation to anti-inflammatory activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1417-1426. [PMID: 19123793 DOI: 10.1021/la8033897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Meloxicam, a nonsteroidal anti-inflammatory drug (NSAID), is known as a selective cyclooxygenase-2 inhibitor. Cyclooxygenase-2 is a membrane protein, functionally coupled to an interfacial enzyme, phospholipase A2. Consequently, it may be supposed that the interactions of NSAIDs with lipid membranes play a role in the anti-inflammatory process. In order to investigate the mechanism of this process, Langmuir films formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, or 1,2-myristoyl-sn-glycero-3-phosphoethanolamine were exposed to meloxicam and its beta-cyclodextrin inclusion complex. The monolayers were studied by measuring surface pressure, electric surface potential, Brewster angle micrographs, polarization-modulation infrared reflection-absorption spectra, and phospholipase A2 activity; the inclusion complex was studied using molecular modeling. The results obtained show that the monolayers formed in the presence of meloxicam and its complex are expanded and more liquid-like compared to pure lipids. Both compounds modify hydration of the lipid polar heads, orientation of the molecules, morphology of the domains, and the rate of lipolysis catalyzed by phospholipase A2. The latter effect may be involved in the anti-inflammatory activity of meloxicam. Importantly, the effects observed with the meloxicam-beta-cyclodextrin complex are more pronounced compared to those of the free meloxicam. This observation may be relevant for developing new meloxicam preparations with increased bioavailability.
Collapse
Affiliation(s)
- Katarzyna Wiecław
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | | | | | | | | | | |
Collapse
|