1
|
Mesdaghi S, Price RM, Madine J, Rigden DJ. Deep Learning-based structure modelling illuminates structure and function in uncharted regions of β-solenoid fold space. J Struct Biol 2023; 215:108010. [PMID: 37544372 DOI: 10.1016/j.jsb.2023.108010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Repeat proteins are common in all domains of life and exhibit a wide range of functions. One class of repeat protein contains solenoid folds where the repeating unit consists of β-strands separated by tight turns. β-solenoids have distinguishing structural features such as handedness, twist, oligomerisation state, coil shape and size which give rise to their diversity. Characterised β-solenoid repeat proteins are known to form regions in bacterial and viral virulence factors, antifreeze proteins and functional amyloids. For many of these proteins, the experimental structure has not been solved, as they are difficult to crystallise or model. Here we use various deep learning-based structure-modelling methods to discover novel predicted β-solenoids, perform structural database searches to mine further structural neighbours and relate their predicted structure to possible functions. We find both eukaryotic and prokaryotic adhesins, confirming a known functional linkage between adhesin function and the β-solenoid fold. We further identify exceptionally long, flat β-solenoid folds as possible structures of mucin tandem repeat regions and unprecedentedly small β-solenoid structures. Additionally, we characterise a novel β-solenoid coil shape, the FapC Greek key β-solenoid as well as plausible complexes between it and other proteins involved in Pseudomonas functional amyloid fibres.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom; Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Rebecca M Price
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Daniel J Rigden
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
2
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
3
|
Abstract
Uropathogenic E. coli (UPEC) is the major cause of urinary tract infections and a frequent cause of sepsis. Nearly half of all UPEC strains produce the potent cytotoxin hemolysin, and its expression is associated with enhanced virulence. In this study, we explored hemolysin variation within the globally dominant UPEC ST131 clone, finding that strains from the ST131 sublineage with the greatest multidrug resistance also possess the strongest hemolytic activity. We also employed an innovative forward genetic screen to define the set of genes required for hemolysin production. Using this approach, and subsequent targeted mutagenesis and complementation, we identified new hemolysin-controlling elements involved in LPS inner core biosynthesis and cytoplasmic chaperone activity, and we show that mechanistically they are required for hemolysin secretion. These original discoveries substantially enhance our understanding of hemolysin regulation, secretion and function. Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is highly variable among the most common 83 E. coli sequence types (STs) represented on the EnteroBase genome database. To explore this diversity in the context of a defined monophyletic lineage, we contextualized sequence variation of the hlyCABD operon within the genealogy of the globally disseminated multidrug-resistant ST131 clone. We show that sequence changes in hlyCABD and its newly defined 1.616-kb-long leader sequence correspond to phylogenetic designation, and that ST131 strains with the strongest hemolytic activity belong to the most extensive multidrug-resistant sublineage (clade C2). To define the set of genes involved in hemolysin production, the clade C2 strain S65EC was completely sequenced and subjected to a genome-wide screen by combining saturated transposon mutagenesis and transposon-directed insertion site sequencing with the capacity to lyse red blood cells. Using this approach, and subsequent targeted mutagenesis and complementation, 13 genes were confirmed to be specifically required for production of active hemolysin. New hemolysin-controlling elements included discrete sets of genes involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and rfaE) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are required for hemolysin secretion. Overall, this work provides a unique description of hemolysin sequence diversity in a single clonal lineage and describes a complex multilevel system of regulatory control for this important toxin.
Collapse
|
4
|
Krause M, Barth H, Schmidt H. Toxins of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli. Toxins (Basel) 2018; 10:toxins10060241. [PMID: 29903982 PMCID: PMC6024878 DOI: 10.3390/toxins10060241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question about the level of pathogenicity of such strains. This review focuses on the advantages and disadvantages of the standard screening procedures in virulence profiling and summarizes the current knowledge concerning the function and regulation of toxins encoded by LEE-negative STEC. Although LEE-negative STEC usually come across as food isolates, which rarely cause infections in humans, some serotypes have been implicated in human diseases. In particular, the LEE-negative E. coli O104:H7 German outbreak strain from 2011 and the Australian O113:H21 strain isolated from a HUS patient attracted attention. Moreover, the LEE-negative STEC O113:H21 strain TS18/08 that was isolated from minced meat is remarkable in that it not only encodes multiple toxins, but in fact expresses three different toxins simultaneously. Their characterization contributes to understanding the virulence of the LEE-negative STEC.
Collapse
Affiliation(s)
- Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
5
|
Andraka N, Sánchez-Magraner L, García-Pacios M, Goñi FM, Arrondo JLR. The conformation of human phospholipid scramblase 1, as studied by infrared spectroscopy. Effects of calcium and detergent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1019-1028. [PMID: 28238818 DOI: 10.1016/j.bbamem.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Human phospholipid scramblase 1 (SCR) is a membrane protein that catalyzes the transmembrane (flip-flop) motion of phospholipids. It can also exist in a non membrane-bound form in the nucleus, where it modulates several aspects of gene expression. Catalysis of phospholipid flip-flop requires the presence of millimolar Ca2+, and occurs in the absence of ATP. Membrane-bound SCR contains a C-terminal α-helical domain embedded in the membrane bilayer. The latter domain can be removed giving rise to a stable truncated mutant SCRΔ that is devoid of scramblase activity. In order to improve our understanding of SCR structure infrared spectra have been recorded of both the native and truncated forms, and the effects of adding Ca2+, or removing detergent, or thermally denaturing the protein have been observed. Under all conditions the main structural component of SCR/SCRΔ is a β-sheet. Removing the C-terminal 28 aa residues, which anchor SCR to the membrane, leads to a change in tertiary structure and an increased structural flexibility. The main effect of Ca2+ is an increase in the α/β ratio of secondary structure components, with a concomitant increase in the proportion of non-periodic structures. At least in SCRΔ, detergent (Zwittergent 3-12) decreases the structural flexibility, an effect somewhat opposite to that of increasing temperature. Thermal denaturation is affected by Ca2+, detergent, and by the presence or absence of the C-terminal domain, each of them influencing in different ways the denaturation pattern.
Collapse
Affiliation(s)
- Nagore Andraka
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | - Lissete Sánchez-Magraner
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | - Marcos García-Pacios
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | - José L R Arrondo
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
6
|
Cannella SE, Ntsogo Enguéné VY, Davi M, Malosse C, Sotomayor Pérez AC, Chamot-Rooke J, Vachette P, Durand D, Ladant D, Chenal A. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep 2017; 7:42065. [PMID: 28186111 PMCID: PMC5301233 DOI: 10.1038/srep42065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins.
Collapse
Affiliation(s)
- Sara E. Cannella
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Marilyne Davi
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Christian Malosse
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Julia Chamot-Rooke
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| |
Collapse
|
7
|
Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Biochem J 2016; 473:2471-83. [DOI: 10.1042/bcj20160154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) transport a wide range of substrates across both membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC (ATP-binding cassette) transporter. The ABC transporter HlyB (haemolysin B) is part of a T1SS catalysing the export of the toxin HlyA in E. coli. HlyB consists of the canonical transmembrane and nucleotide-binding domains. Additionally, HlyB contains an N-terminal CLD (C39-peptidase-like domain) that interacts with the transport substrate, but its functional relevance is still not precisely defined. In the present paper, we describe the purification and biochemical characterization of detergent-solubilized HlyB in the presence of its transport substrate. Our results exhibit a positive co-operativity in ATP hydrolysis. We characterized further the influence of the CLD on kinetic parameters by using an HlyB variant lacking the CLD (HlyB∆CLD). The biochemical parameters of HlyB∆CLD revealed an increased basal maximum velocity but no change in substrate-binding affinity in comparison with full-length HlyB. We also assigned a distinct interaction of the CLD and a transport substrate (HlyA1), leading to an inhibition of HlyB hydrolytic activity at low HlyA1 concentrations. At higher HlyA1 concentrations, we observed a stimulation of the hydrolytic activities of both HlyB and HlyB∆CLD, which was completely independent of the interaction of HlyA1 with the CLD. Notably, all observed effects on ATPase activity, which were also analysed in detail by mass spectrometry, were independent of the HlyA1 secretion signal. These results assign an interdomain regulatory role for the CLD modulating the hydrolytic activity of HlyB.
Collapse
|
8
|
Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathog 2016; 12:e1005711. [PMID: 27327765 PMCID: PMC4915627 DOI: 10.1371/journal.ppat.1005711] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. Major components of the biofilm matrix scaffold are proteins that assemble to create a unified structure that maintain bacteria attached to each other and to surfaces. We provide evidence that a surface protein present in several staphylococcal species forms functional amyloid aggregates to build the biofilm matrix in response to specific environmental conditions. Under low Ca2+ concentrations and acidic pH, Bap is processed and forms insoluble aggregates with amyloidogenic properties. When the Ca2+ concentration increases, metal-coordinated Bap adopts a structurally more stable conformation and as a consequence, the N-terminal region is unable to assemble into amyloid aggregates. The control of Bap cleavage and assembly helps to regulate biofilm matrix development as a function of environmental changes.
Collapse
|
9
|
Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun D, Barinka C, Sebo P. Calcium-Driven Folding of RTX Domain β-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell 2016; 62:47-62. [DOI: 10.1016/j.molcel.2016.03.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 12/31/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
|
10
|
Vibrio vulnificus RtxA1 modulated calcium flux contributes reduced internalization in phagocytes. Life Sci 2015; 132:55-60. [PMID: 25916802 DOI: 10.1016/j.lfs.2015.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022]
Abstract
AIMS Vibrio vulnificusis an opportunistic pathogen that causes primary septicemia and wound infection with high mortality rate. This pathogen produces an RTX toxin (RtxA1) which can cause host cell rounding, cell death and interference with internalization by host phagocytes. However, the mechanism of RtxA1-induced phagocyte paralysis is not clear. MAIN METHODS Using the murine macrophage cell line RAW264.7, we measured cytotoxicity and phagocytosis of V. vulnificusin normal and calcium-depleted media. To deplete extracellular and cytosolic Ca(2+), cells were exposed to the calcium chelators ethylene glycol tetraacetic acid (EGTA) and 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl esteris (BAPTA-AM), respectively. The cytotoxicity was examined by measuring the activity of lactate dehydrogenase (LDH) released from the damaged cells. The gentamicin protection assay was conducted to determine the number of internalized bacteria, while acridine orange staining was applied to visualize the intracellular bacteria. The fluorescent indicator fura-2-acetoxymethyl ester (fura 2-AM) was used to measure the Ca(2+)signal post-infection. KEY FINDINGS We revealed that extracellular Ca(2+)was essential for phagocytes to internalize V. vulnificus. Meanwhile, cytosolic Ca(2+)flux in RAW264.7 cells induced by an RtxA1 isogenic mutant was repressed by the parent strain. Furthermore, depletion of extracellular Ca(2+)level by EGTA significantly reduced the cytotoxicity but did not affect the antiphagocytic activity of RtxA1 toxin. SIGNIFICANCE Our results indicated that RtxA1 may interfere with cytosolic Ca(2+)flux of phagocyte to promote bacteria colonization.
Collapse
|
11
|
Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins (Basel) 2014; 7:1-20. [PMID: 25559101 PMCID: PMC4303809 DOI: 10.3390/toxins7010001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is exhibited by RTX (Repeat in ToXin) motifs found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. We have investigated several RTX-containing polypeptides of different lengths, all derived from the Bordetella pertussis adenylate cyclase toxin, CyaA. Using a combination of experimental approaches, we showed that the RTX proteins exhibit the hallmarks of intrinsically disordered proteins in the absence of calcium. This intrinsic disorder mainly results from internal electrostatic repulsions between negatively charged residues of the RTX motifs. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of the RTX proteins. We propose that the intrinsically disordered character of the RTX proteins may facilitate the uptake and secretion of virulence factors through the bacterial secretion machinery. These results support the hypothesis that the folding reaction is achieved upon protein secretion and, in the case of proteins containing RTX motifs, could be finely regulated by the calcium gradient across bacterial cell wall.
Collapse
|
12
|
Thomas S, Bakkes PJ, Smits SHJ, Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1500-10. [PMID: 24865936 DOI: 10.1016/j.bbapap.2014.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca(2+) binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca(2+) is essential for stability as well as correct folding of the whole protein. In the absence of Ca(2+), pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca(2+) addition, indicating that these are not dead-end species and that Ca(2+) drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6-7M urea, relates to Ca(2+) dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca(2+) induced folding is not restricted to the RTX domain. Taken together, Ca(2+) binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:317-45. [PMID: 24906130 DOI: 10.1146/annurev-phyto-011014-015624] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have many export and secretion systems that translocate cargo into and across biological membranes. Seven secretion systems contribute to pathogenicity by translocating proteinaceous cargos that can be released into the extracellular milieu or directly into recipient cells. In this review, we describe these secretion systems and how their complexities and functions reflect differences in the destinations, states, functions, and sizes of the translocated cargos as well as the architecture of the bacterial cell envelope. We examine the secretion systems from the perspective of pathogenic bacteria that proliferate within plant tissues and highlight examples of translocated proteins that contribute to the infection and disease of plant hosts.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; ,
| | | | | |
Collapse
|
14
|
Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73-84. [PMID: 23252494 DOI: 10.2217/fmb.12.131] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.
Collapse
Affiliation(s)
- Travis J Wiles
- Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA
| | | |
Collapse
|
15
|
Aulik NA, Atapattu DN, Czuprynski CJ, McCaslin DR. Brief heat treatment causes a structural change and enhances cytotoxicity of theEscherichia coliα-hemolysin. Immunopharmacol Immunotoxicol 2012; 35:15-27. [DOI: 10.3109/08923973.2012.723009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Lecher J, Schwarz CKW, Stoldt M, Smits SHJ, Willbold D, Schmitt L. An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. Structure 2012; 20:1778-87. [PMID: 22959622 DOI: 10.1016/j.str.2012.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 12/28/2022]
Abstract
Type 1 secretion systems (T1SS) catalyze the one step protein transport across the membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC transporter. The ABC transporter consists of the canonical nucleotide binding and transmembrane domains. For the toxin hemolysin A (HlyA), the ABC transporter HlyB carries an additional, N-terminal domain sharing about 40% homology to C39 peptidases, but this "C39-like domain" (CLD) is suggested to feature another, yet unknown function. Our functional and structural analysis demonstrates that the CLD is essential for secretion and that it specifically interacts with the unfolded state of HlyA. We determined the nuclear magnetic resonance structure of the CLD as well as the substrate-binding region within the CLD. This mode of action, represents a mechanism within T1SS and answers the question, how a large and unfolded substrate is protected inside the cells during secretion.
Collapse
Affiliation(s)
- Justin Lecher
- Institute of Physical Biology, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|