1
|
Correa Y, Ravel M, Imbert M, Waldie S, Clifton L, Terry A, Roosen‐Runge F, Lagerstedt JO, Moir M, Darwish T, Cárdenas M, Del Giudice R. Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes. Protein Sci 2024; 33:e4987. [PMID: 38607188 PMCID: PMC11010956 DOI: 10.1002/pro.4987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Mathilde Ravel
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Marie Imbert
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Sarah Waldie
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities CouncilRutherford Appleton Laboratory, Harwell Science and Innovation CampusDidcotUK
| | - Ann Terry
- MAX IV LaboratoryCoSAXS Beamline, Lund UniversityLundSweden
| | - Felix Roosen‐Runge
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Jens O. Lagerstedt
- Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes CentreLund UniversityMalmöSweden
- Rare Endocrine Disorders, Research and Early DevelopmentNovo NordiskCopenhagenDenmark
| | - Michael Moir
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
| | - Tamim Darwish
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Marité Cárdenas
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC))LeioaSpain
| | - Rita Del Giudice
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| |
Collapse
|
2
|
Sato M, Neufeld EB, Playford MP, Lei Y, Sorokin AV, Aponte AM, Freeman LA, Gordon SM, Dey AK, Jeiran K, Hamasaki M, Sampson ML, Shamburek RD, Tang J, Chen MY, Kotani K, Anderson JL, Dullaart RP, Mehta NN, Tietge UJ, Remaley AT. Cell-free, high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J Clin Invest 2023; 133:e165370. [PMID: 37471145 PMCID: PMC10503808 DOI: 10.1172/jci165370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).
Collapse
Affiliation(s)
- Masaki Sato
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Edward B. Neufeld
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alexander V. Sorokin
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Angel M. Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, USA
| | - Lita A. Freeman
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kianoush Jeiran
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Masato Hamasaki
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | - Robert D. Shamburek
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Laboratory of Cardiovascular CT, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
| | - Josephine L.C. Anderson
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robin P.F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- The NIH Clinical Center and
| |
Collapse
|
3
|
Martin A, Jemmett PN, Howitt T, Wood MH, Burley AW, Cox LR, Dafforn TR, Welbourn RJL, Campana M, Skoda MW, Thompson JJ, Hussain H, Rawle JL, Carlà F, Nicklin CL, Arnold T, Horswell SL. Effect of Anionic Lipids on Mammalian Plasma Cell Membrane Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2676-2691. [PMID: 36757323 PMCID: PMC9948536 DOI: 10.1021/acs.langmuir.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The effect of lipid composition on models of the inner leaflet of mammalian cell membranes has been investigated. Grazing incidence X-ray diffraction and X-ray and neutron reflectivity have been used to characterize lipid packing and solvation, while electrochemical and infrared spectroscopic methods have been employed to probe phase behavior in an applied electric field. Introducing a small quantity of the anionic lipid dimyristoylphosphatidylserine (DMPS) into bilayers of zwitterionic dimyristoylphosphatidylethanolamine (DMPE) results in a significant change in the bilayer response to an applied field: the tilt of the hydrocarbon chains increases before returning to the original tilt angle on detachment of the bilayer. Equimolar mixtures, with slightly closer chain packing, exhibit a similar but weaker response. The latter also tend to incorporate more solvent during this electrochemical phase transition, at levels similar to those of pure DMPS. Reflectivity measurements reveal greater solvation of lipid layers for DMPS > 30 mol %, matching the greater propensity for DMPS-rich bilayers to incorporate water. Taken together, the data indicate that the range of 10-35 mol % DMPS provides optimum bilayer properties (in flexibility and function as a barrier), which may explain why the DMPS content of cell membranes tends to be found within this range.
Collapse
Affiliation(s)
- Alexandra
L. Martin
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Philip N. Jemmett
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Thomas Howitt
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Mary H. Wood
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Andrew W. Burley
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Liam R. Cox
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Timothy R. Dafforn
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Rebecca J. L. Welbourn
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Mario Campana
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Maximilian W.
A. Skoda
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Joseph J. Thompson
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Hadeel Hussain
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Jonathan L. Rawle
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Francesco Carlà
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Christopher L. Nicklin
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Thomas Arnold
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
- European
Spallation Source ERIC PO Box 176, SE-221 00Lund, Sweden
- Department
of Chemistry, University of Bath, Claverton Down, BathBA2 7AY, U.K.
| | - Sarah L. Horswell
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| |
Collapse
|
4
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
5
|
Jemmett PN, Milan DC, Nichols RJ, Cox LR, Horswell SL. Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11887-11899. [PMID: 34590852 DOI: 10.1021/acs.langmuir.1c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid bilayers form the basis of biological cell membranes, selective and responsive barriers vital to the function of the cell. The structure and function of the bilayer are controlled by interactions between the constituent molecules and so vary with the composition of the membrane. These interactions also influence how a membrane behaves in the presence of electric fields they frequently experience in nature. In this study, we characterize the electrochemical phase behavior of dipalmitoylphosphatidylcholine (DPPC), a glycerophospholipid prevalent in nature and often used in model systems and healthcare applications. DPPC bilayers were formed on Au(111) electrodes using Langmuir-Blodgett and Langmuir-Schaefer deposition and studied with electrochemical methods, atomic force microscopy (AFM) and in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The coverage of the substrate determined with AFM is in accord with that estimated from differential capacitance measurements, and the bilayer thickness is slightly higher than for bilayers of the similar but shorter-chained lipid, dimyristoylphosphatidylcholine (DMPC). DPPC bilayers exhibit similar electrochemical response to DMPC bilayers, but the organization of molecules differs, particularly at negative charge densities. Infrared spectra show that DPPC chains tilt as the charge density on the metal is increased in the negative direction, but, unlike in DMPC, the chains then return to their original tilt angle at the most negative potentials. The onset of the increase in the chain tilt angle coincides with a decrease in solvation around the ester carbonyl groups, and the conformation around the acyl chain linkage differs from that in DMPC. We interpret the differences in behavior between bilayers formed from these structurally similar lipids in terms of stronger dispersion forces between DPPC chains and conclude that relatively subtle changes in molecular structure may have a significant impact on a membrane's response to its environment.
Collapse
Affiliation(s)
- Philip N Jemmett
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
6
|
Gunther G, Malacrida L, Jameson DM, Gratton E, Sánchez SA. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity. Acc Chem Res 2021; 54:976-987. [PMID: 33513300 PMCID: PMC8552415 DOI: 10.1021/acs.accounts.0c00687] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Any chemist studying the interaction of molecules with lipid assemblies will eventually be confronted by the topic of membrane bilayer heterogeneity and may ultimately encounter the heterogeneity of natural membranes. In artificial bilayers, heterogeneity is defined by phase segregation that can be in the nano- and micrometer range. In biological bilayers, heterogeneity is considered in the context of small (10-200 nm) sterol and sphingolipid-enriched heterogeneous and highly dynamic domains. Several techniques can be used to assess membrane heterogeneity in living systems. Our approach is to use a fluorescent reporter molecule immersed in the bilayer, which, by changes in its spectroscopic properties, senses physical-chemistry aspects of the membrane. This dye in combination with microscopy and fluctuation techniques can give information about membrane heterogeneity at different temporal and spatial levels: going from average fluidity to number and diffusion coefficient of nanodomains. LAURDAN (6-dodecanoyl-2-(dimethylamino) naphthalene), is a fluorescent probe designed and synthesized in 1979 by Gregorio Weber with the purpose to study the phenomenon of dipolar relaxation. The spectral displacement observed when LAURDAN is either in fluid or gel phase permitted the use of the technique in the field of membrane dynamics. The quantitation of the spectral displacement was first addressed by the generalized polarization (GP) function in the cuvette, a ratio of the difference in intensity at two wavelengths divided by their sum. In 1997, GP measurements were done for the first time in the microscope, adding to the technique the spatial resolution and allowing the visualization of lipid segregation both in liposomes and cells. A new prospective to the membrane heterogeneity was obtained when LAURDAN fluorescent lifetime measurements were done in the microscope. Two channel lifetime imaging provides information on membrane polarity and dipole relaxation (the two parameters responsible for the spectral shift of LAURDAN), and the application of phasor analysis allows pixel by pixel understanding of these two parameters in the membrane. To increase temporal resolution, LAURDAN GP was combined with fluctuation correlation spectroscopy (FCS) and the motility of nanometric highly packed structures in biological membranes was registered. Lately the application of phasor analysis to spectral images from membranes labeled with LAURDAN allows us to study the full spectra pixel by pixel in an image. All these methodologies, using LAURDAN, offer the possibility to address different properties of membranes depending on the question being asked. In this Account, we will focus on the principles, advantages, and limitations of different approaches to orient the reader to select the most appropriate technique for their research.
Collapse
Affiliation(s)
- German Gunther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone P. 1007, Santiago 8380492, Chile
| | - Leonel Malacrida
- Advanced Microscopy and Biophotonics Unit, Hospital de Clínicas, Universidad de la República, Montevideo-Uruguay. Advanced Bioimaging Unit, Institut Pasteur Montevideo, Av. Italia s/n, 90600 Montevideo, Uruguay
| | - David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Biosciences 222, Honolulu, Hawaii 96813, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, 3210 Natural Sciences II, University of California, Irvine, Irvine, California 92697-2725, United States
| | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| |
Collapse
|
7
|
Garcia-Ibañez P, Nicolas-Espinosa J, Carvajal M. Plasma membrane vesicles from cauliflower meristematic tissue and their role in water passage. BMC PLANT BIOLOGY 2021; 21:30. [PMID: 33413105 PMCID: PMC7791869 DOI: 10.1186/s12870-020-02778-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cauliflower (Brassica oleracea L. var. botrytis) inflorescences are composed mainly of meristematic tissue, which has a high cellular proliferation. This considerable cellular density makes the inflorescence an organ with a large proportion of membranes. However, little is known about the specific role of the lipid and protein composition of the plasma membrane present in this organ. RESULTS In this work, we analyzed the lipids and proteins present in plasma membrane from two different stages of development of cauliflower inflorescence and compared them with leaf plasma membrane. For this purpose, plasma membrane vesicles were obtained by centrifugation for each sample and the vesicular diameter and osmotic permeability (Pf) were analyzed by dynamic light scattering and the stopped-flow technique, respectively. In addition, fatty acids and sterols were analyzed by gas chromatography and HPLC. The protein composition of the inflorescences and leaves was characterized by HPLC-ESI-QTOF-MS and the data obtained were compared with Brassicaceae proteins present in the UniProt database in relation to the presence of aquaporins determined by western blot analysis. The highest Pf value was found in 90 day inflorescences-derived plasma membrane vesicles (61.4 ± 4.14 μms- 1). For sterols and fatty acids, the concentrations varied according to the organ of origin. The protein profile revealed the presence of aquaporins from the PIP1 and PIP2 subfamilies in both inflorescences and leaves. CONCLUSION This study shows that the composition of the sterols, the degree of unsaturation of the fatty acids, and the proteins present in the membranes analyzed give them high functionality for water passage. This represents an important addition to the limited information available in this field.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100, Murcia, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100, Murcia, Spain.
| |
Collapse
|
8
|
Castro-Castillo V, Gajardo J, Sandoval-Altamirano C, Gratton E, Sanchez S, Malacrida L, Gunther G. CAPRYDAA, an anthracene dye analog to LAURDAN: a comparative study using cuvette and microscopy. J Mater Chem B 2020; 8:88-99. [PMID: 31769463 PMCID: PMC7029800 DOI: 10.1039/c9tb01738k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized an anthracene derivative with solvatochromic properties to be used as a molecular probe for membrane dynamics and supramolecular organization. A nine carbon atom acyl chain and a dimethylamino substitution were introduced at positions 2 and 6 of the anthracene ring, respectively. This derivative, 2-nonanoyl-6-(dimethylamino)anthracene (termed CAPRYDAA), is a molecular probe designed to mimic the well-known membrane probe LAURDAN's location and response in the lipid membranes. Due to the larger distance between the electron donor and acceptor groups, its absorption and emission bands are red-shifted according to the polarity of the media. The photophysical behavior of CAPRYDAA was measured in homogeneous media, synthetic bilayer and cells, both in a cuvette and in a fluorescence microscope, using one and two-photon excitation. Our results show a comparable physicochemical behavior of CAPRYDAA with LAURDAN, but with the advantage of using visible light (488 nm) as an excitation source. CAPRYDAA was also excitable by two-photon laser sources, making it easy to combine CAPRYDAA with either blue or red emission probes. In GUVs or cells, CAPRYDAA can discriminate the lipid phases and liquid-liquid phase heterogeneity. This new membrane probe shows the bathochromic properties of the PRODAN-based probes designed by Weber, overcoming the need for UV or two-photon excitation and facilitating the studies on the membrane properties using regular confocal microscopes.
Collapse
Affiliation(s)
- Vicente Castro-Castillo
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago 1, Chile.
| | - Javier Gajardo
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago 1, Chile.
| | - Catalina Sandoval-Altamirano
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago 1, Chile.
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA
| | - Susana Sanchez
- Universidad de Concepción, Facultad de Química, Departamento de Polímeros, Concepción, Chile
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA and Departamento de Fisiopatología, Unidad de Microscopia Avanzada y Bifotónica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - German Gunther
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago 1, Chile.
| |
Collapse
|
9
|
Abstract
Cholesterol homeostasis is of central importance for life. Therefore, cells have developed a divergent set of pathways to meet their cholesterol needs. In this review, we focus on the direct transfer of cholesterol from lipoprotein particles to the cell membrane. More molecular details on the transfer of lipoprotein-derived lipids were gained by recent studies using phospholipid bilayers. While amphiphilic lipids are transferred right after contact of the lipoprotein particle with the membrane, the transfer of core lipids is restricted. Amphiphilic lipid transfer gains special importance in genetic diseases impairing lipoprotein metabolism like familial hypercholesterolemia. Taken together, these data indicate that there is a constant exchange of amphiphilic lipids between lipoprotein particles and the cell membrane.
Collapse
|
10
|
Wilson BA, Ramanathan A, Lopez CF. Cardiolipin-Dependent Properties of Model Mitochondrial Membranes from Molecular Simulations. Biophys J 2019; 117:429-444. [PMID: 31349988 PMCID: PMC6697365 DOI: 10.1016/j.bpj.2019.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023] Open
Abstract
Cardiolipin is an anionic lipid found in the mitochondrial membranes of eukaryotes ranging from unicellular microorganisms to metazoans. This unique lipid contributes to various mitochondrial functions, including metabolism, mitochondrial membrane fusion and/or fission dynamics, and apoptosis. However, differences in cardiolipin content between the two mitochondrial membranes, as well as dynamic fluctuations in cardiolipin content in response to stimuli and cellular signaling events, raise questions about how cardiolipin concentration affects mitochondrial membrane structure and dynamics. Although cardiolipin’s structural and dynamic roles have been extensively studied in binary mixtures with other phospholipids, the biophysical properties of cardiolipin in higher number lipid mixtures are still not well resolved. Here, we used molecular dynamics simulations to investigate the cardiolipin-dependent properties of ternary lipid bilayer systems that mimic the major components of mitochondrial membranes. We found that changes to cardiolipin concentration only resulted in minor changes to bilayer structural features but that the lipid diffusion was significantly affected by those alterations. We also found that cardiolipin position along the bilayer surfaces correlated to negative curvature deflections, consistent with the induction of negative curvature stress in the membrane monolayers. This work contributes to a foundational understanding of the role of cardiolipin in altering the properties in ternary lipid mixtures composed of the major mitochondrial phospholipids, providing much-needed insights to help understand how cardiolipin concentration modulates the biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Blake A Wilson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Arvind Ramanathan
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
11
|
Rao E, Foderà V, Leone M, Vetri V. Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures. Biochim Biophys Acta Gen Subj 2019; 1863:784-794. [PMID: 30742952 DOI: 10.1016/j.bbagen.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.
Collapse
Affiliation(s)
- Estella Rao
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Universitetsparken 2, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
12
|
Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2588-2598. [DOI: 10.1016/j.bbamem.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
|
13
|
Zhang X, Barraza KM, Upton KT, Beauchamp JL. Subtle Changes in Lipid Environment Have Profound Effects on Membrane Oxidation Chemistry. J Am Chem Soc 2018; 140:17492-17498. [DOI: 10.1021/jacs.8b08610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Kevin M. Barraza
- Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen T. Upton
- Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - J. L. Beauchamp
- Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Plochberger B, Axmann M, Röhrl C, Weghuber J, Brameshuber M, Rossboth BK, Mayr S, Ros R, Bittman R, Stangl H, Schütz GJ. Direct observation of cargo transfer from HDL particles to the plasma membrane. Atherosclerosis 2018; 277:53-59. [PMID: 30173079 DOI: 10.1016/j.atherosclerosis.2018.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Exchange of cholesterol between high-density lipoprotein (HDL) particles and cells is a key process for maintaining cellular cholesterol homeostasis. Recently, we have shown that amphiphilic cargo derived from HDL can be transferred directly to lipid bilayers. Here we pursued this work using a fluorescence-based method to directly follow cargo transfer from HDL particles to the cell membrane. METHODS HDL was either immobilized on surfaces or added directly to cells, while transfer of fluorescent cargo was visualized via fluorescence imaging. RESULTS In Chinese hamster ovary (CHO) cells expressing the scavenger receptor class B type 1 (SR-B1), transfer of amphiphilic cargo from HDL particles to the plasma membrane was observed immediately after contact, whereas hydrophobic cargo remained associated with the particles; about 60% of the amphiphilic cargo of surface-bound HDL was transferred to the plasma membrane. Essentially no cargo transfer was observed in cells with low endogenous SR-B1 expression. Interestingly, transfer of fluorescently-labeled cholesterol was also facilitated by using an artificial linker to bind HDL to the cell surface. CONCLUSIONS Our data hence indicate that the tethering function of SR-B1 is sufficient for efficient transfer of free cholesterol to the plasma membrane.
Collapse
Affiliation(s)
- Birgit Plochberger
- TU Wien, Institute of Applied Physics, Vienna, 1040, Austria; Upper Austria University of Applied Sciences, Campus Linz, Garnisonstrasse 21, 4020, Linz, Austria
| | - Markus Axmann
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria
| | - Clemens Röhrl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria
| | - Julian Weghuber
- Upper Austria University of Applied Sciences, Campus Wels, Stelzhamerstraße 23, 4600, Wels, Austria
| | | | | | - Sandra Mayr
- Upper Austria University of Applied Sciences, Campus Linz, Garnisonstrasse 21, 4020, Linz, Austria
| | - Robert Ros
- Arizona State University, Department of Physics, Tempe, AZ, 85287-1504, USA
| | - Robert Bittman
- Queens College of the City University of New York, Department of Chemistry and Biochemistry, Flushing, NY, 11367, USA
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna, 1090, Austria.
| | | |
Collapse
|
15
|
Kanchi S, Gosika M, Ayappa KG, Maiti PK. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation. J Chem Theory Comput 2018; 14:3825-3839. [DOI: 10.1021/acs.jctc.8b00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mounika Gosika
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K. G. Ayappa
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
17
|
Günther G, Herlax V, Lillo MP, Sandoval-Altamirano C, Belmar LN, Sánchez SA. Study of rabbit erythrocytes membrane solubilization by sucrose monomyristate using laurdan and phasor analysis. Colloids Surf B Biointerfaces 2018; 161:375-385. [DOI: 10.1016/j.colsurfb.2017.10.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
|
18
|
Sezgin E, Schneider F, Zilles V, Urbančič I, Garcia E, Waithe D, Klymchenko AS, Eggeling C. Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy. Biophys J 2017; 113:1321-1330. [PMID: 28734477 PMCID: PMC5607142 DOI: 10.1016/j.bpj.2017.06.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
The lateral organization of molecules in the cellular plasma membrane plays an important role in cellular signaling. A critical parameter for membrane molecular organization is how the membrane lipids are packed. Polarity-sensitive dyes are powerful tools to characterize such lipid membrane order, employing, for example, confocal and two-photon microscopy. The investigation of potential nanodomains, however, requires the use of superresolution microscopy. Here, we test the performance of the polarity-sensitive membrane dyes Di-4-ANEPPDHQ, Di-4-AN(F)EPPTEA, and NR12S in superresolution stimulated emission depletion microscopy. Measurements on cell-derived membrane vesicles, in the plasma membrane of live cells, and on single virus particles, show the high potential of these dyes for probing nanoscale membrane heterogeneity.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Falk Schneider
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Victoria Zilles
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Iztok Urbančič
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Garcia
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg, Illkirch Cedex, France
| | - Christian Eggeling
- MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Tian M, Liu Y, Sun Y, Zhang R, Feng R, Zhang G, Guo L, Li X, Yu X, Sun JZ, He X. A single fluorescent probe enables clearly discriminating and simultaneously imaging liquid-ordered and liquid-disordered microdomains in plasma membrane of living cells. Biomaterials 2017; 120:46-56. [DOI: 10.1016/j.biomaterials.2016.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
|
20
|
Puebla C, Retamal MA, Acuña R, Sáez JC. Regulation of Connexin-Based Channels by Fatty Acids. Front Physiol 2017; 8:11. [PMID: 28174541 PMCID: PMC5258758 DOI: 10.3389/fphys.2017.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.
Collapse
Affiliation(s)
- Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del DesarrolloSantiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Rodrigo Acuña
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Intituto Milenio, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
21
|
Insights into the interaction of the N-terminal amyloidogenic polypeptide of ApoA-I with model cellular membranes. Biochim Biophys Acta Gen Subj 2016; 1860:795-801. [DOI: 10.1016/j.bbagen.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/27/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
|
22
|
Sanders MR, Clifton LA, Frazier RA, Green RJ. Role of Lipid Composition on the Interaction between a Tryptophan-Rich Protein and Model Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2050-7. [PMID: 26813886 DOI: 10.1021/acs.langmuir.5b04628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements, and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition, and fluidity on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.
Collapse
Affiliation(s)
- Michael R Sanders
- School of Pharmacy and Department of Food and Nutritional Sciences, University of Reading , PO Box 226, Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Richard A Frazier
- School of Pharmacy and Department of Food and Nutritional Sciences, University of Reading , PO Box 226, Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Rebecca J Green
- School of Pharmacy and Department of Food and Nutritional Sciences, University of Reading , PO Box 226, Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
23
|
Pirrone GF, Vernon BC, Kent MS, Engen JR. Hydrogen Exchange Mass Spectrometry of Proteins at Langmuir Monolayers. Anal Chem 2015; 87:7022-9. [PMID: 26134943 DOI: 10.1021/acs.analchem.5b01724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high, despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef), which adopts a different conformation, depending on whether or not it is able to insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than the isolated use of either method.
Collapse
Affiliation(s)
- Gregory F Pirrone
- †Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115-5000, United States
| | - Briana C Vernon
- ‡Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael S Kent
- ‡Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - John R Engen
- †Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
24
|
Robinson MD, Cistola DP. Nanofluidity of fatty acid hydrocarbon chains as monitored by benchtop time-domain nuclear magnetic resonance. Biochemistry 2014; 53:7515-22. [PMID: 25409529 DOI: 10.1021/bi5011859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functional properties of lipid-rich assemblies such as serum lipoproteins, cell membranes, and intracellular lipid droplets are modulated by the fluidity of the hydrocarbon chain environment. Existing methods for monitoring hydrocarbon chain fluidity include fluorescence, electron spin resonance, and nuclear magnetic resonance (NMR) spectroscopy; each possesses advantages and limitations. Here we introduce a new approach based on benchtop time-domain (1)H NMR relaxometry (TD-NMR). Unlike conventional NMR spectroscopy, TD-NMR does not rely on the chemical shift resolution made possible by homogeneous, high-field magnets and Fourier transforms. Rather, it focuses on a multiexponential analysis of the time decay signal. In this study, we investigated a series of single-phase fatty acid oils, which allowed us to correlate (1)H spin-spin relaxation time constants (T2) with experimental measures of sample fluidity, as obtained using a viscometer. Remarkably, benchtop TD-NMR at 40 MHz was able to resolve two to four T2 components in biologically relevant fatty acids, assigned to nanometer-scale domains in different segments of the hydrocarbon chain. The T2 values for each domain were exquisitely sensitive to hydrocarbon chain structure; the largest values were observed for pure fatty acids or mixtures with the highest cis-double bond content. Moreover, the T2 values for each domain exhibited positive linear correlations with fluidity. The TD-NMR T2 and fluidity measurements appear to be monitoring the same underlying phenomenon: variations in hydrocarbon chain packing. The results from this study validate the use of benchtop TD-NMR T2 as a nanofluidity meter and demonstrate its potential for probing nanofluidity in other systems of biological interest.
Collapse
Affiliation(s)
- Michelle D Robinson
- Nanoparticle Diagnostics Research Laboratory, Division of Research & Innovation, and Department of Integrative Physiology, University of North Texas Health Science Center , Fort Worth, Texas 76107, United States
| | | |
Collapse
|
25
|
van Maarschalkerweerd A, Vetri V, Langkilde AE, Foderà V, Vestergaard B. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers. Biomacromolecules 2014; 15:3643-54. [PMID: 25210839 DOI: 10.1021/bm500937p] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein secondary structure. As a result of membrane fragmentation, soluble αSN:-lipid coaggregates are formed, hence, suggesting a novel molecular mechanism behind PD amyloid cytotoxicity.
Collapse
Affiliation(s)
- Andreas van Maarschalkerweerd
- Department of Drug Design and Pharmacology, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
26
|
Paterson DJ, Reboud J, Wilson R, Tassieri M, Cooper JM. Integrating microfluidic generation, handling and analysis of biomimetic giant unilamellar vesicles. LAB ON A CHIP 2014; 14:1806-10. [PMID: 24789498 DOI: 10.1039/c4lc00199k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The key roles played by phospholipids in many cellular processes, has led to the development of model systems, to explore both lipid-lipid and lipid-peptide interactions. Biomimetic giant unilamellar vesicles represent close facsimiles of in vivo cellular membranes, although currently their widespread use in research is hindered by difficulties involving their integration into high-throughput techniques, for exploring membrane biology intensively in situ. This paper presents an integrated microfluidic device for the production, manipulation and high-throughput analysis of giant unilamellar vesicles. Its utility is demonstrated by exploring the lipid interaction dynamics of the pore-forming antimicrobial peptide melittin, assessed through the release of fluorescent dyes from within biomimetic vesicles, with membrane compositions similar to mammalian plasma membranes.
Collapse
Affiliation(s)
- D J Paterson
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Rankine Building, 78 Oakfield Avenue, Glasgow, G12 8LT, UK.
| | | | | | | | | |
Collapse
|
27
|
TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers. BMC Res Notes 2014; 7:274. [PMID: 24885944 PMCID: PMC4021860 DOI: 10.1186/1756-0500-7-274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 04/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Findings Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, “natural” samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. Conclusions TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.
Collapse
|
28
|
Jaureguiberry MS, Tricerri MA, Sanchez SA, Finarelli GS, Montanaro MA, Prieto ED, Rimoldi OJ. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. Acta Biochim Biophys Sin (Shanghai) 2014; 46:273-82. [PMID: 24473084 DOI: 10.1093/abbs/gmt155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis.
Collapse
Affiliation(s)
- María S Jaureguiberry
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), La Plata 1900, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Czogalla A, Grzybek M, Jones W, Coskun U. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1049-59. [PMID: 24374254 DOI: 10.1016/j.bbalip.2013.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
The cell membrane serves, at the same time, both as a barrier that segregates as well as a functional layer that facilitates selective communication. It is characterized as much by the complexity of its components as by the myriad of signaling process that it supports. And, herein lays the problems in its study and understanding of its behavior - it has a complex and dynamic nature that is further entangled by the fact that many events are both temporal and transient in their nature. Model membrane systems that bypass cellular complexity and compositional diversity have tremendously accelerated our understanding of the mechanisms and biological consequences of lipid-lipid and protein-lipid interactions. Concurrently, in some cases, the validity and applicability of model membrane systems are tarnished by inherent methodical limitations as well as undefined quality criteria. In this review we introduce membrane model systems widely used to study protein-lipid interactions in the context of key parameters of the membrane that govern lipid availability for peripheral membrane proteins. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| | - Michał Grzybek
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Walis Jones
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Unal Coskun
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
30
|
Méndez-Barbero N, Esteban V, Villahoz S, Escolano A, Urso K, Alfranca A, Rodríguez C, Sánchez SA, Osawa T, Andrés V, Martínez-González J, Minami T, Redondo JM, Campanero MR. A major role for RCAN1 in atherosclerosis progression. EMBO Mol Med 2013; 5:1901-17. [PMID: 24127415 PMCID: PMC3914525 DOI: 10.1002/emmm.201302842] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/08/2013] [Accepted: 09/03/2013] [Indexed: 01/19/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease involving extensive vascular vessel remodelling and migration of vascular cells. As RCAN1 is implicated in cell migration, we investigated its contribution to atherosclerosis. We show RCAN1 induction in atherosclerotic human and mouse tissues. Rcan1 was expressed in lesional macrophages, endothelial cells and vascular smooth muscle cells and was induced by treatment of these cells with oxidized LDLs (oxLDLs). Rcan1 regulates CD36 expression and its genetic inactivation reduced atherosclerosis extension and severity in Apoe−/− mice. This effect was mechanistically linked to diminished oxLDL uptake, resistance to oxLDL-mediated inhibition of macrophage migration and increased lesional IL-10 and mannose receptor expression. Moreover, Apoe−/−Rcan1−/− macrophages expressed higher-than-Apoe−/− levels of anti-inflammatory markers. We previously showed that Rcan1 mediates aneurysm development and that its expression is not required in haematopoietic cells for this process. However, transplantation of Apoe−/−Rcan1−/− bone-marrow (BM) cells into Apoe−/− recipients confers atherosclerosis resistance. Our data define a major role for haematopoietic Rcan1 in atherosclerosis and suggest that therapies aimed at inhibiting RCAN1 expression or function might significantly reduce atherosclerosis burden.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The Chemical Nature of the Polar Functional Group of Oxidized Acyl Chain Uniquely Modifies the Physicochemical Properties of Oxidized Phospholipid-Containing Lipid Particles. J Membr Biol 2013; 246:443-52. [DOI: 10.1007/s00232-013-9556-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/23/2013] [Indexed: 02/02/2023]
|
32
|
The use of cardiolipin-containing liposomes as a model system to study the interaction between proteins and the inner mitochondrial membrane. Methods Mol Biol 2013; 1033:147-55. [PMID: 23996176 DOI: 10.1007/978-1-62703-487-6_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction of proteins with biological membranes is a key factor in their biogenesis and proper function. Hence, unraveling the properties of this interaction is very important and constitutes an essential step in deciphering the structural and functional characteristics of a membrane protein. Here we describe the use of cardiolipin-containing liposomes to analyze the interaction of the import protein Tim44 with the inner mitochondrial membrane. Using this system we showed that Tim44 is peripherally attached to the membrane and we detected the membrane binding site of the protein. The cardiolipin-containing liposomes serve as an excellent in vitro model system to the inner mitochondrial membrane and thus provide a good tool to analyze the interaction of various mitochondrial proteins with the inner membrane.
Collapse
|
33
|
Sezgin E, Schwille P. Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 2012; 29:144-54. [DOI: 10.3109/09687688.2012.700490] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci U S A 2012; 109:7314-9. [PMID: 22529342 DOI: 10.1073/pnas.1118288109] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular membranes are heterogeneous in composition, and the prevailing theory holds that the structures responsible for this heterogeneity in vivo are small structures (10-200 nm), sterol- and sphingolipid-enriched, of different sizes, highly dynamic denominated rafts. Rafts are postulated to be platforms, which by sequestering different membrane components can compartmentalize cellular processes and regulate signaling pathways. Despite an enormous effort in this area, the existence of these domains is still under debate due to the characteristics of the structures itself: small in size and highly mobile, which from the technical point of view implies using techniques with high spatial and temporal resolution. In this report we measured rapid fluctuations of the normalized ratio of the emission intensity at two wavelengths of Laurdan, a membrane fluorescent dye sensitive to local membrane packing. We observed generalized polarization fluctuations in the plasma membrane of intact rabbit erythrocytes and Chinese hamster ovary cells that can be explained by the existence of tightly packed micro-domains moving in a more fluid background phase. These structures, which display different lipid packing, have different sizes; they are found in the same cell and in the entire cell population. The small size and characteristic high lipid packing indicate that these micro-domains have properties that have been proposed for lipid rafts.
Collapse
|
35
|
Dodes Traian MM, Flecha FLG, Levi V. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J Lipid Res 2012; 53:609-616. [PMID: 22184757 PMCID: PMC3276485 DOI: 10.1194/jlr.d021311] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/01/2011] [Indexed: 11/20/2022] Open
Abstract
Lateral organization of biological membranes is frequently studied using fluorescence microscopy. One of the most widely used probes for these studies is 2-dimethylamino-6-lauroylnaphthalene (laurdan). The fluorescence of this probe is sensitive to the environment polarity, and thus laurdan reports the local penetration of water when inserted in membranes. Unfortunately, this probe can only be used under two-photon excitation due to its low photostability. This is a very important limitation, because there are not too many laboratories with capability for two-photon microscopy. In this work, we explored the performance of 6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (C-laurdan), a carboxyl-modified version of laurdan, for imaging biological membranes using a conventional confocal microscopy setup. We acquired generalized polarization (GP) images of C-laurdan inserted in giant unillamelar vesicles composed of binary mixtures of lipids and verified that the probe allows observing the coexistence of different phases. We also tested the performance of the probe for measurement with living cells and registered GP images of melanophore cells labeled with C-laurdan in which we could observe highly ordered regions such as filopodia. These findings show that C-laurdan can be successfully employed for studies of membrane lateral organization using a conventional confocal microscope and can open the possibility of studying a wide variety of membrane-related processes.
Collapse
Affiliation(s)
- Martín M Dodes Traian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, CP 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, CP 1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
36
|
Danielsen EM, Hansen GH, Rasmussen K, Niels-Christiansen LL, Frenzel F. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: A possible role in transintestinal cholesterol efflux (TICE)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:530-6. [DOI: 10.1016/j.bbamem.2011.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/24/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022]
|
37
|
An epifluorescence microscopy method for generalized polarization imaging. Biochem Biophys Res Commun 2011; 415:686-90. [PMID: 22079294 DOI: 10.1016/j.bbrc.2011.10.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/28/2011] [Indexed: 12/17/2022]
Abstract
Generalized polarization (GP) microscopy represents an excellent tool to study lipid-lipid and lipid-protein interactions in situ and in vitro. Here, we present an efficient and cost effective method to perform GP microscopy using a standard light-emitting diode (LED) epifluorescence microscope equipped with a digital color camera.
Collapse
|
38
|
Sani MA, Whitwell TC, Separovic F. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:205-11. [PMID: 21801711 DOI: 10.1016/j.bbamem.2011.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 02/05/2023]
Abstract
Antimicrobial peptides interact with cell membranes and their selectivity is contingent on the nature of the constituent lipids. Eukaryotic and bacterial membranes are comprised of different proportions of a range of lipid species with different physical properties. Hence, characterisation of antimicrobial peptides with respect to the magnitude of their interactions with model membranes of different lipid types is needed. Maculatin 1.1 is a short antimicrobial peptide secreted from the skin of several Australian tree-frog species. Circular dichroism spectroscopy (CD) was used to explore the interaction of maculatin 1.1 with a wide range of model membrane systems of different head group and acyl chain characteristics. For neutral phosphatidylcholine (PC), unlike anionic phospholipids, the magnitude of the peptide interactions was dependent on the length and degree of saturation of the constituent acyl chains. Oriented circular dichroism (OCD) data indicated that helical structure was likely promoted by peptide insertion into the hydrophobic core of PC bilayers. The addition of cholesterol (30% mol/mol) tended to decrease the membrane interaction of maculatin 1.1. Anionic lipids locked maculatin 1.1 via electrostatic interactions onto the surface of oriented bilayers as seen in OCD spectra. Furthermore, increasing the membrane curvature by reducing the vesicle radii only slightly reduced the proportion of helical structure in all systems by approximately 10%. The peptide-lipid interaction was strongly dependent on both the lipid chain length and head group, which highlights the importance of the lipid composition used to mimic different cell types. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, VIC 3010, Australia.
| | | | | |
Collapse
|
39
|
Vetri V, Ossato G, Militello V, Digman MA, Leone M, Gratton E. Fluctuation methods to study protein aggregation in live cells: concanavalin A oligomers formation. Biophys J 2011; 100:774-783. [PMID: 21281593 DOI: 10.1016/j.bpj.2010.11.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
Prefibrillar oligomers of proteins are suspected to be the primary pathogenic agents in several neurodegenerative diseases. A key approach for elucidating the pathogenic mechanisms is to probe the existence of oligomers directly in living cells. In this work, we were able to monitor the process of aggregation of Concanavalin A in live cells. We used number and brightness analysis, two-color cross number and brightness analysis, and Raster image correlation spectroscopy to obtain the number of molecules, aggregation state, and diffusion coefficient as a function of time and cell location. We observed that binding of Concanavalin A to the membrane and the formation of small aggregates paralleled cell morphology changes, indicating progressive cell compaction and death. Upon protein aggregation, we observed increased membrane water penetration as reported by Laurdan generalized polarization imaging.
Collapse
Affiliation(s)
- V Vetri
- Dipartimento di Scienze Fisiche ed Astronomiche, University of Palermo, Palermo, Italy
| | - G Ossato
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - V Militello
- Dipartimento di Scienze Fisiche ed Astronomiche, University of Palermo, Palermo, Italy
| | - M A Digman
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - M Leone
- Dipartimento di Scienze Fisiche ed Astronomiche, University of Palermo, Palermo, Italy
| | - E Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California.
| |
Collapse
|
40
|
Chièze L, Bolanos-Garcia VM, Pinot M, Desbat B, Renault A, Beaufils S, Vié V. Fluid and condensed ApoA-I/phospholipid monolayers provide insights into ApoA-I membrane insertion. J Mol Biol 2011; 410:60-76. [PMID: 21510960 DOI: 10.1016/j.jmb.2011.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/30/2011] [Accepted: 04/02/2011] [Indexed: 12/20/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is a protein implicated in the solubilization of lipids and cholesterol from cellular membranes. The study of ApoA-I in phospholipid (PL) monolayers brings relevant information about ApoA-I/PL interactions. We investigated the influence of PL charge and acyl chain organization on the interaction with ApoA-I using dipalmitoyl-phosphatidylcholine, dioleoyl-phosphatidylcholine and dipalmitoyl-phosphatidylglycerol monolayers coupled to ellipsometric, surface pressure, atomic force microscopy and infrared (polarization modulation infrared reflection-absorption spectroscopy) measurements. We show that monolayer compressibility is the major factor controlling protein insertion into PL monolayers and show evidence of the requirement of a minimal distance between lipid headgroups for insertion to occur, Moreover, we demonstrate that ApoA-I inserts deepest at the highest compressibility of the protein monolayer and that the presence of an anionic headgroup increases the amount of protein inserted in the PL monolayer and prevents the steric constrains imposed by the spacing of the headgroup. We also defined the geometry of protein clusters into the lipid monolayer by atomic force microscopy and show evidence of the geometry dependence upon the lipid charge and the distance between headgroups. Finally, we show that ApoA-I helices have a specific orientation when associated to form clusters and that this is influenced by the character of PL charges. Taken together, our results suggest that the interaction of ApoA-I with the cellular membrane may be driven by a mechanism that resembles that of antimicrobial peptide/lipid interaction.
Collapse
Affiliation(s)
- Lionel Chièze
- Institut de Physique de Rennes, UMR-CNRS 6251 Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J Membr Biol 2011; 241:1-10. [PMID: 21468650 PMCID: PMC3082695 DOI: 10.1007/s00232-011-9348-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/14/2011] [Indexed: 01/27/2023]
Abstract
Methyl-β-cyclodextrins (MβCDs) are molecules that are extensively used to remove and to load cholesterol (Chol) from artificial and natural membranes; however, the mechanism of Chol extraction by MβCD from pure lipids or from complex mixtures is not fully understood. One of the outstanding questions in this field is the capability of MβCD to remove Chol from lipid domains having different packing. Here, we investigated the specificity of MβCD to remove Chol from coexisting macrodomains with different lipid packing. We used giant unilamellar vesicles (GUVs) made of 1,2-dioleoylphosphatidylcholine:1,2-dipalmitoylphatidylcholine:free cholesterol, 1:1:1 molar ratio at 27°C. Under these conditions, individual GUVs present Chol distributed into lo and ld phases. The two phases can be distinguished and visualized using Laurdan generalized polarization and two-photon excitation fluorescence microscopy. Our data indicate that MβCD removes Chol preferentially from the more disordered phase. The process of selective Chol removal is dependent on the MβCD concentration. At high concentrations, MβCD also removes phospholipids.
Collapse
|
42
|
Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:298-306. [DOI: 10.1016/j.bbamem.2010.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/24/2010] [Accepted: 10/05/2010] [Indexed: 11/22/2022]
|
43
|
Mechanical Properties of Bilayer Lipid Membranes and Protein–Lipid Interactions. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-387721-5.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Sarkar P, Luchowski R, Raut S, Sabnis N, Remaley A, Lacko AG, Thamake S, Gryczynski Z, Gryczynski I. Studies on solvatochromic properties of aminophenylstyryl-quinolinum dye, LDS 798, and its application in studying submicron lipid based structure. Biophys Chem 2010; 153:61-9. [DOI: 10.1016/j.bpc.2010.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
|