1
|
Magalhães FSS, Vieira ED, Batista MRB, Costa-Filho AJ, Basso LGM. Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes. MEMBRANES 2024; 14:267. [PMID: 39728717 DOI: 10.3390/membranes14120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van't Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function.
Collapse
Affiliation(s)
- Fadi S S Magalhães
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Ernanni D Vieira
- Laboratório de Física Biológica, Instituto de Física, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia 74690-900, GO, Brazil
| | - Mariana R B Batista
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7Al, UK
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Luis G M Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
2
|
Miatmoko A, Octavia RT, Araki T, Annoura T, Sari R. Advancing liposome technology for innovative strategies against malaria. Saudi Pharm J 2024; 32:102085. [PMID: 38690211 PMCID: PMC11059525 DOI: 10.1016/j.jsps.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
This review discusses the potential of liposomes as drug delivery systems for antimalarial therapies. Malaria continues to be a significant cause of mortality and morbidity, particularly among children and pregnant women. Drug resistance due to patient non-compliance and troublesome side effects remains a significant challenge in antimalarial treatment. Liposomes, as targeted and efficient drug carriers, have garnered attention owing to their ability to address these issues. Liposomes encapsulate hydrophilic and/or hydrophobic drugs, thus providing comprehensive and suitable therapeutic drug delivery. Moreover, the potential of passive and active drug delivery enables drug concentration in specific target tissues while reducing adverse effects. However, successful liposome formulation is influenced by various factors, including drug physicochemical characteristics and physiological barriers encountered during drug delivery. To overcome these challenges, researchers have explored modifications in liposome nanocarriers to achieve efficient drug loading, controlled release, and system stability. Computational approaches have also been adopted to predict liposome system stability, membrane integrity, and drug-liposome interactions, improving formulation development efficiency. By leveraging computational methods, optimizing liposomal drug delivery systems holds promise for enhancing treatment efficacy and minimizing side effects in malaria therapy. This review consolidates the current understanding and highlights the potential of liposome strategies against malaria.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, 2 Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Retno Sari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Meleleo D, Avato P, Conforti F, Argentieri MP, Messina G, Cibelli G, Mallamaci R. Interaction of Quercetin, Cyanidin, and Their O-Glucosides with Planar Lipid Models: Implications for Their Biological Effects. MEMBRANES 2023; 13:600. [PMID: 37367804 DOI: 10.3390/membranes13060600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Flavonoids are specialized metabolites produced by plants, as free aglycones or as glycosylated derivatives, which are particularly endowed with a variety of beneficial health properties. The antioxidant, anti-inflammatory, antimicrobial, anticancer, antifungal, antiviral, anti-Alzheimer's, anti-obesity, antidiabetic, and antihypertensive effects of flavonoids are now known. These bioactive phytochemicals have been shown to act on different molecular targets in cells including the plasma membrane. Due to their polyhydroxylated structure, lipophilicity, and planar conformation, they can either bind at the bilayer interface or interact with the hydrophobic fatty acid tails of the membrane. The interaction of quercetin, cyanidin, and their O-glucosides with planar lipid membranes (PLMs) similar in composition to those of the intestine was monitored using an electrophysiological approach. The obtained results show that the tested flavonoids interact with PLM and form conductive units. The modality of interaction with the lipids of the bilayer and the alteration of the biophysical parameters of PLMs induced by the tested substances provided information on their location in the membrane, helping to elucidate the mechanism of action which underlies some pharmacological properties of flavonoids. To our knowledge, the interaction of quercetin, cyanidin, and their O-glucosides with PLM surrogates of the intestinal membrane has never been previously monitored.
Collapse
Affiliation(s)
- Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy
| | - Pinarosa Avato
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Pia Argentieri
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
4
|
Miatmoko A, Asmoro FH, Azhari AA, Rosita N, Huang CS. The effect of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) Addition on the physical characteristics of β-ionone liposomes. Sci Rep 2023; 13:4324. [PMID: 36922639 PMCID: PMC10017702 DOI: 10.1038/s41598-023-31560-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
β-ionone (ION) is a cyclic terpenoid compound that demonstrates considerable potential for the prevention and treatment of cancer. However, the water solubility of β-ionone is poor and the compound demonstrates low permeability. Liposomes have been reported as increasing both qualities. In this study, the development of β-ionone liposomes was initiated by adding 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) to produce cationic liposomes as a means of enhancing binding to cancer cells. Liposomes composed of β-ionone, HSPC, cholesterol, and DSPE-mPEG2000 were prepared using the thin layer hydration method. Cellular uptake studies were carried out with HeLa cells incubated with β-ionone liposomes for two hours. The results indicated that the addition of DOTAP increased particle size and affected the spectroscopical and thermogram profiles of the liposomes, thereby confirming reduction in liposome crystallinity, while the zeta potential became positive. Moreover, the calcein release profile further showed that additional DOTAP increased both membrane fluidity and cellular uptake in HeLa cells In conclusion, adding DOTAP affected the physicochemical cationic properties of liposome and improved cellular uptake in HeLa cells.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia.
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia.
| | - Febe Harum Asmoro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia
| | - Andre Alwi Azhari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia
| | - Noorma Rosita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia
| | - Chin-Shiu Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Liofang Road, Wufeng District, Taichung, 413545, Taiwan
| |
Collapse
|
5
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
6
|
Foreseeing the future of green Technology. Molecular dynamic investigation on passive membrane penetration by the products of the CO2 and 1,3-butadiene reaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Sharma P, Sharma S, Joshi S, Barman P, Bhatt A, Maan M, Singla N, Rishi P, Ali ME, Preet S, Saini A. Design, characterization and structure-function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment. Sci Rep 2022; 12:12058. [PMID: 35835842 PMCID: PMC9283491 DOI: 10.1038/s41598-022-16303-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of multidrug resistance coupled with shrinking antibiotic pipelines has increased the demand of antimicrobials with novel mechanisms of action. Therefore, researchers across the globe are striving to develop new antimicrobial substances to alleviate the pressure on conventional antibiotic therapies. Host-Defence Peptides (HDPs) and their derivatives are emerging as effective therapeutic agents against microbial resistance. In this study, five analogs (DP1-5) of the N-terminal (N-15) fragment of CATH-2 were designed based on the delicate balance between various physicochemical properties such as charge, aliphatic character, amphipathicity and hydrophobicity. By means of in-silico and in-vitro studies a novel peptide (DP1) with the sequence "RFGRFLRKILRFLKK" was found to be more effective and less toxic than the N-terminal CATH-2 peptide. Circular dichroism spectroscopy and differential scanning calorimetry were applied for structural insights. Antimicrobial, haemolytic, and cytotoxic activities were also assessed. The resulting peptide was characterized by low cytotoxicity, low haemolytic activity, and efficient anti-microbial activity. Structurally, it displayed strong helical properties irrespective of the solvent environment and was stable in membrane-mimicking environments. Taken together, the data suggests that DP1 can be explored as a promising therapeutic agent with possible clinical applications.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Chandigarh, UT, 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Aashish Bhatt
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, UT, 160014, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
8
|
Calorimetric Evaluation of Glycyrrhetic Acid (GA)- and Stearyl Glycyrrhetinate (SG)-Loaded Solid Lipid Nanoparticle Interactions with a Model Biomembrane. Molecules 2021; 26:molecules26164903. [PMID: 34443491 PMCID: PMC8398178 DOI: 10.3390/molecules26164903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.
Collapse
|
9
|
Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes. Sci Rep 2021; 11:12420. [PMID: 34127730 PMCID: PMC8203617 DOI: 10.1038/s41598-021-91866-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to analyze the interaction of primaquine (PQ), chloroquine (CQ), and liposomes to support the design of optimal liposomal delivery for hepatic stage malaria infectious disease. The liposomes were composed of hydrogenated soybean phosphatidylcholine, cholesterol, and distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethyleneglycol]-2000), prepared by thin film method, then evaluated for physicochemical and spectrospic characteristics. The calcein release was further evaluated to determine the effect of drug co-loading on liposomal membrane integrity. The results showed that loading PQ and CQ into liposomes produced changes in the infrared spectra of the diester phosphate and carbonyl ester located in the polar part of the phospholipid, in addition to the alkyl group (CH2) in the nonpolar portion. Moreover, the thermogram revealed the loss of the endothermic peak of liposomes dually loaded with PQ and CQ at 186.6 °C, which is identical to that of the phospholipid. However, no crystallinity changes were detected through powder X-ray diffraction analysis. Moreover, PQ, with either single or dual loading, produced the higher calcein release profiles from the liposomes than that of CQ. The dual loading of PQ and CQ tends to interact with the polar head group of the phosphatidylcholine bilayer membrane resulted in an increase in water permeability of the liposomes.
Collapse
|
10
|
Pearce AN, Chen D, Edmeades LR, Cadelis MM, Troudi A, Brunel JM, Bourguet-Kondracki ML, Copp BR. Repurposing primaquine as a polyamine conjugate to become an antibiotic adjuvant. Bioorg Med Chem 2021; 38:116110. [PMID: 33831695 DOI: 10.1016/j.bmc.2021.116110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
In our search for new antibiotic adjuvants as a novel strategy to deal with the emergence of multi-drug resistant (MDR) bacteria, a series of succinylprimaquine-polyamine (SPQ-PA) conjugates and derivatives of a cationic amphiphilic nature have been prepared. Evaluation of these primaquine conjugates for intrinsic antimicrobial properties and the ability to restore the antibiotic activity of doxycycline identified two derivatives, SPQ-PA3-8-3 and SPQ-PA3-10-3 that exhibited intrinsic activity against the Gram-positive bacteria Staphylococcus aureus and the yeast Cryptococcus neoformans. None of the analogues were active against the Gram-negative bacterium Pseudomonas aeruginosa. However, in the presence of a sub-therapeutic amount of doxycycline (4.5 µM), both SPQ-PA3-4-3 and SPQ-PA3-10-3 compounds displayed potent antibiotic adjuvant properties against P. aeruginosa, with MIC's of 6.25 µM. A series of derivatives were prepared to investigate the structure-activity relationship that explored the influence of both a simplified aryl lipophilic substituent and variation of the length of the polyamine scaffold on observed intrinsic antimicrobial properties and the ability to potentiate the action of doxycycline against P. aeruginosa.
Collapse
Affiliation(s)
- A Norrie Pearce
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Dan Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Liam R Edmeades
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Azza Troudi
- UMR_MD1, U-1261, Aix Marseille Universite, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR_MD1, U-1261, Aix Marseille Universite, INSERM, SSA, MCT, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK. Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions. Cancers (Basel) 2021; 13:1660. [PMID: 33916178 PMCID: PMC8037232 DOI: 10.3390/cancers13071660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.
Collapse
Affiliation(s)
- Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India;
| | - Naveena Yanamala
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Gregory Boyce
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Michael J. Becich
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Study of Resveratrol's Interaction with Planar Lipid Models: Insights into Its Location in Lipid Bilayers. MEMBRANES 2021; 11:membranes11020132. [PMID: 33672841 PMCID: PMC7918209 DOI: 10.3390/membranes11020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/16/2023]
Abstract
Resveratrol, a polyphenolic molecule found in edible fruits and vegetables, shows a wide range of beneficial effects on human health, including anti-microbial, anti-inflammatory, anti-cancer, and anti-aging properties. Due to its poor water solubility and high liposome-water partition coefficient, the biomembrane seems to be the main target of resveratrol, although the mode of interaction with membrane lipids and its location within the cell membrane are still unclear. In this study, using electrophysiological measurements, we study the interaction of resveratrol with planar lipid membranes (PLMs) of different composition. We found that resveratrol incorporates into palmitoyl-oleoyl-phosphatidylcholine (POPC) and POPC:Ch PLMs and forms conductive units unlike those found in dioleoyl-phosphatidylserine (DOPS):dioleoyl-phosphatidylethanolamine (DOPE) PLMs. The variation of the biophysical parameters of PLMs in the presence of resveratrol provides information on its location within a lipid double layer, thus contributing to an understanding of its mechanism of action.
Collapse
|
13
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
14
|
Kathpalia H, Prabhu V, Kathe K, Juvekar S, Shidhaye S. Formulation strategies for effective delivery of Primaquine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Marwah M, Narain Srivastava P, Mishra S, Nagarsenker M. Functionally engineered 'hepato-liposomes': Combating liver-stage malaria in a single prophylactic dose. Int J Pharm 2020; 587:119710. [PMID: 32739383 DOI: 10.1016/j.ijpharm.2020.119710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
Primaquine continues to remain the gold standard molecule with an incumbent toxicity profile, as far as radical treatment of malaria is concerned. Better molecules are available at experimental level but their targeted delivery is a challenge. The present work identifies 'Decoquinate (DQN)' as a repurposed, safer drug molecule with a potential to function as an appealing replacement for primaquine active against liver-stage malaria. The work focuses on delivering the highly lipophilic DQN (log P ~ 5) in a liposomal carrier system to 'sporozoite infested hepatocytes' using two different in-house synthesized hepatotropic ligands. Functionally engineered 'hepato-liposomes' exhibit differences in their DQN loading capacities but no significant change in morphology or particle size and are also not affected by freeze drying. Two ligands, targeting different receptors on hepatocytes, have been compared for their in vitro and in vivo drug delivery efficiency in liver stage malaria. The studies reveal superior antimalarial efficacy of differently designed DQN loaded liposomes and demonstrate antimalarial efficacy at a low dose of 0.5 mg/kg for a repurposed molecule like DQN. The in vivo studies successfully discriminate the functional efficiency of the carriers and establish the importance of design in liposomal drug delivery for malarial prophylaxis.
Collapse
Affiliation(s)
- Megha Marwah
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, India
| | - Pratik Narain Srivastava
- Division Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mangal Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai, India.
| |
Collapse
|
16
|
Abstract
Abstract
Primaquine (PQ) has long been recognized as the only effective drug in the treatment of hepatic stage malaria. However, severe toxicity limits its therapeutical application. Combining PQ with chloroquine (CQ) has been reported as enhancing the former’s efficacy, while simultaneously reducing its toxicity. In this study, the optimal conditions for encapsulating PQ-CQ in liposome, including incubation time, temperature and drug to lipid ratio, were identified. Furthermore, the effect of the loading combination of these two drugs on liposomal characteristics and the drug released from liposome was evaluated. Liposome is composed of HSPC, cholesterol and DSPE-mPEG2000 at a molar ratio of 55:40:5 and the drugs were loaded by means of the transmembrane pH gradient method. The particle size, ζ-potential and drug encapsulation efficiency were subsequently evaluated. The results showed that all liposome was produced with a similar particle size and ζ -potential. PQ and CQ could be optimally loaded into liposome by incubating the mixtures at 60°C for 20 minutes at a respective drug to lipid ratio of 1:3 for PQ and CQ. However, compared to single drug loading, dual-loading of PQ+CQ into liposome resulted in lower drug encapsulation and slower drug release. In conclusion, PQ and CQ can be jointly loaded into liposome with differing profiles of encapsulation and drug release.
Collapse
|
17
|
Vlainić J, Kosalec I, Pavić K, Hadjipavlou-Litina D, Pontiki E, Zorc B. Insights into biological activity of ureidoamides with primaquine and amino acid moieties. J Enzyme Inhib Med Chem 2018; 33:376-382. [PMID: 29363364 PMCID: PMC6021035 DOI: 10.1080/14756366.2017.1423067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Primaquine (PQ) ureidoamides 5a-f were screened for antimicrobial, biofilm eradication and antioxidative activities. Susceptibility of the tested microbial species towards tested compounds showed species- and compound-dependent activity. N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-4-methylpentanamide (5a) and 2-(4-chlorophenyl)-N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]acetamide (5d) showed antibacterial activity against S. aureus strains (MIC = 6.5 µg/ml). Further, compounds 5c and 5d had weak antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. None of the tested compounds showed a wide spectrum of antifungal activity. In contrast, most of the compounds exerted strong activity in a biofilm eradication assay against E. coli, P. aeruginosa and Candida albicans, comparable to or even higher than gentamycin, amphotericin B or parent PQ. The most active compounds were 5a and 5b. Tested compounds were inactive against biofilm formation by C. parapsylosis, Enterococcus faecalis, C. tropicalis and C. krusei. Compounds 5b-f significantly inhibited lipid peroxidation (80-99%), whereas compound 5c presented interesting LOX inhibition.
Collapse
Affiliation(s)
- Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - Kristina Pavić
- Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, University of Zagreb, Zagreb, Croatia
| | - Dimitra Hadjipavlou-Litina
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pontiki
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Crusca E, Basso LGM, Altei WF, Marchetto R. Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion's venom. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2155-2165. [DOI: 10.1016/j.bbamem.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/19/2018] [Indexed: 01/30/2023]
|
19
|
Nelson J, Diehl II, Palfreeman AF, Gibby J, Bell JD. Ultraslow dynamics of a complex amphiphile within the phospholipid bilayer: Effect of the lipid pre-transition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2068-2075. [PMID: 28751091 DOI: 10.1016/j.bbamem.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The shape and intensity of fluorescence emission spectra of Merocyanine 540 embedded in dipalmitoylphosphatidylcholine bilayers differ depending on the thermal history of the sample. This apparent hysteresis in fluorescence emission was most prominent in the temperature range of 20 to 35°C. Analysis of kinetic and temperature cycling experiments suggested that Merocyanine 540 slowly (half time of about 30min) assumes a metastable configuration as temperature is raised above the phospholipid pre-transition point. When the sample was cooled below the pre-transition temperature, the metastable state slowly depopulated (half time of about 15min). The rate of merocyanine exchange among these states was influenced more by membrane lipid mobility than by lipid order since cholesterol increased the rate of transition to the metastable state by a factor of 11.
Collapse
Affiliation(s)
- Jennifer Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Izadora I Diehl
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Alyssa F Palfreeman
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Jared Gibby
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - John D Bell
- Department of Physiology and Developmental Biology, Brigham Young University, United States.
| |
Collapse
|
20
|
Ferraz R, Pinheiro M, Gomes A, Teixeira C, Prudêncio C, Reis S, Gomes P. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorg Med Chem Lett 2017; 27:4190-4193. [PMID: 28733082 DOI: 10.1016/j.bmcl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022]
|
21
|
Micheletto MC, Mendes LFS, Basso LGM, Fonseca-Maldonado RG, Costa-Filho AJ. Lipid membranes and acyl-CoA esters promote opposing effects on acyl-CoA binding protein structure and stability. Int J Biol Macromol 2017; 102:284-296. [PMID: 28390829 DOI: 10.1016/j.ijbiomac.2017.03.197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
Acyl-CoA Binding Proteins (ACBP) form a housekeeping family of proteins that is responsible for the buffering of long chain acyl-coenzyme A esters (LCFA-CoA) inside the cell. Even though numerous studies have focused on the characterization of different members of the ACBP family, the knowledge about the impact of both LCFA-CoA and phospholipids on ACBP structure and stability remains scarce. Besides, there are still controversies regarding the possible interaction of ACBP with biological membranes, even though this might be essential for the cargo capture and delivery. In this study, we observed that LCFA-CoA and phospholipids play opposite roles on protein stability and that the interaction with the membrane is dictated by electrostatic interaction. Furthermore, the results support the hypothesis that the LCFA-CoA delivery is driven by the increase of the negative charge on the membrane surface. The combined influence played by the different molecules on ACBP structure is discussed on the light of cargo capture/delivery giving new insights about this important process.
Collapse
Affiliation(s)
- Mariana C Micheletto
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luís F S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis G M Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel G Fonseca-Maldonado
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo/IFSP Campus Jacareí-Dept Gestão, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
22
|
Non-linear van't Hoff behavior in pulmonary surfactant model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1133-1143. [PMID: 28336314 DOI: 10.1016/j.bbamem.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant exhibits phase coexistence over a wide range of surface pressure and temperature. Less is known about the effect of temperature on pulmonary surfactant models. Given the lack of studies on this issue, we used electron paramagnetic resonance (EPR) and nonlinear least-squares (NLLS) simulations to investigate the thermotropic phase behavior of the matrix that mimics the pulmonary surfactant lipid complex, i.e., the lipid mixture composed of dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-oleoyl phosphatidylcholine (POPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG). Irrespective of pH, the EPR spectra recorded from 5°C to 25°C in the DPPC/POPC/POPG (4:3:1) model membrane contain two spectral components corresponding to lipids in gel-like and fluid-like phases, indicating a coexistence of two domains in that range. The temperature dependence of the distribution of spin labels between the domains yielded nonlinear van't Hoff plots. The thermodynamic parameters evaluated were markedly different for DPPC and for the ternary DPPC/POPC/POPG (4:3:1) membranes and exhibited a dependence on chemical environment. While enthalpy and entropy changes for DPPC were always positive and presented a quadratic behavior with temperature, those of the ternary mixture were linearly dependent on temperature and changed from negative to positive values. Despite that, enthalpy-entropy compensation takes place in the two systems. The thermotropic process associated with the coexistence of the two domains is entropically-driven in DPPC and either entropically- or enthalpically-driven in the pulmonary surfactant membrane depending on the pH, ionic strength and temperature. The significance of these results to the structure and function of the pulmonary surfactant lipid matrix is discussed.
Collapse
|
23
|
Basso LGM, Vicente EF, Crusca E, Cilli EM, Costa-Filho AJ. SARS-CoV fusion peptides induce membrane surface ordering and curvature. Sci Rep 2016; 6:37131. [PMID: 27892522 PMCID: PMC5125003 DOI: 10.1038/srep37131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.,Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo F Vicente
- Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil
| | - Edson Crusca
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Pazin WM, Olivier DDS, Vilanova N, Ramos AP, Voets IK, Soares AEE, Ito AS. Interaction of Artepillin C with model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:383-393. [DOI: 10.1007/s00249-016-1183-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
|
25
|
Yamada A, Shimizu N, Hikima T, Takata M, Kobayashi T, Takahashi H. Effect of Cholesterol on the Interaction of Cytochrome P450 Substrate Drug Chlorzoxazone with the Phosphatidylcholine Bilayer. Biochemistry 2016; 55:3888-98. [DOI: 10.1021/acs.biochem.6b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayumi Yamada
- Biophysics
Laboratory, Division of Pure and Applied Science, Graduate School
of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Nobutaka Shimizu
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
| | - Masaki Takata
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Toshihide Kobayashi
- Lipid
Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Takahashi
- Biophysics
Laboratory, Division of Pure and Applied Science, Graduate School
of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyougo 679-5148, Japan
- Lipid
Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
26
|
Garcia AF, Simão AMS, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P, Costa-Filho AJ. Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Phys Chem Chem Phys 2016; 17:26295-301. [PMID: 26389140 DOI: 10.1039/c5cp02377g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) plays a crucial role during skeletal mineralization, and TNAP deficiency leads to the soft bone disease hypophosphatasia. TNAP is anchored to the external surface of the plasma membranes by means of a GPI (glycosylphosphatidylinositol) anchor. Membrane-anchored and solubilized TNAP displays different kinetic properties against physiological substrates, indicating that membrane anchoring influences the enzyme function. Here, we used Electron Spin Resonance (ESR) measurements along with spin labeled phospholipids to probe the possible dynamic changes prompted by the interaction of GPI-anchored TNAP with model membranes. The goal was to systematically analyze the ESR data in terms of line shape changes and of alterations in parameters such as rotational diffusion rates and order parameters obtained from non-linear least-squares simulations of the ESR spectra of probes incorporated into DPPC liposomes and proteoliposomes. Overall, the presence of TNAP increased the dynamics and decreased the ordering in the three distinct regions probed by the spin labeled lipids DOPTC (headgroup), and 5- and 16-PCSL (acyl chains). The largest change was observed for 16-PCSL, thus suggesting that GPI-anchored TNAP can give rise to long reaching modifications that could influence membrane processes halfway through the bilayer.
Collapse
Affiliation(s)
- A F Garcia
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Basso LGM, Mendes LFS, Costa-Filho AJ. The two sides of a lipid-protein story. Biophys Rev 2016; 8:179-191. [PMID: 28510056 DOI: 10.1007/s12551-016-0199-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Protein-membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid-peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.
Collapse
Affiliation(s)
- Luis G Mansor Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F Santos Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
28
|
Identification of known drugs targeting the endoplasmic reticulum stress response. Anal Bioanal Chem 2015; 407:5343-51. [PMID: 25925857 PMCID: PMC9945465 DOI: 10.1007/s00216-015-8694-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER), a multifunctional organelle, plays a central role in cellular signaling, development, and stress response. Dysregulation of ER homeostasis has been associated with human diseases, such as cancer, inflammation, and diabetes. A broad spectrum of stressful stimuli including hypoxia as well as a variety of pharmacological agents can lead to the ER stress response. In this study, we have developed a stable ER stress reporter cell line that stably expresses a β-lactamase reporter gene under the control of the ER stress response element (ESRE) present in the glucose-regulated protein, 78 kDa (GRP78) gene promoter. This assay has been optimized and miniaturized into a 1536-well plate format. In order to identify clinically used drugs that induce ER stress response, we screened approximately 2800 drugs from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC library) using a quantitative high-throughput screening (qHTS) platform. From this study, we have identified several known ER stress inducers, such as 17-AAG (via HSP90 inhibition), as well as several novel ER stress inducers such as AMI-193 and spiperone. The confirmed drugs were further studied for their effects on the phosphorylation of eukaryotic initiation factor 2α (eIF2α), the X-box-binding protein (XBP1) splicing, and GRP78 gene expression. These results suggest that the ER stress inducers identified from the NPC library using the qHTS approach could shed new lights on the potential therapeutic targets of these drugs.
Collapse
|
29
|
Sarpietro MG, Di Sotto A, Accolla ML, Castelli F. Interaction of α-Hexylcinnamaldehyde with a Biomembrane Model: A Possible MDR Reversal Mechanism. JOURNAL OF NATURAL PRODUCTS 2015; 78:1154-1159. [PMID: 25893313 DOI: 10.1021/acs.jnatprod.5b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of the naturally derived compound α-hexylcinnamaldehyde (1) to interact with biomembranes and to modulate their permeability has been investigated as a strategy to reverse multidrug resistance (MDR) in cancer cells. Dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLVs) were used as biomembrane models, and differential scanning calorimetry was applied to measure the effect of 1 on the thermotropic behavior of DMPC MLVs. The effect of an aqueous medium or a lipid carrier on the uptake of 1 by the biomembrane was also characterized. Furthermore, taking into account that MDR is strictly regulated by redox signaling, the pro-oxidant and/or antioxidant effects of 1 were evaluated by the crocin-bleaching assay, in both hydrophilic and lipophilic environments. Compound 1 was uniformly distributed in the phospholipid bilayers and deeply interacted with DMPC MLVs, intercalating among the phospholipid acyl chains and thus decreasing their cooperativity. The lipophilic medium allowed the absorption of 1 into the phospholipid membrane. In the crocin-bleaching assay, the substance produced no pro-oxidant effects in both hydrophilic and lipophilic environments; conversely, a significant inhibition of AAPH-induced oxidation was exerted in hydrophilic medium. These results suggest a possible role of 1 as a chemopreventive and chemosensitizing agent for fighting cancer.
Collapse
Affiliation(s)
- Maria Grazia Sarpietro
- †Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonella Di Sotto
- ‡Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Maria Lorena Accolla
- §Department of Health Sciences, University Magna Græcia of Catanzaro, University Campus "S. Venuta", Viale Europa, 88100 Germaneto (CZ), Italy
| | - Francesco Castelli
- †Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
30
|
Librando V, Accolla ML, Minniti Z, Pappalardo M, Castelli F, Cascio O, Sarpietro MG. Calorimetric evidence of interaction of brominated flame retardants with membrane model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1154-1160. [PMID: 25929984 DOI: 10.1016/j.etap.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
The presence of polybrominated flame retardants in the environment seems to be increasing in the past decade. Considering the toxic effects of these pollutants, it is important evaluating the potential interaction with biological membranes for a risk assessment. In this study low and high brominated biphenyls and biphenyl ethers were used to investigate their interaction with biological membrane models constituted by liposomes, using differential scanning calorimetry (DSC) technique. The medium influence on membrane absorption was also assessed. The findings indicate that membrane interaction is controlled by compound structural characteristics. The membrane absorption is allowed by lipophilic medium; instead hydrophilic medium prevents membrane permeation.
Collapse
Affiliation(s)
- Vito Librando
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Maria Lorena Accolla
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, CZ 88100, Italy
| | - Zelica Minniti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Matteo Pappalardo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Francesco Castelli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Orazio Cascio
- Dipartimento di Anatomia, Biologia e Genetica, Medicina Legale, Neuroscienze, Patologia Diagnostica, Igiene e SanitàPubblica (G. F. Ingrassia), Università degli Studi di Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Sarpietro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria 6, Catania 95125, Italy.
| |
Collapse
|
31
|
Barroso RP, Basso LGM, Costa-Filho AJ. Interactions of the antimalarial amodiaquine with lipid model membranes. Chem Phys Lipids 2014; 186:68-78. [PMID: 25555567 DOI: 10.1016/j.chemphyslip.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 11/28/2022]
Abstract
A detailed molecular description of the mechanism of action of the antimalarial drug amodiaquine (AQ) is still an open issue. To gain further insights on that, we studied the interactions of AQ with lipid model membranes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS) by spin labeling electron spin resonance (ESR) and differential scanning calorimetry (DSC). Both techniques indicate a coexistence of an ordered DPPS-rich domain with a disordered DPPC-rich domain in the binary DPPC/DPPS system. We found that AQ slightly lowered the melting transition temperatures associated to both domains and significantly increased the enthalpy change of the whole DPPC/DPPS phase transition. DSC and ESR data also suggest that AQ increases the number of DPPC molecules in the DPPC-rich domains. AQ also causes opposing ordering effects on different regions of the bilayer: while the drug increases the ordering of the lipid acyl chains from carbon 7 to 16, it decreases the order parameter of the lipid head group and of carbon 5. The gel phase was mostly affected by the presence of AQ, suggesting that AQ is able to influence more organized lipid domains. Moreover, the effects of AQ and cholesterol on lipid acyl chain ordering and mobility were compared at physiological temperature and, in a general way, they are similar. Our results suggest that the quinoline ring of AQ is located completely inside the lipid bilayers with its phenol ring and the tertiary amine directed towards the head group region. The nonspecific interaction between AQ and DPPC/DPPS bilayers is a combination of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Rafael P Barroso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Luis G M Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
32
|
Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1235-46. [PMID: 24472512 DOI: 10.1016/j.bbamem.2014.01.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds produced by plants and delivered to the human body through food. Although the epidemiological analyses of large human populations did not reveal a simple correlation between flavonoid consumption and health, laboratory investigations and clinical trials clearly demonstrate the effectiveness of flavonoids in the prevention of cardiovascular, carcinogenic, neurodegenerative and immune diseases, as well as other diseases. At present, the abilities of flavonoids in the regulation of cell metabolism, gene expression, and protection against oxidative stress are well-known, although certain biophysical aspects of their functioning are not yet clear. Most flavonoids are poorly soluble in water and, similar to lipophilic compounds, have a tendency to accumulate in biological membranes, particularly in lipid rafts, where they can interact with different receptors and signal transducers and influence their functioning through modulation of the lipid-phase behavior. In this study, we discuss the enhancement in the lipophilicity and antioxidative activity of flavonoids after their complexation with transient metal cations. We hypothesize that flavonoid-metal complexes are involved in the formation of molecular assemblies due to the facilitation of membrane adhesion and fusion, protein-protein and protein-membrane binding, and other processes responsible for the regulation of cell metabolism and protection against environmental hazards.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region 142290, Russia.
| | - Yuri A Kim
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | | | | |
Collapse
|
33
|
Sarpietro MG, Spatafora C, Accolla ML, Cascio O, Tringali C, Castelli F. Effect of resveratrol-related stilbenoids on biomembrane models. JOURNAL OF NATURAL PRODUCTS 2013; 76:1424-1431. [PMID: 23895642 DOI: 10.1021/np400188m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions of the two resveratrol analogues 2-hydroxy-3,5,3',5'-tetramethoxystilbene (4) and 2-hydroxy-3,5,3',4'-tetramethoxystilbene (5) with model biomembranes were studied. The aim of this investigation was to highlight possible differences in the interactions with such biomembranes related to the minimal structural differences between these isomeric stilbenoids. In particular, different experiments on stilbenoid/biomembrane model systems using both differential scanning calorimetry (DSC) and Langmuir-Blodgett techniques were carried out to evaluate stilbenoid/multilamellar vesicle and stilbenoid/phospholipid monolayer interactions, respectively. Dimyristoylphosphatidylcholine was used as constituent of the biomembrane models and permitted the experiments to be carried out at 37 °C, close to body temperature. Kinetic studies were also run by DSC to evaluate the uptake of the resveratrol derivatives by the biomembrane model in an aqueous medium and when transported by a lipophilic carrier. The results indicated that both of the resveratrol analogues influenced the behavior of multilamellar vesicles and monolayers, biomembrane models, with 4 producing a larger effect than 5. These results are useful for better understanding the mechanism of action of these compounds. Moreover, the kinetic results could be of importance for future design of lipophilic delivery systems for these stilbenoids.
Collapse
Affiliation(s)
- Maria Grazia Sarpietro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Librando V, Minniti Z, Accolla ML, Cascioc O, Castelli F, Sarpietro MG. Calorimetric evaluation of interaction and absorption of polychlorinated biphenyls by biomembrane models. CHEMOSPHERE 2013; 91:791-796. [PMID: 23453602 DOI: 10.1016/j.chemosphere.2013.01.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/04/2013] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) are organic pollutants with lipophilic properties, due to their persistence, they are present in environment at potentially dangerous concentrations for humans health. In this work we investigated the interaction and absorption of 2,4,4'-trichlorobiphenyl (PCB 28), 2,3,3',4,4'-pentachlorobiphenyl (PCB 105) and 2,3,3',4,4',5,5'-eptachlorobiphenyl (PCB 189) with dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV), chosen as biomembrane models, by differential scanning calorimetry technique (DSC). The obtained results indicate that the tested compounds affected the thermotropic behaviour of MLV to different degree, modifying the phase transition peak and shifting it towards lower temperature. The effect of an aqueous or lipophilic medium on the absorption process of these compounds by the biomembrane models was also investigated revealing that the process is hindered by the aqueous medium but favoured by the lipophilic medium.
Collapse
Affiliation(s)
- Vito Librando
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, Catania, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Castelli F, Tomasoni LR, Matteelli A. Advances in the treatment of malaria. Mediterr J Hematol Infect Dis 2012; 4:e2012064. [PMID: 23170193 PMCID: PMC3499999 DOI: 10.4084/mjhid.2012.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 12/25/2022] Open
Abstract
Malaria still claims a heavy toll of deaths and disabilities even at the beginning of the third millennium. The inappropriate sequential use of drug monotherapy in the past has facilitated the spread of drug-resistant P. falciparum, and to a lesser extend P. vivax, strains in most of the malaria endemic areas, rendering most anti-malarial ineffective. In the last decade, a new combination strategy based on artemisinin derivatives (ACT) has become the standard of treatment for most P. falciparum malaria infections. This strategy could prevent the selection of resistant strains by rapidly decreasing the parasitic burden (by the artemisinin derivative, mostly artesunate) and exposing the residual parasite to effective concentrations of the partner drug. The widespread use of this strategy is somehow constrained by cost and by the inappropriate use of artemisinin, with possible impact on resistance, as already sporadically observed in South East Asia. Parenteral artesunate has now become the standard of care for severe malaria, even if quinine still retains its value in case artesunate is not immediately available. The appropriateness of pre-referral use of suppository artesunate is under close monitoring, while waiting for an effective anti-malarial vaccine to be made available.
Collapse
Affiliation(s)
- Francesco Castelli
- Chair of Infectious Diseases, University of Brescia, Italy
- University Division of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia (Italy)
| | - Lina Rachele Tomasoni
- University Division of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia (Italy)
| | - Alberto Matteelli
- University Division of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia (Italy)
| |
Collapse
|
36
|
Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone Loaded Solid Lipid Nanoparticles Interact with Biomembrane Models: Calorimetric Evidence. Mol Pharm 2012; 9:2534-41. [DOI: 10.1021/mp300149w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Montenegro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Sara Ottimo
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Giovanni Puglisi
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Francesco Castelli
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
37
|
Lopes S, Simeonova M, Gameiro P, Rangel M, Ivanova G. Interaction of 5-fluorouracil loaded nanoparticles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes used as a cellular membrane model. J Phys Chem B 2011; 116:667-75. [PMID: 22148190 DOI: 10.1021/jp210088n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and steady-state fluorescence anisotropy were used to study the behavior and interaction of 5-fluorouracil, both in a free form (5FU) and included in the polymer matrix of poly(butylcyanoacrylate) nanoparticles (5FUPBCN) with a phospholipid bilayer of large unilammellar vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), as a model system of biomembranes. The results confirm an interaction and penetration of 5FU into the phospholipid bilayer of DMPC liposomes. Different mechanisms of drug transfer from the aqueous environment into the model membrane environment, for the free drug and that incorporated into polymer nanoparticles, are suggested: (i) concentration-dependent reversible diffusion of the free 5FU and (ii) sustained 5FU release from nanoparticles adsorbed on the liposome surface resulting in continuous delivery of the drug into the phospholipid bilayers of the DMPC liposomes.
Collapse
Affiliation(s)
- Silvia Lopes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
38
|
Investigations into the Correlation Properties of Membrane Electroporation-Induced Inward Currents: Prediction of Pore Formation. Cell Biochem Biophys 2011; 62:211-20. [DOI: 10.1007/s12013-011-9284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|