1
|
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and Vascular Calcification in Chronic Kidney Disease: Current Insights. Int J Mol Sci 2024; 25:1155. [PMID: 38256228 PMCID: PMC10816532 DOI: 10.3390/ijms25021155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.
Collapse
Affiliation(s)
- Shari J. Zaslow
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gustavo H. Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Bonilla M, Workeneh BT, Uppal NN. Hypomagnesemia in Patients With Cancer: The Forgotten Ion. Semin Nephrol 2023; 42:151347. [PMID: 37086496 DOI: 10.1016/j.semnephrol.2023.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Magnesium is crucial for various cellular and enzymatic processes, yet it often is overlooked or underappreciated. Hypomagnesemia, a deficiency of magnesium in the blood, is a frequent problem in cancer patients and can lead to severe symptoms and morbidity. In this review, we provide an in-depth analysis of the physiology and regulation of magnesium, and signs and symptoms of hypomagnesemia in cancer patients. We also examine the causes and mechanisms of magnesium imbalances in cancer patients, specifically focusing on cancer-specific therapies that can lead to hypomagnesemia. Finally, we provide updates on the management of hypomagnesemia, including oral and parenteral supplementation, as well as the role of drugs in cases that are resistant to treatment. This review aims to raise awareness among health care providers caring for cancer patients about the significance of monitoring magnesium levels in cancer patients and function as a guide. Future clinical studies should focus on magnesium monitoring, its impact on cancer progression, and its potential for preventing acute kidney injury.
Collapse
Affiliation(s)
- Marco Bonilla
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Biruh T Workeneh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nupur N Uppal
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, NY.
| |
Collapse
|
3
|
Rosner MH, Ha N, Palmer BF, Perazella MA. Acquired Disorders of Hypomagnesemia. Mayo Clin Proc 2023; 98:581-596. [PMID: 36872194 DOI: 10.1016/j.mayocp.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 03/06/2023]
Abstract
Magnesium disorders are common in clinical practice and when present can manifest clinically as cardiovascular, neuromuscular, or other organ dysfunction. Hypomagnesemia is far more common than hypermagnesemia, which is largely seen in patients with reduced glomerular filtration rates receiving magnesium-containing medications. In addition to inherited disorders of magnesium handling, hypomagnesemia is also seen with excessive gastrointestinal or renal losses and due to medications such as amphotericin B, aminoglycosides, and cisplatin. Laboratory assessment of body magnesium stores largely relies on the measurement of serum magnesium levels that are a poor proxy for total body stores but does correlate with the development of symptoms. Replacement of magnesium can be challenging, with oral replacement strategies being generally more effective at slowly replacing body stores but intravenous replacement being more effective at treating the more life-threatening and severe cases of hypomagnesemia. We conducted a thorough review of the literature using PubMed (1970-2022) and the search terms magnesium, hypomagnesemia, drugs, medications, treatment, and therapy. In the absence of clear data on optimal management of hypomagnesemia, we have made recommendations on magnesium replacement based on our clinical experience.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Division of Nephrology, University of Virginia Health, Charlottesville.
| | - Nam Ha
- Division of Nephrology, University of Virginia Health, Charlottesville
| | - Biff F Palmer
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas
| | - Mark A Perazella
- Section of Nephrology, Yale University School of Medicine and Section of Nephrology, West Haven VA Medical Center, West Haven, CT
| |
Collapse
|
4
|
Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona FJ, Dafinger C, Houillier P, Jones DP, Kleinerüschkamp F, Oh J, Godefroid N, Eltan M, Güran T, Burtey S, Parotte MC, König J, Braun A, Bos C, Ibars Serra M, Rehmann H, Zwartkruis FJ, Renkema KY, Klingel K, Schulze-Bahr E, Schermer B, Bergmann C, Altmüller J, Thiele H, Beck BB, Dahan K, Sabatini D, Liebau MC, Vargas-Poussou R, Knoers NV, Konrad M, de Baaij JH. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J Am Soc Nephrol 2021; 32:2885-2899. [PMID: 34607910 PMCID: PMC8806087 DOI: 10.1681/asn.2021030333] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium,Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Kuang Shen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anukrati Nigam
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Pascal Houillier
- Cordeliers Research Center, Centre National de la Recherche Scientifique (CNRS), ERL8228, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, University of Paris, Paris, France,Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), European Hospital Georges Pompidou, Paris, France,Reference Center for Hereditary Renal Diseases in Children and Adults (MARHEA), Paris, France
| | - Deborah P. Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Kleinerüschkamp
- Department of Pediatric Cardiology, University Children’s Hospital, Münster, Germany
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tülay Güran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Stéphane Burtey
- Center for Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Christine Parotte
- Division of Nephrology-Dialysis, Department of Internal Medicine, CHR Verviers East Belgium, Verviers, Belgium
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Alina Braun
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Ibars Serra
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Holger Rehmann
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J.T. Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,CECAD, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Limbach Genetics, Medizinische Genetik Mainz, Mainz, Germany,Division of Nephrology, Department of Medicine, University Hospital Freiburg, Breisgau, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Karin Dahan
- Center of Human Genetics, Gosselies, Belgium,Division of Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - David Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Max C. Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Rosa Vargas-Poussou
- Department of Genetics, AP-HP, European Hospital Georges Pompidou, Paris, France
| | - Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Liamis G, Hoorn EJ, Florentin M, Milionis H. An overview of diagnosis and management of drug-induced hypomagnesemia. Pharmacol Res Perspect 2021; 9:e00829. [PMID: 34278747 PMCID: PMC8287009 DOI: 10.1002/prp2.829] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
Magnesium (Mg) is commonly addressed as the "forgotten ion" in medicine. Nonetheless, hypomagnesemia should be suspected in clinical practice in patients with relevant symptomatology and also be considered a predisposing factor for the development of other electrolyte disturbances. Furthermore, chronic hypomagnesemia has been associated with diabetes mellitus and cardiovascular disease. Hypomagnesemia as a consequence of drug therapy is relatively common, with the list of drugs inducing low serum Mg levels expanding. Culprit medications linked to hypomagnesemia include antibiotics (e.g. aminoglycosides, amphotericin B), diuretics, antineoplastic drugs (cisplatin and cetuximab), calcineurin inhibitors, and proton pump inhibitors. In recent years, the mechanisms of drug-induced hypomagnesemia have been unraveled through the discovery of key Mg transporters in the gut and kidney. This narrative review of available literature focuses on the pathogenetic mechanisms underlying drug-induced hypomagnesemia in order to increase the insight of clinicians toward early diagnosis and effective management.
Collapse
Affiliation(s)
- George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Haralampos Milionis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Hirota C, Takashina Y, Yoshino Y, Hasegawa H, Okamoto E, Matsunaga T, Ikari A. Reactive Oxygen Species Downregulate Transient Receptor Potential Melastatin 6 Expression Mediated by the Elevation of miR-24-3p in Renal Tubular Epithelial Cells. Cells 2021; 10:cells10081893. [PMID: 34440664 PMCID: PMC8393788 DOI: 10.3390/cells10081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background: A low level of serum magnesium ion (Mg2+) is associated with type 2 diabetes mellitus (T2D). However, the molecular mechanism of Mg2+ deficiency has not been fully clarified. The current study sought to assesses the effect of reactive oxygen species on the expression of Mg2+ channels and miRNA. Methods: The expression of Mg2+ channels and miRNA were examined by real-time polymerase chain reaction. Intracellular Mg2+ concentration was measured by Magnesium Green fluorescence measurement. Results: The mRNA level of transient receptor potential melastatin 6 (TRPM6), which functions as Mg2+ influx channel in the distal convoluted tubule (DCT) of the kidney, was decreased by glycated albumin (GA), but not by insulin in rat renal tubule-derived NRK-52E cells. The mRNA levels of TRPM7, a homologue of TRPM6, and CNNM2, a Mg2+ efflux transporter located at the basolateral membrane of DCT, were changed by neither GA nor insulin. The generation of reactive oxygen species (ROS) was increased by GA. Hydrogen peroxide (H2O2) dose-dependently decreased TRPM6 mRNA, but it inversely increased the reporter activity of TRPM6. H2O2 accelerated the degradation of TRPM6 mRNA in actinomycin D assay without affecting TRPM7 and CNNM2 mRNA expressions. Nine miRNAs were considered as candidates for the regulator of stability of TRPM6 mRNA. Among them, miR-24-3p expression was increased by H2O2. The H2O2-induced reduction of TRPM6 mRNA was rescued by miR-24-3p siRNA. Magnesium Green fluorescence measurement showed that Mg2+ influx is suppressed by H2O2, which was rescued by an antioxidant and miR-24-3p siRNA. Conclusions: We suggest that GA decreases TRPM6 expression mediated by the elevation of ROS and miR-24-3p in renal tubular epithelial cells of T2D.
Collapse
Affiliation(s)
- Chieko Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Hajime Hasegawa
- Saitama Medical Center, Department of Nephrology and Hypertension, Saitama Medical University, Saitama 350-8550, Japan;
| | - Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
7
|
Workeneh BT, Uppal NN, Jhaveri KD, Rondon-Berrios H. Hypomagnesemia in the Cancer Patient. KIDNEY360 2020; 2:154-166. [PMID: 35368816 PMCID: PMC8785729 DOI: 10.34067/kid.0005622020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 02/04/2023]
Abstract
Hypomagnesemia is a common medical problem that contributes to the morbidity and mortality of patients with cancer. This review summarizes magnesium physiology and highlights the mechanisms underlying magnesium disturbances due to cancer and cancer treatment. The causes of hypomagnesemia can be categorized according to the pathophysiologic mechanism: decreased intake, transcellular shift, gastrointestinal losses, and kidney losses. Patients with cancer are at risk for opportunistic infections, frequently experience cardiovascular complications, and often receive classes of medications that cause or exacerbate hypomagnesemia. Also, cancer-specific therapies are responsible for hypomagnesemia, including platinum-based chemotherapy, anti-EGF receptor mAbs, human EGF receptor-2 target inhibitors (HER2), and calcineurin inhibitors. Urinary indices, such as the fractional excretion of magnesium, can provide useful information about the etiology. The management of hypomagnesemia depends on the magnitude of hypomagnesemia and the underlying cause. We recommended checking serum magnesium at the beginning of treatment and as part of routine monitoring throughout cancer treatment. Opportunities exist for potential research and practice improvement, including further characterization of hypomagnesemia regarding the clinical effect on cancer outcomes, preventing hypomagnesemia in patients receiving high-risk anticancer agents, and developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Biruh T. Workeneh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nupur N. Uppal
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York
| | - Helbert Rondon-Berrios
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Sun Q, Wei LL, Zhang M, Li TX, Yang C, Deng SP, Zeng QC. Rapamycin inhibits activation of AMPK-mTOR signaling pathway-induced Alzheimer's disease lesion in hippocampus of rats with type 2 diabetes mellitus. Int J Neurosci 2018; 129:179-188. [PMID: 29962282 DOI: 10.1080/00207454.2018.1491571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is strongly correlated with Alzheimer's disease (AD). Rapamycin has important uses in oncology, cardiology and transplantation medicine. This study aims to investigate effects of rapamycin on AD in hippocampus of T2DM rat by AMPK/mTOR signaling pathway. METHODS Morris water maze test was applied to evaluate the learning and memory abilities. The fasting plasma glucose (FBG), glycosylated haemoglobin, total cholesterol, triglyceride and serum insulin level were measured. RT-qPCR and Western blot analysis were performed to test expression of AMPK and mTOR. Immunohistochemistry was used to detect the Aβ deposition and immunoblotting to test the total tau, p-tau and Aβ precursor APP expressions. RESULTS After treated with rapamycin, T2DM rats and rats with T2DM and AD showed increased learning-memory ability, and decreased levels of FBG, glycosylated hemoglobin, total cholesterol, triglyceride and serum insulin, decreased expression of APP and p-tau, increased AMPK mRNA expression and p-AMPK and decreased Aβ deposition, mTOR mRNA expression and p-mTOR. CONCLUSION The study demonstrated that rapamycin reduces the risk of AD in T2DM rats and inhibits activation of AMPK-mTOR signaling pathway, thereby improving AD lesion in hippocampus of T2DM rats.
Collapse
Affiliation(s)
- Qin Sun
- a Department of Geratology, Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine , University of Electronic Science and Technology of China , Chengdu , Sichuan Province , PR China
| | - Ling-Ling Wei
- b Department of Organ Transplantation , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan Province , PR China
| | - Min Zhang
- c Department of Geratology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| | - Ting-Xin Li
- d Department of General Medicine , Health Management Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| | - Chun Yang
- e Department of Gastrointestinal Surgery , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu , Chengdu , PR China
| | - Shao-Ping Deng
- b Department of Organ Transplantation , Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan Province , PR China
| | - Qing-Cui Zeng
- c Department of Geratology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu , PR China
| |
Collapse
|
9
|
William JH, Richards K, Danziger J. Magnesium and Drugs Commonly Used in Chronic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:267-273. [PMID: 29793666 DOI: 10.1053/j.ackd.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
As with other electrolytes, magnesium homeostasis depends on the balance between gastrointestinal absorption and kidney excretion. Certain drugs used commonly in patients with CKD can decrease gastrointestinal ingestion and kidney reclamation, and potentially cause hypomagnesemia. Other magnesium-containing drugs such as laxatives and cathartics can induce hypermagnesemia, particularly in those with impaired glomerular filtration and magnesium excretion. In this review, we will discuss the potential magnesium complications associated with a range of commonly encountered drugs in the care of CKD patients, discuss the potential mechanisms, and provide basic clinical recommendations.
Collapse
|
10
|
Blazejczyk M, Macias M, Korostynski M, Firkowska M, Piechota M, Skalecka A, Tempes A, Koscielny A, Urbanska M, Przewlocki R, Jaworski J. Kainic Acid Induces mTORC1-Dependent Expression of Elmo1 in Hippocampal Neurons. Mol Neurobiol 2017; 54:2562-2578. [PMID: 26993296 PMCID: PMC5390005 DOI: 10.1007/s12035-016-9821-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022]
Abstract
Epileptogenesis is a process triggered by initial environmental or genetic factors that result in epilepsy and may continue during disease progression. Important parts of this process include changes in transcriptome and the pathological rewiring of neuronal circuits that involves changes in neuronal morphology. Mammalian/mechanistic target of rapamycin (mTOR) is upregulated by proconvulsive drugs, e.g., kainic acid, and is needed for progression of epileptogenesis, but molecular aspects of its contribution are not fully understood. Since mTOR can modulate transcription, we tested if rapamycin, an mTOR complex 1 inhibitor, affects kainic acid-evoked transcriptome changes. Using microarray technology, we showed that rapamycin inhibits the kainic acid-induced expression of multiple functionally heterogeneous genes. We further focused on engulfment and cell motility 1 (Elmo1), which is a modulator of actin dynamics and therefore could contribute to pathological rewiring of neuronal circuits during epileptogenesis. We showed that prolonged overexpression of Elmo1 in cultured hippocampal neurons increased axonal growth, decreased dendritic spine density, and affected their shape. In conclusion, data presented herein show that increased mTORC1 activity in response to kainic acid has no global effect on gene expression. Instead, our findings suggest that mTORC1 inhibition may affect development of epilepsy, by modulating expression of specific subset of genes, including Elmo1, and point to a potential role for Elmo1 in morphological changes that accompany epileptogenesis.
Collapse
Affiliation(s)
- Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| | - Matylda Macias
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Michal Korostynski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Marcelina Firkowska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Marcin Piechota
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Agnieszka Skalecka
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Malgorzata Urbanska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Ryszard Przewlocki
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| |
Collapse
|
11
|
Van Laecke S, Van Biesen W. Hypomagnesaemia in kidney transplantation. Transplant Rev (Orlando) 2015; 29:154-60. [PMID: 26001746 DOI: 10.1016/j.trre.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023]
Abstract
In the era of calcineurin inhibitors, hypomagnesaemia is a very common finding in kidney transplant recipients. Especially the first weeks after transplantation it is the rule rather than the exception. Hypomagnesaemia or low magnesium intake have been associated with a higher mortality or more cardiovascular events in the general population, but this association has never been explored in kidney transplant recipients, despite their increased cardiovascular risk. Kidney transplant recipients with pre- or post-transplant hypomagnesaemia seem to have an aberrant glucose metabolism and develop diabetes mellitus more frequently. Moreover, observations from alternate study populations, animal experiments or in vitro studies suggest a possible role of magnesium deficiency in graft dysfunction, bone metabolism and transplant immunology. Future observational and especially interventional studies should further define whether and to what extent we should make effort to correct this electrolyte disturbance in transplant recipients. Considering the mechanism of renal magnesium wasting, normalizing the serum magnesium concentration by oral supplementation alone might turn out to be cumbersome in kidney transplant recipients.
Collapse
Affiliation(s)
| | - Wim Van Biesen
- Renal Division, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
12
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 902] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Abstract
The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, & VA Medical Center, Portland, Oregon, United States
| | | |
Collapse
|
14
|
Rahman H, Qasim M, Oellerich M, Asif AR. Crosstalk between Edc4 and mammalian target of rapamycin complex 1 (mTORC1) signaling in mRNA decapping. Int J Mol Sci 2014; 15:23179-95. [PMID: 25514416 PMCID: PMC4284759 DOI: 10.3390/ijms151223179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/28/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is involved in the cellular transcription and translation processes. The undertaken study characterized the enhancer of mRNA decapping protein 4 (Edc4) as mTORC1 interacting protein. Human T lymphoblast (CCRF-CEM) cells were used for mTORC1 purification. Co-immunoprecipitation coupled with immunoblotting analysis was used to confirm the interaction of Edc4 in mTORC1 specific purifications. Further assays were incorporated to conclude the role of mTORC1 in mRNA decapping via Edc4. Edc4 was identified as a new interacting protein with mTORC1 in both the endogenous and myc-tag raptor component mTORC1 specific purifications. Quantitative co-localization using confocal microscopy demonstrated that raptor component of mTORC1 coexists with Edc4 in processing (P) bodies, a site for mRNA degradation. Incubation of cells with rapamycin, a known inhibitor of mTOR kinase activity, increased the total Edc4 protein expression but at the same time decreased the Edc4 interaction with mTORC1. Moreover, rapamycin treatment resulted in a significant decrease in total serine phosphorylated Edc4 protein signal and the total 5'-capped mRNA. These findings provide the first evidence for the pivotal role of mTORC1 in Edc4 regulation. Further in-depth studies are required to get a complete understanding of molecular crosstalk between mTORC1 signaling and mRNA decapping pathway.
Collapse
Affiliation(s)
- Hazir Rahman
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Muhammad Qasim
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Michael Oellerich
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| |
Collapse
|
15
|
Pham PCT, Pham PAT, Pham SV, Pham PTT, Pham PMT, Pham PTT. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis 2014; 7:219-30. [PMID: 24966690 PMCID: PMC4062555 DOI: 10.2147/ijnrd.s42054] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although magnesium is involved in a wide spectrum of vital functions in normal human physiology, the significance of hypomagnesemia and necessity for its treatment are under-recognized and underappreciated in clinical practice. In the current review, we first present an overview of the clinical significance of hypomagnesemia and normal magnesium metabolism, with a focus on renal magnesium handling. Subsequently, we review the literature for both congenital and acquired hypomagnesemic conditions that affect the various steps in normal magnesium metabolism. Finally, we present an approach to the routine evaluation and suggested management of hypomagnesemia.
Collapse
Affiliation(s)
| | - Phuong-Anh T Pham
- Veterans Administration Central California Health Care System, Fresno, CA, USA
| | - Son V Pham
- South Texas Veterans Health Care System and University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | |
Collapse
|
16
|
Abstract
TRPM6 is a bifunctional protein comprising a TRP cation channel segment covalently linked to an α-type serine/threonine protein kinase. TRPM6 is expressed in the intestinal and renal epithelial cells. Loss-of-function mutations in the human TRPM6 gene give rise to hypomagnesemia with secondary hypocalcemia (HSH), suggesting that the TRPM6 channel kinase plays a central role in systemic Mg(2+) homeostasis. In contrast, Trpm6 null mice show a delay in prenatal development, neural tube defects, and prenatal death. Possible functions of TRPM6 in prenatal and adult organisms will be discussed in this chapter.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Goethestrasse 33, Munich, 80336, Germany,
| | | |
Collapse
|
17
|
Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci (Lond) 2012; 123:417-27. [PMID: 22671428 DOI: 10.1042/cs20120086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relationship between magnesium and cancer is not as simple as could be assumed from the well-established requirement of magnesium for cell proliferation. Basic and pre-clinical studies indicate that magnesium deficiency can have both anti- and pro-tumour effects. In the present review, we briefly outline the new findings on the role of magnesium in angiogenesis and metastatization, and focus on the relationship between tumour cell proliferation and metabolic reprogramming, discussing how magnesium and its transporters are involved in these processes. The role of magnesium in cancer is also critically examined with regard to mitochondrial function, apoptosis and resistance to treatment. Finally, we bring together the latest experimental evidence indicating that alteration in the expression and/or activity of magnesium channels is a frequent finding in cancer cells and human tumour tissues examined to date, and we discuss the potential implications for developing novel diagnostic and therapeutic strategies.
Collapse
|
18
|
Abstract
Magnesium (Mg2+) balance is tightly regulated by the concerted actions of the intestine, bone and kidneys. This balance can be disturbed by a broad variety of drugs. Diuretics, modulators of the EGFR (epidermal growth factor receptor), proton pump inhibitors, antimicrobials, calcineurin inhibitors and cytostatics may all cause hypomagnesaemia, potentially leading to tetany, seizures and cardiac arrhythmias. Conversely, high doses of Mg2+ salts, frequently administered as an antacid or a laxative, may lead to hypermagnesaemia causing various cardiovascular and neuromuscular abnormalities. A better understanding of the molecular mechanisms underlying the adverse effects of these medications on Mg2+ balance will indicate ways of prevention and treatment of these adverse effects and could potentially provide more insight into Mg2+ homoeostasis.
Collapse
|
19
|
Farooqi AA, Javeed MK, Javed Z, Riaz AM, Mukhtar S, Minhaj S, Abbas S, Bhatti S. TRPM channels: same ballpark, different players, and different rules in immunogenetics. Immunogenetics 2011; 63:773-87. [PMID: 21932052 DOI: 10.1007/s00251-011-0570-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022]
Abstract
Transient receptor potential (TRP) channels belong to a large family of cation channels and are the "border guards" predominantly localized to the plasma membrane. Research over the years has considerably and highly developed the knowledge of expression and functional aspects of the TRPM channels. A closer look at the channel dynamics has dismantled undeniable substantiation for multifaceted roles for TRPM channel-mediated extracellular Ca(2+) influx in several physiological and pathophysiological functions. Given the wealth of literature unfolding the multiple roles of TRP channels in physiology in a very extensive range of different mammalian tissues, this review confines itself to the literature describing the multiple roles of TRPM channels in diabetes, smooth muscle cell regulation, immunological responses, and emerging aspects of cancer. We also focus on differential activities of TRPM channels after post-transcriptional and post-translational processing and their exquisite roles at various cellular and molecular levels.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Punjab, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|