1
|
Stompor-Gorący M, Włoch A, Sengupta P, Nasulewicz-Goldeman A, Wietrzyk J. Synergistic Proliferation Effects of Xanthohumol and Niflumic Acid on Merkel and Glioblastoma Cancer Cells: Role of Cell Membrane Interactions. Int J Mol Sci 2024; 25:11015. [PMID: 39456799 PMCID: PMC11508127 DOI: 10.3390/ijms252011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (Humulus lupulus), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other. Cell proliferation was quantified using the sulforodamine B (SRB) assay. In addition, the IC50 values for niflumic acid and xanthohumol applied separately were determined by cell proliferation tests for the following human cancer cell lines: 5637 (urinary bladder carcinoma), A-431 (epidermoid carcinoma), UM-SCC-17A (head and neck squamous carcinoma), SK-MEL-3 (melanoma), MCC13 (Merkel cell cancer), and A172 (glioblastoma), in comparison with the mouse normal fibroblasts (BALB/3T3 clone A31). The results show that the two-compound combinations of XN and NA significantly decreased the proliferation of cancer cells in a dose-dependent manner, and the effects were stronger than the additive responses to XN and NA individually. The membrane studies revealed a synergistic effect on the membrane rigidity when using the mixture of XN and NA, which may explain the observed increase in anticancer activity for the combined XN and NA. Our results suggest that NSAIDs, such as niflumic acid, may be a promising strategy for co-application with xanthohumol as anticancer drugs.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Priti Sengupta
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Anna Nasulewicz-Goldeman
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| |
Collapse
|
2
|
Daoud A, Cheknane A, Meftah A, Michel Nunzi J, Hilal HS. Dye-sensitized solar cell performance improvement by dye-solvent polarity and redox mediator potential alignment. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Leal J, Santos L, Fernández-Aroca DM, Cuevas JV, Martínez MA, Massaguer A, Jalón FA, Ruiz-Hidalgo MJ, Sánchez-Prieto R, Rodríguez AM, Castañeda G, Durá G, Carrión MC, Barrabés S, Manzano BR. Effect of the aniline fragment in Pt(II) and Pt(IV) complexes as anti-proliferative agents. Standard reduction potential as a more reliable parameter for Pt(IV) compounds than peak reduction potential. J Inorg Biochem 2021; 218:111403. [PMID: 33730639 DOI: 10.1016/j.jinorgbio.2021.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.
Collapse
Affiliation(s)
- Jorge Leal
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Lucia Santos
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Universidad de Castilla-La Mancha, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - J Vicente Cuevas
- Universidad de Burgos, Department of Chemistry, Pza. Misael Bañuelos S/N, 09001 Burgos, Spain
| | - M Angeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anna Massaguer
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Felix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M José Ruiz-Hidalgo
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas De Madrid Alberto Sols (CSIC-UAM), Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gregorio Castañeda
- Universidad de Castilla-La Mancha, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M Carmen Carrión
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Sílvia Barrabés
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Pérez-Arnaiz C, Leal J, Busto N, Carrión MC, Rubio AR, Ortiz I, Barone G, Díaz de Greñu B, Santolaya J, Leal JM, Vaquero M, Jalón FA, Manzano BR, García B. Role of Seroalbumin in the Cytotoxicity of cis-Dichloro Pt(II) Complexes with (N^N)-Donor Ligands Bearing Functionalized Tails. Inorg Chem 2018; 57:6124-6134. [PMID: 29722534 DOI: 10.1021/acs.inorgchem.8b00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Given the potent anticancer properties of cis-diamminedichloroplatinum(II) and knowing its mode of action, we synthesized four new cis-[PtCl2(N^N)] organoplatinum complexes, two with N-substituted pbi ligands (pbiR = 1-R-2-(2-pyridyl)benzimidazole) (namely, 1 and 2) and two more with 4,4'-disubstituted bpy ligands (bpy = 2,2'-bipyridine) (namely, 3 and 4). We explored their cytotoxicity and ability to bind to deoxyguanosine monophosphate (dGMP), DNA, and albumin models. By 1H NMR and UV-vis spectroscopies, circular dichroism, agarose gel electrophoresis, differential scanning calorimetry measurements, and density functional theory calculations, we verified that only 3 can form aquacomplex species after dimethyl sulfoxide solvation; surprisingly, 1, 2, and 3 can bind covalently to DNA, whereas 4 can form a noncovalent complex. Interestingly, only complexes 1 and 4 exhibit good cytotoxicity against human ovarian carcinoma (HeLa) cell line, whereas 2 and 3 are inactive. Although lung carcinoma (A549) cells are more resistant to the four platinum complexes than HeLa cells, when the protein concentration in the extracellular media is lower, the cytotoxicity becomes substantially enhanced. By native electrophoresis of bovine seroalbumin (BSA) and inductively coupled plasma mass spectrometry uptake studies we bear out, on one hand, that 2 and 3 can interact strongly with BSA and its cellular uptake is negligible and, on the other hand, that 1 and 4 can interact with BSA only weakly, its cellular uptake being higher by several orders. These results point up the important role of the protein binding features on their biological activity and cellular uptake of cis-"PtCl2" derivatives. Our results are valuable in the future rational design of new platinum complexes with improved biological properties, as they expose the importance not only of their DNA binding abilities but also of additional factors such as protein binding.
Collapse
Affiliation(s)
- Cristina Pérez-Arnaiz
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Jorge Leal
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Natalia Busto
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - María C Carrión
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Ana R Rubio
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Imanol Ortiz
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche , Università degli Studi di Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| | - Borja Díaz de Greñu
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Javier Santolaya
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - José M Leal
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Mónica Vaquero
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Félix A Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Blanca R Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Begoña García
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| |
Collapse
|
5
|
Nelson J, Diehl II, Palfreeman AF, Gibby J, Bell JD. Ultraslow dynamics of a complex amphiphile within the phospholipid bilayer: Effect of the lipid pre-transition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2068-2075. [PMID: 28751091 DOI: 10.1016/j.bbamem.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The shape and intensity of fluorescence emission spectra of Merocyanine 540 embedded in dipalmitoylphosphatidylcholine bilayers differ depending on the thermal history of the sample. This apparent hysteresis in fluorescence emission was most prominent in the temperature range of 20 to 35°C. Analysis of kinetic and temperature cycling experiments suggested that Merocyanine 540 slowly (half time of about 30min) assumes a metastable configuration as temperature is raised above the phospholipid pre-transition point. When the sample was cooled below the pre-transition temperature, the metastable state slowly depopulated (half time of about 15min). The rate of merocyanine exchange among these states was influenced more by membrane lipid mobility than by lipid order since cholesterol increased the rate of transition to the metastable state by a factor of 11.
Collapse
Affiliation(s)
- Jennifer Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Izadora I Diehl
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Alyssa F Palfreeman
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - Jared Gibby
- Department of Physiology and Developmental Biology, Brigham Young University, United States
| | - John D Bell
- Department of Physiology and Developmental Biology, Brigham Young University, United States.
| |
Collapse
|
6
|
Haenle JC, Bruchlos K, Ludwigs S, Köhn A, Laschat S. Rigidified Push-Pull Dyes: Using Chromophore Size, Donor, and Acceptor Units to Tune the Ground State between Neutral and the Cyanine Limit. Chempluschem 2017; 82:1197-1210. [DOI: 10.1002/cplu.201700347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kirsten Bruchlos
- Institut für Polymerchemie; Universität Stuttgart; Pfaffenwalding 55 70569 Stuttgart Germany
| | - Sabine Ludwigs
- Institut für Polymerchemie; Universität Stuttgart; Pfaffenwalding 55 70569 Stuttgart Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie; Universität Stuttgart; Pfaffenwalding 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwalding 55 70569 Stuttgart Germany
| |
Collapse
|
7
|
Abstract
Electronic structure and spectral-fluorescent properties of four related indole-based intraionic polymethines are discussed. They all comprise at least one carbonyl group in the acceptor part of their molecule but the effects of the carbonyls upon their UV/Vis and fluorescence spectra depend substantially on its position within the polymethine chromophore. At that, solvation of the carbonyls with highly electrophilic protic solvents can, as a function of dye structure, cause both a rise and decrease of fluorescence quantum yield of a dye or have no tangible effect at all. To get insight into the regularities of such behaviour, the dyes were examined closely using both their absorption and fluorescence spectral data and the (TD) DFT quantum chemical simulation.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmans'ka Str., 5, 02660 Kyiv, Ukraine
| |
Collapse
|
8
|
Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst 2015; 139:1303-26. [PMID: 24479125 DOI: 10.1039/c3an01577g] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.
Collapse
Affiliation(s)
- Valentin Romanov
- Wasatch Microfluidics, LLC, 825 N. 300 W., Suite C325, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Stokes G, Conboy JC. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation. J Am Chem Soc 2014; 136:1409-17. [PMID: 24410282 PMCID: PMC4004268 DOI: 10.1021/ja409250y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 12/29/2022]
Abstract
The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo.
Collapse
Affiliation(s)
- Grace
Y. Stokes
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
10
|
Liu W, Wang Z, Fu L, Leblanc RM, Yan ECY. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15022-31. [PMID: 24245525 DOI: 10.1021/la4036453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cell membranes are crucial to many biological processes. Because of their complexity, however, lipid bilayers are often used as model systems. Lipid structures influence the physical properties of bilayers, but their interplay, especially in multiple-component lipid bilayers, has not been fully explored. Here, we used the Langmuir-Blodgett method to make mono- and bilayers of 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L-serine (POPS) as well as their 1:1 binary mixtures. We studied the fluidity, stability, and rigidity of these structures using sum frequency generation (SFG) spectroscopy combined with analyses of surface pressure-area isotherms, compression modulus, and stability. Our results show that single-component bilayers, both saturated and unsaturated, may not be ideal membrane mimics because of their low fluidity and/or stability. However, the binary saturated and unsaturated DPPG/POPG and DPPG/POPS systems show not only high stability and fluidity but also high resistance to changes in surface pressure, especially in the range of 25-35 mN/m, the range typical of cell membranes. Because the ratio of saturated to unsaturated lipids is highly regulated in cells, our results underline the possibility of modulating biological properties using lipid compositions. Also, our use of flat optical windows as solid substrates in SFG experiments should make the SFG method more compatible with other techniques, enabling more comprehensive future surface characterizations of bilayers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | | | | | | | |
Collapse
|
11
|
Externalization of phosphatidylserine from inner to outer layer may alter the effect of plant sterols on human erythrocyte membrane — The Langmuir monolayer studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2184-91. [DOI: 10.1016/j.bbamem.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 11/21/2022]
|