1
|
Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 2023; 19:e1011125. [PMID: 36787339 PMCID: PMC9970071 DOI: 10.1371/journal.ppat.1011125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
Collapse
Affiliation(s)
- Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sarah Victoria Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marie Lindgren
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Bally
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Lundmark
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail: (SJB); (RL)
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (SJB); (RL)
| |
Collapse
|
2
|
Kaushal N, Jain S, Baranwal M. Computational design of immunogenic peptide constructs comprising multiple HLA restricted Dengue virus envelope epitopes. J Mol Recognit 2022; 35:e2961. [PMID: 35514257 DOI: 10.1002/jmr.2961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is endemic in 100 countries with ability to impact nearly 50% of world population. DENV envelope (E) protein is responsible for viral attachment to host cells and has been target of various countermeasure development efforts. The current study focuses on a consensus computational approach to identify cross-reactive, immunogenic DENV-2 E peptides displaying promiscuity with a wide array of HLA molecules. Four conserved peptides (FP-1, FP-2, FP-3 and FP-4) containing multiple CD8+ and CD4+ T cell epitopes were identified by employment of various immunoinformatics tools. FP-1, FP-2, FP-3 and FP-4 were estimated to bind with 227, 1787, 1008 and 834 HLA alleles respectively. RMSD values obtained by Molecular docking (CABS-Dock) with 20 HLA alleles (10 each of HLA class I and II) resulted into comparable RMSD values of identified epitopes with native peptides which represents the natural presentation of epitopes to HLA molecules. These peptides were also found to be part of previous experimentally validated immunogenic peptides. Further, a dengue immunogenic peptide construct was generated by linking the four peptides, an adjuvant and a 6x histidine tag. The construct showed strong binding and stability with Toll-like receptor (TLR4). Collectively, these results provide strong evidence in the support of the immunogenic potential of the dengue immunogenic peptide construct. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
3
|
Lozada C, Barlow TMA, Gonzalez S, Lubin-Germain N, Ballet S. Identification and Characteristics of Fusion Peptides Derived From Enveloped Viruses. Front Chem 2021; 9:689006. [PMID: 34497798 PMCID: PMC8419435 DOI: 10.3389/fchem.2021.689006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Membrane fusion events allow enveloped viruses to enter and infect cells. The study of these processes has led to the identification of a number of proteins that mediate this process. These proteins are classified according to their structure, which vary according to the viral genealogy. To date, three classes of fusion proteins have been defined, but current evidence points to the existence of additional classes. Despite their structural differences, viral fusion processes follow a common mechanism through which they exert their actions. Additional studies of the viral fusion proteins have demonstrated the key role of specific proteinogenic subsequences within these proteins, termed fusion peptides. Such peptides are able to interact and insert into membranes for which they hold interest from a pharmacological or therapeutic viewpoint. Here, the different characteristics of fusion peptides derived from viral fusion proteins are described. These criteria are useful to identify new fusion peptides. Moreover, this review describes the requirements of synthetic fusion peptides derived from fusion proteins to induce fusion by themselves. Several sequences of the viral glycoproteins E1 and E2 of HCV were, for example, identified to be able to induce fusion, which are reviewed here.
Collapse
Affiliation(s)
- Camille Lozada
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas M. A. Barlow
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Alkaff AH, Saragih M, Fardiansyah MA, Tambunan USF. Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development against Dengue Virus. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.
Collapse
|
5
|
Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci 2018; 19:998-1010. [PMID: 29852867 PMCID: PMC6446661 DOI: 10.2174/1389203719666180531122724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Dengue fever has become an imminent threat to international public health because of global warming and climate change. The World Health Organization proclaimed that more than 50% of the world's population is at risk of dengue virus (DENV) infection. Therefore, developing a clinically approved vaccine and effective therapeutic remedy for treating dengue fever is imperative. Peptide drug development has become a novel pharmaceutical research field. This article reviews various peptidesbased antimicrobial agents targeting three pathways involved in the DENV lifecycle. Specifically, they are peptide vaccines from immunomodulation, peptide drugs that inhibit virus entry, and peptide drugs that interfere with viral replication. Many antiviral peptide studies against DENV have been conducted in animal model trials, and progression to clinical trials for these promising peptide drugs is anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keng-Shiang Huang
- Address correspondence to this author at the School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan;, Tel: +886-988-399-979; E-mail:
| |
Collapse
|
6
|
Chakraborty S. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus. F1000Res 2016; 5:1150. [PMID: 27540468 DOI: 10.12688/f1000research.8853.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little emphasis in existing literature, are found to have significant electrostatic perturbation. Thus, a combination of different computational methods enable the rapid and rational detection of critical residues as epitopes in the search for an elusive therapy or vaccine that neutralizes multiple members of the Flaviviridae family. These secondary structures are conserved in the related Dengue virus (DENV), and possibly rationalize isolation techniques particle adsorption on magnetic beads coated with anionic polymers and anionic antiviral agents (viprolaxikine) for DENV. These amphipathic α-helices could enable design of molecules for inhibiting α-helix mediated protein-protein interactions. Finally, comparison of these secondary structures in proteins from related families illuminate subtle changes in the proteins that might render them ineffective to previously successful drugs and vaccines, which are difficult to identify by a simple sequence or structural alignment. Finally, conflicting results about residues that are involved in neutralizing a DENV-E protein by the potent antibody 5J7 (PDB ID:3J6U) are reported.
Collapse
|
7
|
Chakraborty S. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus. F1000Res 2016; 5:1150. [PMID: 27540468 PMCID: PMC4965698 DOI: 10.12688/f1000research.8853.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family
Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little emphasis in existing literature, are found to have significant electrostatic perturbation. Thus, a combination of different computational methods enable the rapid and rational detection of critical residues as epitopes in the search for an elusive therapy or vaccine that neutralizes multiple members of the
Flaviviridae family. These secondary structures are conserved in the related Dengue virus (DENV), and possibly rationalize isolation techniques particle adsorption on magnetic beads coated with anionic polymers and anionic antiviral agents (viprolaxikine) for DENV. These amphipathic α-helices could enable design of molecules for inhibiting α-helix mediated protein-protein interactions. Finally, comparison of these secondary structures in proteins from related families illuminate subtle changes in the proteins that might render them ineffective to previously successful drugs and vaccines, which are difficult to identify by a simple sequence or structural alignment. Finally, conflicting results about residues that are involved in neutralizing a DENV-E protein by the potent antibody 5J7 (PDB ID:3J6U) are reported.
Collapse
|
8
|
Fajardo-Sánchez E, Galiano V, Villalaín J. Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide. J Biomol Struct Dyn 2016; 35:1283-1294. [DOI: 10.1080/07391102.2016.1179595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emmanuel Fajardo-Sánchez
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - Vicente Galiano
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute, Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| |
Collapse
|
9
|
Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the dengue virus proteins. FEBS J 2015; 282:3368-94. [DOI: 10.1111/febs.13349] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Reaid A. Badierah
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hussein A. Almehdar
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Therapeutic and Protective Proteins Laboratory; Protein Research Department; Genetic Engineering and Biotechnology Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab Alexandria Egypt
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Vladimir N. Uversky
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
10
|
Galdiero S, Falanga A, Morelli G, Galdiero M. gH625: a milestone in understanding the many roles of membranotropic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:16-25. [PMID: 25305339 PMCID: PMC7124228 DOI: 10.1016/j.bbamem.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/05/2022]
Abstract
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood–brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. Membranotropic peptides and their therapeutic applications Membrane fusion, viral inhibition, drug delivery gH625, a peptide derived from Herpes simplex virus type I: a case study gH625 in vitro and in vivo delivery across the blood–brain barrier
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
11
|
Abstract
![]()
The Dengue virus (DENV) NS2A protein,
essential for viral replication,
is a poorly characterized membrane protein. NS2A displays both protein/protein
and membrane/protein interactions, yet neither its functions in the
viral cycle nor its active regions are known with certainty. To highlight
the different membrane-active regions of NS2A, we characterized the
effects of peptides derived from a peptide library encompassing this
protein’s full length on different membranes by measuring their
membrane leakage induction and modulation of lipid phase behavior.
Following this initial screening, one region, peptide dens25, had
interesting effects on membranes; therefore, we sought to thoroughly
characterize this region’s interaction with membranes. This
peptide presents an interfacial/hydrophobic pattern characteristic
of a membrane-proximal segment. We show that dens25 strongly interacts
with membranes that contain a large proportion of lipid molecules
with a formal negative charge, and that this effect has a major electrostatic
contribution. Considering its membrane modulating capabilities, this
region might be involved in membrane rearrangements and thus be important
for the viral cycle.
Collapse
Affiliation(s)
- Henrique Nemésio
- Molecular and Cellular Biology Institute, Universitas "Miguel Hernández" , E-03202 Elche-Alicante, Spain
| | | |
Collapse
|
12
|
Nemésio H, Villalaín J. Membranotropic Regions of the Dengue Virus prM Protein. Biochemistry 2014; 53:5280-9. [DOI: 10.1021/bi500724k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henrique Nemésio
- Instituto de Biología
Molecular y Celular, Universidad “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - José Villalaín
- Instituto de Biología
Molecular y Celular, Universidad “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| |
Collapse
|
13
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
14
|
Nemésio H, Palomares-Jerez MF, Villalaín J. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol Membr Biol 2013; 30:273-87. [PMID: 23745515 DOI: 10.3109/09687688.2013.805835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dengue virus (DENV) C protein is essential for viral assembly. DENV C protein associates with intracellular membranes through a conserved hydrophobic domain and accumulates around endoplasmic reticulum-derived lipid droplets which could provide a platform for capsid formation during assembly. In a previous work we described a region in DENV C protein which induced a nearly complete membrane rupture of several membrane model systems, which was coincident with the theoretically predicted highly hydrophobic region of the protein. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to this DENV C region, DENV2C6. We show that DENV2C6 partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. These results identify an important region in the DENV C protein which might be directly implicated in the DENV life cycle through the modulation of membrane structure.
Collapse
Affiliation(s)
- Henrique Nemésio
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche-Alicante, Spain
| | | | | |
Collapse
|
15
|
Palomares-Jerez MF, Nemesio H, Franquelim HG, Castanho MARB, Villalaín J. N-terminal AH2 segment of protein NS4B from hepatitis C virus. Binding to and interaction with model biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1938-52. [PMID: 23639583 DOI: 10.1016/j.bbamem.2013.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/30/2023]
Abstract
HCV NS4B, a highly hydrophobic protein involved in the alteration of the intracellular host membranes forming the replication complex, plays a critical role in the HCV life cycle. NS4B is a multifunctional membrane protein that possesses different regions where diverse and significant functions are located. One of these important regions is the AH2 segment, which besides being highly conserved has been shown to play a significant role in NS4B functioning. We have carried out an in-depth biophysical study aimed at the elucidation of the capacity of this region to interact, modulate and disrupt membranes, as well as to study the structural and dynamic features relevant for that disruption. We show that a peptide derived from this region, NS4BAH2, is capable of specifically binding phosphatidyl inositol phosphates with high affinity, and its interfacial properties suggest that this segment could behave similarly to a pre-transmembrane domain partitioning into and interacting with the membrane depending on the membrane composition and/or other proteins. Moreover, NS4BAH2 is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4BAH2 is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. The NS4B region where peptide NS4BAH2 resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the membrane structure and hence the replication complex.
Collapse
|
16
|
Lok SM, Costin JM, Hrobowski YM, Hoffmann AR, Rowe DK, Kukkaro P, Holdaway H, Chipman P, Fontaine KA, Holbrook MR, Garry RF, Kostyuchenko V, Wimley WC, Isern S, Rossmann MG, Michael SF. Release of dengue virus genome induced by a peptide inhibitor. PLoS One 2012; 7:e50995. [PMID: 23226444 PMCID: PMC3511436 DOI: 10.1371/journal.pone.0050995] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022] Open
Abstract
Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E) glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA.
Collapse
Affiliation(s)
- Shee-Mei Lok
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Joshua M. Costin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Yancey M. Hrobowski
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Andrew R. Hoffmann
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dawne K. Rowe
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Petra Kukkaro
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Paul Chipman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Krystal A. Fontaine
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert F. Garry
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Victor Kostyuchenko
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - William C. Wimley
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nemésio H, Palomares-Jerez F, Villalaín J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2818-30. [DOI: 10.1016/j.bbamem.2012.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
18
|
Osolodkin DI, Kozlovskaya LI, Palyulin VA, Pentkovski VM, Karganova GG, Zefirov NS. A molecular model and Monte Carlo simulation of flavivirus envelope building block. Biochem Biophys Res Commun 2012; 425:207-11. [DOI: 10.1016/j.bbrc.2012.07.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/16/2012] [Indexed: 12/30/2022]
|
19
|
Xu Y, Rahman NA, Othman R, Hu P, Huang M. Computational identification of self-inhibitory peptides from envelope proteins. Proteins 2012; 80:2154-68. [DOI: 10.1002/prot.24105] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/28/2012] [Accepted: 04/12/2012] [Indexed: 11/11/2022]
|
20
|
Abstract
INTRODUCTION The members of the family Flaviviridae, including West Nile virus, yellow fever virus and dengue virus, are important human pathogens that are expanding their impact around the globe. The four serotypes of dengue infect 50-100 million people each year, yet the only clinical treatment is supportive care to reduce symptoms. Drugs that employ novel inhibition mechanisms and targets are urgently needed to combat the growing incidence of dengue worldwide. AREAS COVERED The authors discuss recently discovered flavivirus inhibitors with a focus on antivirals targeting non-enzymatic proteins of the dengue virus lifecycle. Specifically, the authors discuss the flaviviruses, the need for novel inhibitors and the criteria for successful antiviral drug development. Current literature describing new advances in antiviral therapy at each stage of the flavivirus lifecycle (entry, endosomal escape, viral RNA processing and replication, assembly and immune evasion) are evaluated and summarized. EXPERT OPINION Overall, the prognosis of flavivirus antiviral drug development is positive: new effective compounds have been discovered and studied. However, repurposing existing compounds and a greater translation to the clinical setting are recommended in order to combat the growing threat of flaviviruses.
Collapse
Affiliation(s)
- Carolyn Botting
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive
| | - Richard J. Kuhn
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|