1
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
2
|
de Sousa JC, Santos SACS, Kurtenbach E. Multiple approaches for the evaluation of connexin-43 expression and function in macrophages. J Immunol Methods 2024; 533:113741. [PMID: 39111361 DOI: 10.1016/j.jim.2024.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.
Collapse
Affiliation(s)
- Júlia Costa de Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | | | - Eleonora Kurtenbach
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
3
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Ghasemi A, Tavasoli AR, Khojasteh M, Rohani M, Alavi A. Description of Phenotypic Heterogeneity in a GJC2-Related Family and Literature Review. Mol Syndromol 2023; 14:405-415. [PMID: 37915394 PMCID: PMC10617252 DOI: 10.1159/000529678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Homozygous and compound heterozygous variants in GJC2, the gene encoding connexin-47 protein, cause Pelizaeus-Merzbacher-like disease type 1 or hypomyelinating leukodystrophy 2 (HLD2), a severe infantile-onset hypomyelinating leukodystrophy, and rarely some milder phenotypes like hereditary spastic paraplegia (HSP) type 44 (SPG44) and subclinical leukodystrophy. Herein, we report an Iranian GJC2-related family with intrafamilial phenotypic heterogeneity and review the literatures. Methods Whole-exome sequencing was performed for an Iranian proband, who was initially diagnosed as HSP case. Data were analyzed and the candidate variant was confirmed by PCR and Sanger sequencing subsequently checked in family members to co-segregation analysis. A careful clinical and paraclinical evaluation of all affected individuals of the family was done and compared with previous reported GJC2-related families. Results A novel homozygous variant, c.G14T:p.Ser5Ile, in the GJC2 gene was identified. The variant was co-segregated with the disease status in the family members. Clinical evaluation of all patients showed two distinct GJC2-related phenotypes in this family; the proband presented a complicated form of HSP, whereas both his affected sisters presented a HLD2 phenotype. Discussion Up to now, correlation between HSP and GJC2 variants has been reported once. Here, the second case of SPG44 was identified that emphasizes on GJC2 as a HSP-causing gene. So, the screening of GJC2 in patients with HSP or HSP-like phenotypes especially with hypomyelination in their brain MRI is recommended. Also, for the first time, intrafamilial phenotypic heterogeneity for "two distinct GJC2-related phenotypes: HLD2 and HSP" was reported. Such intrafamilial phenotypic heterogeneity for GJC2 can emphasize on the shared pathophysiology of these disorders.
Collapse
Affiliation(s)
- Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mana Khojasteh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Andersen J, Thom N, Shadrach JL, Chen X, Onesto MM, Amin ND, Yoon SJ, Li L, Greenleaf WJ, Müller F, Pașca AM, Kaltschmidt JA, Pașca SP. Single-cell transcriptomic landscape of the developing human spinal cord. Nat Neurosci 2023; 26:902-914. [PMID: 37095394 DOI: 10.1038/s41593-023-01311-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | | | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Massimo Mario Onesto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Li Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fabian Müller
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anca M Pașca
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
6
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Abrams CK, Lancaster E, Li JJ, Dungan G, Gong D, Scherer SS, Freidin MM. Knock-in mouse models for CMTX1 show a loss of function phenotype in the peripheral nervous system. Exp Neurol 2023; 360:114277. [PMID: 36403785 DOI: 10.1016/j.expneurol.2022.114277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMTX1) is the second most common form of CMT. In this study we used CRISPR/Cas9 to develop new "knock-in" models of CMTX1 that are more representative of the spectrum of mutations seen with CMTX1 than the Cx32 knockout (KO) mouse model used previously. We compared mice of four genotypes - wild-type, Cx32KO, p.T55I, and p.R75W. Sciatic motor conduction velocity slowing was the most robust electrophysiologic indicator of neuropathy, showing reductions in the Cx32KO by 3 months and in the p.T55I and p.R75W mice by 6 months. At both 6 and 12 months, all three mutant genotypes showed reduced four limb and hind limb grip strength compared to WT mice. Performance on 6 and 12 mm width balance beams revealed deficits that were most pronounced at on the 6 mm balance beam at 6 months of age. There were pathological changes of myelinated axons in the femoral motor nerve in all three mutant lines by 3 months of age, and these became more pronounced at 6 and 12 months of age; sensory nerves (femoral sensory and the caudal nerve of the tail) appeared normal at all ages examined. Our results demonstrate that mice can be used to show the pathogenicity of human GJB1 mutations, and these new models for CMTX1 should facilitate the preclinical work for developing treatments for CMTX1.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Jian J Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Gabriel Dungan
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA
| | - David Gong
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA.
| |
Collapse
|
8
|
Huang X, Wu X, Wu B, Mou J, Ma X. Identification of a rare missense mutation in GJB1 and prenatal diagnosis in a Chinese family with CMT: A case report. Medicine (Baltimore) 2022; 101:e31733. [PMID: 36397455 PMCID: PMC9666213 DOI: 10.1097/md.0000000000031733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Charcot-Marie-Tooth disease (CMT) is a highly heterogeneous genetic disorder. To date, more than 90 genes have been implicated in the pathogenesis of CMT. Here, we report the identification of a rare causative mutation in a Chinese family with CMT and a pregnant patient underwent prenatal diagnosis. PATIENT CONCERNS A 33-year-old woman with 21 + 6 weeks of pregnancy presented with progressive weakness of distal extremities after 23 years of age. A total of 8 individuals in 4 generations of her family had similar muscle weakness. On proband whole-exome sequencing (WES), a rare c.121G > A variant in the GJB1 gene was identified. DIAGNOSIS Based on the clinical and genetic findings, this patient was finally diagnosed with CMT. INTERVENTIONS The prenatal diagnosis was performed on the proband fetus. OUTCOMES The fetus did not carry this rare variant, and the pregnancy continued. LESSONS Our findings provide the first clinical evidence for the causative role of GJB1 c.121G > A variant in CMT. WES is a valuable method for diagnosing patients with CMT.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Wu
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Bei Wu
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Mou
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xingwei Ma
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Xingwei Ma, Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang 550002, China (e-mail: )
| |
Collapse
|
9
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
10
|
Kovale S, Terauda R, Millere E, Taurina G, Murmane D, Isakova J, Kenina V, Gailite L. GJB1 Gene Analysis in Two Extended Families with X-Linked Charcot-Marie-Tooth Disease. Case Rep Neurol 2021; 13:422-428. [PMID: 34326750 PMCID: PMC8299378 DOI: 10.1159/000515170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
X-linked Charcot-Marie-Tooth (CMT) disease type I (CMTX1) is the second most frequent type of CMT disease caused by pathogenic variants in the GJB1 gene. We described 2 extended cases (families) with CMTX1 with identified pathogenic variants – p.Val139Met and p.Arg215Trp. In both the families, neurological symptoms started earlier in male than in female patients. In some family members, molecular diagnostics was performed prior to neurological investigation due to family cascade screening. There was variable neurological phenotype representing CMT. Conclusions: There is a large clinical heterogeneity in CMTX, even amongst the family members.
Collapse
Affiliation(s)
- Sabine Kovale
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Ruta Terauda
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Elina Millere
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Gita Taurina
- Children's Clinical University Hospital, Riga, Latvia
| | - Daiga Murmane
- Children's Clinical University Hospital, Riga, Latvia
| | - Jekaterina Isakova
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Viktorija Kenina
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| |
Collapse
|
11
|
von Jonquieres G, Rae CD, Housley GD. Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Front Cell Neurosci 2021; 15:661857. [PMID: 34239416 PMCID: PMC8258421 DOI: 10.3389/fncel.2021.661857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future.
Collapse
Affiliation(s)
- Georg von Jonquieres
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Jimenez-Armijo A, Oumensour K, Bousfiha B, Rey T, Laugel-Haushalter V, Bloch-Zupan A, El Arabi S. A Novel Homozygous Variant in GJA1 Causing a Hallermann-Streiff/Oculodentodigital Dysplasia Overlapping Phenotype: A Clinical Report. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.675130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper reports the case of a Moroccan girl with a phenotype within the clinical spectrum of both Hallermann-Streiff (HSS, OMIM 234100) and Oculodentodigital Dysplasia (ODDD, OMIM 164200) syndromes. The patient presented with repeated dental abscesses and severe early childhood caries. She had no learning deficit nor psychomotor regression; however, a language delay was noted. She also presented with obstructive sleep apnea syndrome and specific craniofacial features pathognomonic of HSS. Radiographic examination showed enamel and dentin defects, giving a ghost-like tooth appearance. Several clinical features of ODDD overlap those of HSS and may confuse diagnosis, considering that the inheritance of HSS is not described yet. The diagnostic odyssey of this patient ended with the identification by exome sequencing of a novel homozygous alteration in the GJA1 gene. A missense substitution in exon 2 [Chr6(GRCh37): g.121768554C>G NM_000165.4: c.561C>G p.Cys187Trp] was identified by whole-exome sequencing (WES), suggesting a diagnosis of ODDD. This is the first report of a homozygous mutation affecting the second extracellular loop of the CX43 protein.
Collapse
|
13
|
胡 娜, 司 超, 张 治, 马 克, 张 亮. [Down-regulation of the Expression of Senescence Proteins P16 and P21 by Activating Connexin 43 in the Smooth Muscle of Spiral Modiolar Artery of Guinea Pigs]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:188-193. [PMID: 33829690 PMCID: PMC10408918 DOI: 10.12182/20210360504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To analyze the correlation between connexin 43 (Cx43) and the expression of P16 and P21, aging-related proteins, and to investigate the possible role of Cx43 in the development of cell senescence with an aging model prepared by D-galactose (D-gal) intervention in the vascular smooth muscle cells (VSMCs) of guinea pig spiral modiolar artery (SMA). METHODS The VSMCs of guinea pig SMA were cultured with the adhesion method, and the markers of VSMCs were detected with immunofluorescence technique. The experiment has a control group, a D-gal group, and a group that received D-gal and gap junction agonist AAP10 intervention, hereafter referred to as the AAP10 group. Cell Counting Kit-8 (CCK-8) was used to check VSMC activity and to determine the concentration and duration of D-gal intervention. The mRNA expression of Cx43 in each group was checked with qRT-PCR. The expression of Cx43, P16 and P21 proteins in each group was examined with the Western blot. The expression and distribution of P16 and P21 proteins were examined with immunofluorescence assay. RESULTS Immunofluorescence results showed that the positive expression rate of cell actin (α-SM-actin) was over 90%. CCK-8 results showed that the optimal concentration of D-gal intervention was 30 mg/mL and the intervention duration was 48 h. qRT-PCR test showed that the mRNA expression of Cx43 in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01), while it is higher in the AAP10 group than that of the D-gal group ( P<0.01); Western blot assay showed that the Cx43 expression level in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01) and the expression of P16 and P21 was significantly higher than that in the control group ( P<0.01), the expression of Cx43 protein in AAP10 group was significantly up-regulated compared with that in the D-gal group ( P<0.01), while the expression of P16 and P21 was down-regulated significantly ( P<0.01); The results of immunofluorescence showed that P16 and P21 were mainly expressed in the cell nucleus. Semi-quantitative analysis of fluorescence intensity showed that the level of P16 and P21 protein in the D-gal group was significantly higher than that in the control group, and the fluorescence intensity of AAP10 group was significantly lower than that in the D-gal group ( P<0.01). CONCLUSION Up-regulation of Cx43 expression can reverse the D-gal-induced abnormal expression of P16 and P21, two aging-related proteins, in SMA. It is suggested that Cx43 on SMA may be involved in D-gal-induced cell senescence, which provides a theoretical basis and possible intervention target for the delay of cell senescence.
Collapse
Affiliation(s)
- 娜 胡
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 超 司
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 治平 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 克涛 马
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 亮 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| |
Collapse
|
14
|
Tian D, Zhao Y, Zhu R, Li Q, Liu X. Systematic review of CMTX1 patients with episodic neurological dysfunction. Ann Clin Transl Neurol 2020; 8:213-223. [PMID: 33314704 PMCID: PMC7818278 DOI: 10.1002/acn3.51271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Cavusoglu D, Dundar NO, Arican P, Ozyilmaz B, Gencpinar P. A hypomyelinating leukodystrophy with calcification: oculodentodigital dysplasia. Acta Neurol Belg 2020; 120:1177-1179. [PMID: 31240666 DOI: 10.1007/s13760-019-01178-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Dilek Cavusoglu
- Department of Pediatric Neurology, Faculty of Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Faculty of Medicine, Tepecik Training and Investigation Hospital, İzmir Katip Celebi University, 1140/1 Street, No: 1 Yenisehir, Konak, 35170, Izmir, Turkey.
| | - Pinar Arican
- Department of Pediatric Neurology, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Berk Ozyilmaz
- Department of Medical Genetics, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Faculty of Medicine, Tepecik Training and Investigation Hospital, İzmir Katip Celebi University, 1140/1 Street, No: 1 Yenisehir, Konak, 35170, Izmir, Turkey
| |
Collapse
|
16
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
17
|
Transient, Recurrent Central Nervous System Clinical Manifestations of X-Linked Charcot-Marie-Tooth Disease Presenting with Very Long Latency Periods between Episodes: Is Prolonged Sun Exposure a Provoking Factor? Case Rep Neurol Med 2020; 2020:9753139. [PMID: 32685222 PMCID: PMC7336214 DOI: 10.1155/2020/9753139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease is one of the most common inherited neurological disorders affecting the peripheral nervous system. The common clinical manifestations of the disease are distal muscle weakness and atrophy, often associated with a characteristic steppage gait and foot deformities. Transient acute and recurrent or chronic central nervous system manifestations, predominantly, dysarthria, dysphagia, motor weakness, and ataxia, have been recognized as a feature of the X-linked type 1 of CMT (CMTX1). The CNS symptoms occur typically in young age and often precede the clinical manifestation of the polyneuropathy. Several predisposing factors such as exercise, fever, and returning from areas of high altitude have been described as triggers of the CNS symptoms; however, in many cases, a substantial cause remains undetermined. In this report, we describe a patient with three attacks of transient CNS deficits at the ages of 11, 21, and 38 years, respectively, which were also accompanied by transient white matter abnormalities on MRI. Two of the attacks occurred after prolonged exposure to sunlight. In our knowledge, this is the first documented case with such long latency periods between CNS attacks as well as the only report describing intense sun exposure as a possible provoking factor.
Collapse
|
18
|
Moscatelli F, Messina G, Valenzano A, Triggiani AI, Sessa F, Carotenuto M, Tartaglia N, Ambrosi A, Cibelli G, Monda V. Effects of twelve weeks' aerobic training on motor cortex excitability. J Sports Med Phys Fitness 2020; 60:1383-1389. [PMID: 32536109 DOI: 10.23736/s0022-4707.20.10677-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Regular physical activity or aerobic exercise is well known to increase brain plasticity. Recent studies have reported that aerobic exercise enhances neuroplasticity and motor learning. The aim of this study was to investigate if 12 weeks' aerobic training can modify cortical excitability and motor evoked potential (MEP) responses. METHODS Fifteen untrained males were recruited. Cortical excitability was investigated using TMS. VO2<inf>max</inf> was estimated using Cooper's test. Aerobic intervention lasted 12 weeks. The subjects performed a 6-week supervised aerobic workout, 3 times a week, at 60-75% of their maximum heart rate (HR<inf>max</inf>). Over the following 6 weeks, they performed a supervised aerobic workout 3 times a week at 70-75% of FC<inf>max</inf>. RESULTS After 8 weeks of aerobic training there was a significant increase of distance covered during Cooper's test (P<0.001) and a significant increase of VO2<inf>max</inf> (P<0.001); there was also an improvement in resting motor threshold (rMT decreased from 60.5±6.6% [T0] to 55.8±5.9% [T2]; P<0.001), motor evoked potential latency decreased (from 25.3±0.8 ms [T0] to 24.1±0.8 ms [T2]; P<0.001), and motor evoked potential amplitude increased (from 0.58±0.09 mV [T0] to 0.65±0.08 mV [T2]; P<0.001). Furthermore, after 12 weeks' aerobic training there were improvements in all parameters. CONCLUSIONS This study shows that aerobic activity seems to induce changes in cortical excitability if performed for a period longer than 4 weeks, in addition to typical cardiorespiratory benefits in previously untrained males.
Collapse
Affiliation(s)
- Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy -
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio I Triggiani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
19
|
Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int 2020; 136:104727. [PMID: 32194142 DOI: 10.1016/j.neuint.2020.104727] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Glia use multiple mechanisms to mediate potassium fluxes that support neuronal function. In addition to changes in potassium levels within synapses, these ions are dynamically dispersed through the interstitial parenchyma, perivascular spaces, leptomeninges, cerebrospinal fluid, choroid plexus, blood, vitreous, and endolymph. Neural circuits drive diversity in the glia that buffer potassium and this is reciprocal. Glia mediate buffering of potassium locally at glial-neuronal interfaces and via widespread networked connections. Control of potassium levels in the central nervous system is mediated by mechanisms operating at various loci with complexity that is difficult to model. However, major components of networked glial buffering are known. The role that potassium buffering plays in homeostasis of the CNS underlies some pathologic phenomena. An overview of potassium fluxes in the CNS is relevant for understanding consequences of pathogenic sequence variants in genes that encode potassium buffering proteins. Potassium flows in the CNS are described as follows: K1, the coordinated potassium fluxes within the astrocytic cradle around the synapse; K2, temporary storage of potassium within astrocytic processes in proposed microdomains; K3, potassium fluxes between oligodendrocytes and astrocytes; K4, potassium fluxes between astrocytes; K5, astrocytic potassium flux mediation of neurovasular coupling; K6, CSF delivery of potassium to perivascular spaces with dispersion to interstitial fluid between astrocytic endfeet; K7, astrocytic delivery of potassium to CSF and K8, choroid plexus (modified glia) regulation of potassium at the blood-CSF barrier. Components, mainly potassium channels, transporters, connexins and modulators, and the pathogenic sequence variants of their genes with the associated diseases are described.
Collapse
Affiliation(s)
- Marie E Beckner
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
20
|
Liu Y, Xue J, Li Z, Linpeng S, Tan H, Teng Y, Liang D, Wu L. A novel GJB1 mutation associated with X-linked Charcot-Marie-Tooth disease in a large Chinese family pedigree. Mol Genet Genomic Med 2020; 8:e1127. [PMID: 31943912 PMCID: PMC7057093 DOI: 10.1002/mgg3.1127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is a group of hereditary neuropathies with high phenotypic and genetic heterogeneity. In this study, we report a large family with X-linked CMT (CMTX) caused by a novel GJB1 mutation. METHODS A family with the clinical diagnosis of CMTX was investigated. For mutation analysis, the coding region of GJB1 was sequenced using DNA from 15 family members. The identified GJB1 mutation was investigated by DHPLC in 120 normal controls. Mutation reanalysis was performed based on whole-exome sequencing (WES). Cell transfection studies were performed to characterize the function of the novel mutation. RESULTS A missense mutation (c.605T>A) in GJB1 was detected in five patients and eight female carriers but not in two unaffected members of the family. The mutation was not found in 120 healthy controls and has not been previously reported. WES excluded other pathogenic mutations in the family. The pathogenicity of the mutation was confirmed by disrupting the membrane localization of the encoded proteins. CONCLUSION Our findings demonstrate that a novel mutation (c.605T>A) in GJB1 is associated with CMTX and adds to the repertoire of GJB1 mutations related to CMTX.
Collapse
Affiliation(s)
- Yingdi Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Jinjie Xue
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
- Children's Hospital of ShanxiWomen Health Center of ShanxiTaiyuanChina
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Siyuan Linpeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Hu Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | | | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| |
Collapse
|
21
|
Kasselimis D, Karadima G, Angelopoulou G, Breza M, Tsolakopoulos D, Potagas C, Panas M, Koutsis G. Evidence for Cognitive Deficits in X-Linked Charcot-Marie-Tooth Disease. J Int Neuropsychol Soc 2020; 26:294-302. [PMID: 31948496 DOI: 10.1017/s1355617719001188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth disease (CMTX) is an hereditary neuropathy caused by mutations in GJB1 coding for connexin-32, found in Schwann cells, but also expressed in oligodendrocytes. Reports have identified CNS involvement in CMTX, but no systematic study of cognitive function has been published. METHODS We assessed 24 CMTX patients (13 males; 9GJB1 mutations) with a comprehensive neuropsychological battery, including tests of memory, language, and executive functions. RESULTS No differences in cognitive performance were observed between males and females. A case-by-case investigation revealed selective deficits in individual patients. One subgroup (29%) demonstrated executive abnormalities; and a non-overlapping subgroup (29%), prominent reading (decoding) abnormalities. CONCLUSIONS The present data provide evidence for cognitive deficits in CMTX. Emerging neuropsychological patterns are also discussed.
Collapse
Affiliation(s)
- Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 AthensGreece
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Georgia Angelopoulou
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 AthensGreece
| | - Marianthi Breza
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Dimitrios Tsolakopoulos
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 AthensGreece
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 AthensGreece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
22
|
Mersman BA, Jolly SN, Lin Z, Xu F. Gap Junction Coding Innexin in Lymnaea stagnalis: Sequence Analysis and Characterization in Tissues and the Central Nervous System. Front Synaptic Neurosci 2020; 12:1. [PMID: 32158385 PMCID: PMC7052179 DOI: 10.3389/fnsyn.2020.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022] Open
Abstract
Connections between neurons called synapses are the key components underlying all nervous system functions of animals and humans. However, important genetic information on the formation and plasticity of one type, the electrical (gap junction-mediated) synapse, is understudied in many invertebrates. In the present study, we set forth to identify and characterize the gap junction-encoding gene innexin in the central nervous system (CNS) of the mollusk pond snail Lymnaea stagnalis. With PCR, 3′ and 5′ RACE, and BLAST searches, we identified eight innexin genes in the L. stagnalis genome, named Lst Inx1–Lst Inx8. Phylogenetic analysis revealed that the L. stagnalis innexin genes originated from a single copy in the common ancestor of molluskan species by multiple gene duplication events and have been maintained in L. stagnalis since they were generated. The paralogous innexin genes demonstrate distinct expression patterns among tissues. In addition, one paralog, Lst Inx1, exhibits heterogeneity in cells and ganglia, suggesting the occurrence of functional diversification after gene duplication. These results introduce possibilities to study an intriguing potential relationship between innexin paralog expression and cell-specific functional outputs such as heterogenic ability to form channels and exhibit synapse plasticity. The L. stagnalis CNS contains large neurons and functionally defined networks for behaviors; with the introduction of L. stagnalis in the gap junction gene field, we are providing novel opportunities to combine genetic research with direct investigations of functional outcomes at the cellular, synaptic, and behavioral levels.
Collapse
Affiliation(s)
- Brittany A Mersman
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Sonia N Jolly
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States
| | - Zhenguo Lin
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
23
|
Niu J, Dai Y, Liu M, Li Y, Ding Q, Guan Y, Cui L, Jin L. GJB1 Mutation-A Disease Spectrum: Report of Case Series. Front Neurol 2020; 10:1406. [PMID: 32010055 PMCID: PMC6974795 DOI: 10.3389/fneur.2019.01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Patients with GJB1 mutations manifested as pure central nervous system (CNS) involvement without peripheral neuropathy have not been adequately reported. To expand the disease spectrum of GJB1 mutations, we report a case series. Methods: Eleven patients from 9 families with GJB1 mutations were reviewed. The clinical manifestations, electrophysiological studies, and gene tests were summarized. Results: Nine patients had peripheral neuropathy, one patient had both peripheral neuropathy and mild cognitive impairment, and one patient had recurrent episodic limbs weakness and aphasia with normal electrophysiological study, indicating CNS involvement only. Discussion: GJB1 mutations form a clinical spectrum, including most patients with peripheral nerve involvement, those with both peripheral neuropathy and CNS involvement, and patients with CNS involvement only.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liri Jin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in Astrocyte Migration. Front Pharmacol 2020; 10:1546. [PMID: 32009957 PMCID: PMC6974553 DOI: 10.3389/fphar.2019.01546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes have long been considered the supportive cells of the central nervous system, but during the last decades, they have gained much more attention because of their active participation in the modulation of neuronal function. For example, after brain damage, astrocytes become reactive and undergo characteristic morphological and molecular changes, such as hypertrophy and increase in the expression of glial fibrillary acidic protein (GFAP), in a process known as astrogliosis. After severe damage, astrocytes migrate to the lesion site and proliferate, which leads to the formation of a glial scar. At this scar-forming stage, astrocytes secrete many factors, such as extracellular matrix proteins, cytokines, growth factors and chondroitin sulfate proteoglycans, stop migrating, and the process is irreversible. Although reactive gliosis is a normal physiological response that can protect brain cells from further damage, it also has detrimental effects on neuronal survival, by creating a hostile and non-permissive environment for axonal repair. The transformation of astrocytes from reactive to scar-forming astrocytes highlights migration as a relevant regulator of glial scar formation, and further emphasizes the importance of efficient communication between astrocytes in order to orchestrate cell migration. The coordination between astrocytes occurs mainly through Connexin (Cx) channels, in the form of direct cell-cell contact (gap junctions, GJs) or contact between the extracellular matrix and the astrocytes (hemichannels, HCs). Reactive astrocytes increase the expression levels of several proteins involved in astrocyte migration, such as αvβ3 Integrin, Syndecan-4 proteoglycan, the purinergic receptor P2X7, Pannexin1, and Cx43 HCs. Evidence has indicated that Cx43 HCs play a role in regulating astrocyte migration through the release of small molecules to the extracellular space, which then activate receptors in the same or adjacent cells to continue the signaling cascades required for astrocyte migration. In this review, we describe the communication of astrocytes through Cxs, the role of Cxs in inflammation and astrocyte migration, and discuss the molecular mechanisms that regulate Cx43 HCs, which may provide a therapeutic window of opportunity to control astrogliosis and the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Li CH, Hao ML, Sun Y, Wang ZJ, Li JL. Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients. Arch Med Sci 2020; 16:352-358. [PMID: 32190146 PMCID: PMC7069450 DOI: 10.5114/aoms.2020.92859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gap junctions are intercellular channels formed by connexin facilitating communication between cells by allowing transfer of ions and small signaling molecules. Connexin 43 (Cx43) is the most ubiquitous connexin in human tissues. Ample evidence suggests the role of gap junction and its connexins such as connexin 43 in human cancers including gastric cancer, which has an important place in the worldwide incidence of cancer and cancer-related deaths. Due to a number of contradictory studies and insufficient detailed examination in specific cancers, such as gastric cancer, more data on the role of gap junctions and their connexins such as Cx43 involved in gastric cancer remain necessary. MATERIAL AND METHODS Transmission electron microscopy, Western blotting and RT-PCR were used to show the ultrastructure damage of the gap junction in the gastric carcinoma tissue as well as the expression of Cx43 protein and mRNA, respectively. RESULTS Ultrastructure damage of the gap junction in gastric carcinoma tissue was shown while poorly differentiated tissue experienced greater damage. The expression of Cx43 protein and mRNA was higher in healthy gastric tissue than in carcinomatous gastric tissue (p < 0.05). There was higher expression of Cx43 protein and mRNA in high-medium differentiation than in poor differentiation (p < 0.05). Cx43 protein and mRNA expression is not statistically significant for different ages and sex (such as for > 56 and ≤ 56 years) (p > 0.05). CONCLUSIONS Ultrastructural changes of gap junctions with abnormal Cx43 expression are associated with occurrence and development of gastric cancer, which provides a new research direction for gastric cancer pathogenesis and targeted therapy.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mei-Ling Hao
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Sun
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhu-Jun Wang
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Jian-Ling Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
26
|
Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Kleopa KA. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet 2019; 28:3528-3542. [PMID: 31411673 DOI: 10.1093/hmg/ddz199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - M M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
27
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
28
|
Pace NP, Benoit V, Agius D, Grima MA, Parascandalo R, Hilbert P, Borg I. Two novel GJA1 variants in oculodentodigital dysplasia. Mol Genet Genomic Med 2019; 7:e882. [PMID: 31347275 PMCID: PMC6732303 DOI: 10.1002/mgg3.882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Oculodentodigital dysplasia (ODDD) is a rare disorder with pleiotropic effects involving multiple body systems, caused by mutations in the gap junction protein alpha 1 (GJA1) gene. GJA1 gene encodes a polytopic connexin membrane protein, Cx43, that is a component of connexon membrane channels. Methods We describe two unrelated female probands referred for a genetic review in view of a dysmorphic clinical phenotype. Results Two novel missense mutations in GJA1 that substitute conserved amino acids in the first and second transmembrane domains (NM_000165.5: c.77T>C p.Leu26Pro and NM_000165.5:c.287T>G p.Val96Gly) were detected through targeted sequencing of GJA1. These variants were detected in the heterozygous state in the two Maltese probands and segregated with the disease phenotype. Conclusion This report further expands the mutational spectrum of ODDD.
Collapse
Affiliation(s)
- Nikolai P. Pace
- Centre for Molecular Medicine and BiobankingUniversity of MaltaMsidaMalta
| | - Valerie Benoit
- Département de Biologie MoléculaireInstitut de Pathologie et de Génétique ASBLGosseliesBelgium
| | - David Agius
- Department of OphthalmologyMater Dei HospitalMsidaMalta
| | | | | | - Pascale Hilbert
- Département de Biologie MoléculaireInstitut de Pathologie et de Génétique ASBLGosseliesBelgium
| | - Isabella Borg
- Centre for Molecular Medicine and BiobankingUniversity of MaltaMsidaMalta
- Department of Pathology, Faculty of Medicine and SurgeryUniversity of MaltaMsidaMalta
- Medical Genetics Unit, Department of PathologyMater Dei HospitalMsidaMalta
| |
Collapse
|
29
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
30
|
Luo S, Jin H, Chen J, Zhang L. A Novel Variant in Non-coding Region of GJB1 Is Associated With X-Linked Charcot-Marie-Tooth Disease Type 1 and Transient CNS Symptoms. Front Neurol 2019; 10:413. [PMID: 31068899 PMCID: PMC6491636 DOI: 10.3389/fneur.2019.00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/04/2019] [Indexed: 11/27/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) is a dominantly inherited peripheral neuropathy and is caused by mutations in gap junction beta 1 gene (GJB1). Here, a novel variant of c.-170T>G in GJB1 was identified in a large Chinese CMTX1 pedigree. The proband presented transient “stroke-like” episodes in addition to the peripheral neuropathy. At the time of episode, he had transient hyperthyroidism. To our knowledge, this is the first variant found in non-coding region associated with transient central nervous system (CNS) symptoms and in this case, thyroid dysfunction might contribute to the episode. The mechanism of CMTX1 as well as the transient CNS symptoms waits to be elucidated.
Collapse
Affiliation(s)
- Si Luo
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Canine neuropathies: powerful spontaneous models for human hereditary sensory neuropathies. Hum Genet 2019; 138:455-466. [PMID: 30955094 DOI: 10.1007/s00439-019-02003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
In humans, hereditary sensory neuropathies (HSN), also known as hereditary sensory and autonomic neuropathies (HSAN), constitute a clinically and genetically heterogeneous group of disorders characterized by progressive sensory loss, often accompanied by chronic skin ulcerations and nail dystrophic changes. To date, although around 20 genes have already been discovered, they do not explain the genetic causes of all patients. In dogs, similar neuropathies are also diagnosed, several breeds being predisposed to specific forms of the disease. Indeed, the breed specificity of most canine genetic diseases is due to the small numbers of founders and high levels of inbreeding. Recent knowledge and tools developed to study the canine genome efficiently allows deciphering the genetic bases of such diseases. To date, a dozen breeds are recognized to develop specific HSN. For the Border collie and hunting dog breeds, the genes involved have recently been discovered. Other affected breeds thus constitute potential genetic models, with new genes to be found in dogs that can be considered as candidate genes for human HSAN/HSN. Here, we review the different forms of human and canine HSAN/HSN and we present a novel form in Fox terrier cases, highlighting the advantages of the dog model for such rare human diseases.
Collapse
|
32
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
33
|
Wang Z, Sun L, Wang P, Chen C, Zhang A, Wang W, Ding X. Novel ocular findings in oculodentodigital dysplasia (ODDD): a case report and literature review. Ophthalmic Genet 2019; 40:54-59. [PMID: 30767687 DOI: 10.1080/13816810.2019.1571616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oculodentodigitaldysplasia (ODDD; MIM no. 164200) is a rare hereditary disorder caused by mutations in the gene GJA1.Ocular disorders included microcornea, cornea opacity and glaucoma. However, few studies described fundus findings. MATERIALS AND METHODS Ophthalmic examination included visual acuity measurement, intraocular pressure (IOP) measurements, slit-lamp biomicroscopy, B-scan ultrasonography, Ultrasound biomicroscopy (UBM), spectral-domain optical coherence tomography (SD-OCT), ERG and retcam fluorescein angiogram. In addition, blood samples were taken from this patient for mutation analyze of GJA1. RESULT The ophthalmic features of this patient were microcornea, cornea opacity, glaucoma as expected. Interestingly, the patient had a normal axial length with refractive status of emmetropia, but extremely retinal dysplasia and severe choroid thinning was noted. Flash electroretinogram (ERG) was extinguished in both eyes. This study identified a novel mutation c.91A>T in the GJA1 gene associated with fundus abnormalities. Bioinformatics and structural modeling suggested the mutation to be pathogenic. CONCLUSION Our research expanded not only the mutation spectrum, but also the clinical characteristics of ODDD. To the best of our knowledge, this is the first report on anatomical and functional chorioretinal changes in ODDD patients. These novel ocular features highlight the importance of fundus morphological and functional evaluation in ODDD. ABBREVIATIONS ODDD: oculodentodigital dysplasia; OCT: optical coherence tomography; ERG: electroretinogram; TACT: teller acuity card test; UBM: ultrasound biomicroscopy; MW: molecular weights; AL: axial length; Cx43: connexin 43; RPE: retinal pigment epithelium; RGCs: retinal ganglion cells; FEVR: familial exudative vitreoretinopathy; ROP: retinopathy of prematurity.
Collapse
Affiliation(s)
- Zhirong Wang
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Limei Sun
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Panfeng Wang
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Chonglin Chen
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Aiyuan Zhang
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Weiqing Wang
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xiaoyan Ding
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
34
|
Plasticity of the Electrical Connectome of C. elegans. Cell 2019; 176:1174-1189.e16. [PMID: 30686580 PMCID: PMC10064801 DOI: 10.1016/j.cell.2018.12.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
Collapse
|
35
|
Gumus E. A rare symptom of a very rare disease: a case report of a oculodentodigital dysplasia with lymphedema. Clin Dysmorphol 2018; 27:91-93. [PMID: 29624507 DOI: 10.1097/mcd.0000000000000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Evren Gumus
- Department of Medical Genetics, School of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
36
|
Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW. Connexins and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029348. [PMID: 28778872 DOI: 10.1101/cshperspect.a029348] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer and pleiotropic syndromes such as oculodentodigital dysplasia (ODDD). Although incomplete by virtue of space and the extent of the topic, this review emphasizes the fact that connexin function is not only associated with gap junction channel formation. As such, both canonical and noncanonical functions of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morten S Nielsen
- Department of Biological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vytautas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11790
| |
Collapse
|
37
|
Shimizu C, Kasahara H, Furuta N, Shibata M, Nagashima K, Hashiguchi A, Takashima H, Ikeda Y. [Charcot-Marie-Tooth disease showing transient central nervous system lesions after a large amount of alcohol intake: A case report]. Rinsho Shinkeigaku 2018; 58:479-484. [PMID: 30068806 DOI: 10.5692/clinicalneurol.cn-001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A 23-year-old man experienced numbness in the perioral region and right arm, and right leg weakness on the second day after drinking a large amount of alcohol during foreign travel. His symptoms disappeared but then reappeared repetitively. Cerebral MRI performed on the third day after onset showed multiple white matter lesions; however, these lesions disappeared 26 days after onset. Neurological examination and nerve conduction studies revealed demyelinating polyneuropathy. Genetic testing for Charcot-Marie-Tooth disease, X-linked dominant 1 (CMTX1) due to GJB1 mutation was conducted based on the symptoms of transient central nervous system lesions and polyneuropathy exhibited by the patient and his mother. As a result, a c.530T>C (p.V177A) substitution in exon 2 of GJB1 was identified. CMTX1 patients should be advised to avoid excessive drinking because this could induce central nervous system lesions.
Collapse
Affiliation(s)
- Chisato Shimizu
- Department of Neurology, Gunma University Graduate School of Medicine
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine
| | - Natsumi Furuta
- Department of Neurology, Gunma University Graduate School of Medicine
| | - Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine
- Department of Neurology, National Hospital Organization Takasaki General Medical Center
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine
| |
Collapse
|
38
|
McConville DO, Archbold GP, Lewis A, Morrison PJ. Zygodactyly (Syndactyly Type A1) Associated With Midfoot Charcot Neuropathy and Diabetes. Diabetes Care 2018; 41:e74-e75. [PMID: 29472431 DOI: 10.2337/dc18-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Anthony Lewis
- Diabetes Clinic, Belfast Health and Social Care Trust, Belfast, U.K
| | - Patrick J Morrison
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, U.K. .,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, U.K
| |
Collapse
|
39
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G, Sargiannidou I, Christodoulou C, Kleopa KA. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet 2018; 27:1460-1473. [PMID: 29462293 DOI: 10.1093/hmg/ddy056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
Gap junction beta-1 (GJB1) gene mutations affecting the gap junction protein connexin32 (Cx32) cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a common inherited neuropathy. Targeted expression of virally delivered Cx32 in Schwann cells following intrathecal injection of lentiviral vectors in the Cx32 knockout (KO) mouse model of the disease has led to morphological and functional improvement. To examine whether this approach could be effective in CMT1X patients expressing different Cx32 mutants, we treated transgenic Cx32 KO mice expressing the T55I, R75W or N175D CMT1X mutations. All three mutants were localized in the perinuclear compartment of myelinating Schwann cells consistent with retention in the ER (T55I) or Golgi (R75W, N175D) and loss of physiological expression in the non-compact myelin. Following intrathecal delivery of the GJB1 gene we detected the virally delivered wild-type (WT) Cx32 in non-compact myelin of T55I KO mice, but only rarely in N175D KO or R75W KO mice, suggesting dominant-negative effects of the R75W and N175D mutants but not of the T55I mutant on co-expressed WT Cx32. GJB1 treated T55I KO mice showed improved motor performance, lower ratios of abnormally myelinated fibers and reduction of inflammatory cells in spinal roots and peripheral nerves compared with mock-treated littermates. Either partial (N175D KO) or no (R75W KO) improvement was observed in the other two mutant lines. Thus, certain CMT1X mutants may interfere with gene addition therapy for CMT1X. Whereas gene addition can be used for non-interfering CMT1X mutations, further studies will be needed to develop treatments for patients harboring interfering mutations.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - G Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
40
|
Dulong A, Bornert F, Gros CI, Garnier JF, Van Bellinghen X, Fioretti F, Lutz JC. Diagnosis and Innovative Multidisciplinary Management of Hallermann-Streiff Syndrome: 20-Year Follow-Up of a Patient. Cleft Palate Craniofac J 2018; 55:1458-1466. [PMID: 29578805 DOI: 10.1177/1055665618765829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hallermann-Streiff syndrome (HSS) is a rare congenital disorder that mainly affects head and face development. We described the different patterns of the disease throughout the whole growth period and provided innovative treatment steps. Indeed, early genioplasty and dental implantation before growth completion were performed. These steps allowed to improve facial growth and to provide orthodontic anchorage, respectively. Complementary orthognathic surgery achieved satisfactory occlusion and refined aesthetics. We believe such an approach could be considered as a relevant treatment modality to complete multidisciplinary care in patients with HSS.
Collapse
Affiliation(s)
- Anand Dulong
- 1 Faculty of Dentistry, University of Reims-Champagne-Ardennes, Reims, France.,2 Maxillofacial and Plastic Surgery Department, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Fabien Bornert
- 3 Oral Surgery and Oral Medicine Unit, Department of Dentistry, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France.,4 Faculty of Dentistry, University of Strasbourg, Strasbourg, France.,5 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Strasbourg, France
| | - Catherine Isabelle Gros
- 3 Oral Surgery and Oral Medicine Unit, Department of Dentistry, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France.,4 Faculty of Dentistry, University of Strasbourg, Strasbourg, France.,5 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Strasbourg, France
| | - Jean-Francois Garnier
- 2 Maxillofacial and Plastic Surgery Department, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Xavier Van Bellinghen
- 3 Oral Surgery and Oral Medicine Unit, Department of Dentistry, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France.,5 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Strasbourg, France
| | - Florence Fioretti
- 3 Oral Surgery and Oral Medicine Unit, Department of Dentistry, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France.,4 Faculty of Dentistry, University of Strasbourg, Strasbourg, France.,5 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Strasbourg, France
| | - Jean-Christophe Lutz
- 2 Maxillofacial and Plastic Surgery Department, Hôpital Civil, Strasbourg University Hospital, Strasbourg, France.,5 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Strasbourg, France.,6 Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Abdominal Vagal Afferents Modulate the Brain Transcriptome and Behaviors Relevant to Schizophrenia. J Neurosci 2018; 38:1634-1647. [PMID: 29326171 DOI: 10.1523/jneurosci.0813-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Reduced activity of vagal efferents has long been implicated in schizophrenia and appears to be responsible for diminished parasympathetic activity and associated peripheral symptoms such as low heart rate variability and cardiovascular complications in affected individuals. In contrast, only little attention has been paid to the possibility that impaired afferent vagal signaling may be relevant for the disorder's pathophysiology as well. The present study explored this hypothesis using a model of subdiaphragmatic vagal deafferentation (SDA) in male rats. SDA represents the most complete and selective vagal deafferentation method existing to date as it leads to complete disconnection of all abdominal vagal afferents while sparing half of the abdominal vagal efferents. Using next-generation mRNA sequencing, we show that SDA leads to brain transcriptional changes in functional networks annotating with schizophrenia. We further demonstrate that SDA induces a hyperdopaminergic state, which manifests itself as increased sensitivity to acute amphetamine treatment and elevated accumbal levels of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Our study also shows that SDA impairs sensorimotor gating and the attentional control of associative learning, which were assessed using the paradigms of prepulse inhibition and latent inhibition, respectively. These data provide converging evidence suggesting that the brain transcriptome, dopamine neurochemistry, and behavioral functions implicated in schizophrenia are subject to visceral modulation through abdominal vagal afferents. Our findings may encourage the further establishment and use of therapies for schizophrenia that are based on vagal interventions.SIGNIFICANCE STATEMENT The present work provides a better understanding of how disrupted vagal afferent signaling can contribute to schizophrenia-related brain and behavioral abnormalities. More specifically, it shows that subdiaphragmatic vagal deafferentation (SDA) in rats leads to (1) brain transcriptional changes in functional networks related to schizophrenia, (2) increased sensitivity to dopamine-stimulating drugs and elevated dopamine levels in the nucleus accumbens, and (3) impairments in sensorimotor gating and the attentional control of associative learning. These findings may encourage the further establishment of novel therapies for schizophrenia that are based on vagal interventions.
Collapse
|
42
|
Zhou S, Fang Z, Wang G, Wu S. Gap junctional intercellular communication dysfunction mediates the cognitive impairment induced by cerebral ischemia-reperfusion injury: PI3K/Akt pathway involved. Am J Transl Res 2017; 9:5442-5451. [PMID: 29312496 PMCID: PMC5752894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Cerebral ischemia/reperfusion (I/R) injury causes hippocampal apoptosis and cognitive impairment, and the dysfunction of gap junction intercellular communication (GJIC) may contribute to the cognitive impairment. We aim to examine the impact of cerebral I/R injury on cognitive impairment, the role of GJIC dysfunction in the rat hippocampus and the involvement of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. METHODS Rats were subjected to a cerebral I/R procedure and underwent cognitive assessment with the novel object recognition and Morris Water Maze tasks. The distance of Lucifer Yellow dye transfer and the Cx43 protein were examined to measure GJIC. Neural apoptosis was assessed with the terminal deoxynucleotide-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. After rats received inhibitors of the PI3K/Akt pathway, GJIC and cognitive ability were measured again. RESULTS GJIC promotion by ZP123 significantly reversed cognitive impairment and hippocampal apoptosis induced by cerebral I/R, while the inhibition of GJIC by octanol significantly facilitated cognitive impairment and hippocampal apoptosis. The phosphorylation of Akt was enhanced by cerebral I/R and octanol but inhibited by ZP123. The inhibition of the PI3K/Akt pathway significantly suppressed GJIC and cognitive impairment. CONCLUSION The PI3K/Akt pathway is involved in cognitive impairment caused by gap junctional communication dysfunction in the rat hippocampus after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of ChangzhouChangzhou, Jiangsu, People’s Republic of China
| | - Zheng Fang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of ChangzhouChangzhou, Jiangsu, People’s Republic of China
| | - Gui Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of ChangzhouChangzhou, Jiangsu, People’s Republic of China
| | - Song Wu
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of ChangzhouChangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
43
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
44
|
Hong YB, Park JM, Yu JS, Yoo DH, Nam DE, Park HJ, Lee JS, Hwang SH, Chung KW, Choi BO. Clinical characterization and genetic analysis of Korean patients with X-linked Charcot-Marie-Tooth disease type 1. J Peripher Nerv Syst 2017; 22:172-181. [PMID: 28448691 DOI: 10.1111/jns.12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Mutations in the gap junction protein beta 1 gene (GJB1) cause X-linked Charcot-Marie-Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high-arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.
Collapse
Affiliation(s)
- Young B Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Jin-Mo Park
- Department of Neurology, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Jin S Yu
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da H Yoo
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Hyung J Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ji-Su Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun H Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
45
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Becker D, Minor KM, Letko A, Ekenstedt KJ, Jagannathan V, Leeb T, Shelton GD, Mickelson JR, Drögemüller C. A GJA9 frameshift variant is associated with polyneuropathy in Leonberger dogs. BMC Genomics 2017; 18:662. [PMID: 28841859 PMCID: PMC5574090 DOI: 10.1186/s12864-017-4081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/21/2017] [Indexed: 01/15/2023] Open
Abstract
Background Many inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans. The canine disorders collectively show a variable expression of progressive clinical signs and ages of onset, and different breed prevalences. Previously in the Leonberger breed, a variant highly associated with a juvenile-onset PN was identified in the canine orthologue of a CMT-associated gene. As this deletion in ARHGEF10 (termed LPN1) does not explain all cases, PN in this breed may encompass variants in several genes with similar clinical and histopathological features. Results A genome-wide comparison of 173 k SNP genotypes of 176 cases, excluding dogs homozygous for the ARHGEF10 variant, and 138 controls, was carried out to detect further PN-associated variants. A single suggestive significant association signal on CFA15 was found. The genome of a PN-affected Leonberger homozygous for the associated haplotype was sequenced and variants in the 7.7 Mb sized critical interval were identified. These variants were filtered against a database of variants observed in 202 genomes of various dog breeds and 3 wolves, and 6 private variants in protein-coding genes, all in complete linkage disequilibrium, plus 92 non-coding variants were revealed. Five of the coding variants were predicted to have low or moderate effect on the encoded protein, whereas a 2 bp deletion in GJA9 results in a frameshift of high impact. GJA9 encodes connexin 59, a connexin gap junction family protein, and belongs to a group of CMT-associated genes that have emerged as important components of peripheral myelinated nerve fibers. The association between the GJA9 variant and PN was confirmed in an independent cohort of 296 cases and 312 controls. Population studies showed a dominant mode of inheritance, an average age of onset of approximately 6 years, and incomplete penetrance. Conclusions This GJA9 variant represents a highly probable candidate variant for another form of PN in Leonberger dogs, which we have designated LPN2, and a new candidate gene for CMT disease. To date, approximately every third PN-diagnosed Leonberger dog can be explained by the ARHGEF10 or GJA9 variants, and we assume that additional genetic heterogeneity in this condition exists in the breed. Electronic supplementary material The online version of this article (10.1186/s12864-017-4081-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doreen Becker
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Kari J Ekenstedt
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
| |
Collapse
|
47
|
Esseltine JL, Shao Q, Brooks C, Sampson J, Betts DH, Séguin CA, Laird DW. Connexin43 Mutant Patient-Derived Induced Pluripotent Stem Cells Exhibit Altered Differentiation Potential. J Bone Miner Res 2017; 32:1368-1385. [PMID: 28177159 DOI: 10.1002/jbmr.3098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
Abstract
We present for the first time the generation of induced pluripotent stem cells (iPSCs) from a patient with a connexin-linked disease. The importance of gap junctional intercellular communication in bone homeostasis is exemplified by the autosomal dominant developmental disorder oculodentodigital dysplasia (ODDD), which is linked to mutations in the GJA1 (Cx43) gene. ODDD is characterized by craniofacial malformations, ophthalmic deficits, enamel hypoplasia, and syndactyly. In addition to harboring a Cx43 p.V216L mutation, ODDD iPSCs exhibit reduced Cx43 mRNA and protein abundance when compared to control iPSCs and display impaired channel function. Osteogenic differentiation involved an early, and dramatic downregulation of Cx43 followed by a slight upregulation during the final stages of differentiation. Interestingly, osteoblast differentiation was delayed in ODDD iPSCs. Moreover, Cx43 subcellular localization was altered during chondrogenic differentiation of ODDD iPSCs compared to controls and this may have contributed to the more compact cartilage pellet morphology found in differentiated ODDD iPSCs. These studies highlight the importance of Cx43 expression and function during osteoblast and chondrocyte differentiation, and establish a potential mechanism for how ODDD-associated Cx43 mutations may have altered cell lineages involved in bone and cartilage development. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
48
|
Bargiello TA, Oh S, Tang Q, Bargiello NK, Dowd TL, Kwon T. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:22-39. [PMID: 28476631 DOI: 10.1016/j.bbamem.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (Vm or Vi-o). These transjunctional voltage dependent processes have been termed Vj- or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Thaddeus A Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Qingxiu Tang
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Nicholas K Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Taekyung Kwon
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
49
|
Mallick A, Singh RK, Thapar RK. Hallermann Streiff syndrome: 'Bird faced' but not 'bird brained'. Med J Armed Forces India 2017; 74:193-195. [PMID: 29692493 DOI: 10.1016/j.mjafi.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Abhishek Mallick
- Resident (Pediatrics), Command Hospital (Central Command), Lucknow, India
| | - R K Singh
- Classified Specialist (Pediatrics), Command Hospital (Central Command), Lucknow, India
| | - R K Thapar
- Senior Adviser (Pediatrics & Neonatology), Command Hospital (Central Command), Lucknow, India
| |
Collapse
|
50
|
Batir Y, Bargiello TA, Dowd TL. Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy. Arch Biochem Biophys 2016; 608:8-19. [PMID: 27378082 PMCID: PMC5051353 DOI: 10.1016/j.abb.2016.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022]
Abstract
Alterations in gap junctions underlie the etiologies of syndromic deafness (KID) and Charcot-Marie Tooth disease (CMTX). Functional gap junctions are composed of connexin molecules with N-termini containing a flexible turn around G12, inserting the N-termini into the channel pore allowing voltage gating. The loss of this turn correlates with loss of Connexin 32 (Cx32) function by impaired trafficking to the cell membrane. Using (1)H NMR we show the N-terminus of a syndromic deafness mutation Cx26G12R, producing "leaky channels", contains a turn around G12 which is less structured and more flexible than wild-type. In contrast, the N-terminal structure of the same mutation in Cx32 chimera, Cx32*43E1G12R shows a larger constricted turn and no membrane current expression but forms membrane inserted hemichannels. Their function was rescued by formation of heteromeric channels with wild type subunits. We suggest the inflexible Cx32G12R N-terminus blocks ion conduction in homomeric channels and this channel block is relieved by incorporation of wild type subunits. In contrast, the increased open probability of Cx26G12R hemichannels is likely due to the addition of positive charge in the channel pore changing pore electrostatics and impairing hemichannel regulation by Ca(2+). These results provide mechanistic information on aberrant channel activity observed in disease.
Collapse
Affiliation(s)
- Yuksel Batir
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Thaddeus A Bargiello
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States; Ph.D. Program in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States.
| |
Collapse
|