1
|
Thompson MJ, Mansoub Bekarkhanechi F, Ananchenko A, Nury H, Baenziger JE. A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor. Nat Commun 2024; 15:1803. [PMID: 38413583 PMCID: PMC10899235 DOI: 10.1038/s41467-024-46028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Anna Ananchenko
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Wei N, Chu Y, Liu H, Xu Q, Jiang T, Yu R. Antagonistic Mechanism of α-Conotoxin BuIA toward the Human α3β2 Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2021; 12:4535-4545. [PMID: 34738810 DOI: 10.1021/acschemneuro.1c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that are abundantly expressed in the central and peripheral nervous systems, playing an important role in mediating neurotransmitter release and inter-synaptic signaling. Dysfunctional nAChRs are associated with neurological disorders, and studying the structure and function of nAChRs is essential for development of drugs or strategies for treatment of related diseases. α-Conotoxins are selective antagonists of the nAChR and are an important class of drug leads. So far, the antagonistic mechanism of α-conotoxins toward the nAChRs is still unclear. In this study, we built an α3β2 nAChR homology model and investigated its conformational transition mechanism upon binding with a highly potent inhibitor, α-conotoxin BuIA, through μs molecular dynamic simulations and site-directed mutagenesis studies. The results suggested that the α3β2 nAChR underwent global conformational transitions and was stabilized into a closed state with three hydrophobic gates present in the transmembrane domain by BuIA. Finally, the probable antagonistic mechanism of BuIA was proposed. Overall, the closed-state model of the α3β2 nAChR bound with BuIA is not only essential for understanding the antagonistic mechanism of α-conotoxins but also particularly valuable for development of therapeutic inhibitors in future.
Collapse
Affiliation(s)
- Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yanyan Chu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Qingliang Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tao Jiang
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| |
Collapse
|
3
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
4
|
Nogueira WG, Jaiswal AK, Tiwari S, Ramos RTJ, Ghosh P, Barh D, Azevedo V, Soares SC. Computational identification of putative common genomic drug and vaccine targets in Mycoplasma genitalium. Genomics 2021; 113:2730-2743. [PMID: 34118385 DOI: 10.1016/j.ygeno.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Mycoplasma genitalium is an obligate intracellular bacterium that is responsible for several sexually transmitted infections, including non-gonococcal urethritis in men and several inflammatory reproductive tract syndromes in women. Here, we applied subtractive genomics and reverse vaccinology approaches for in silico prediction of potential vaccine and drug targets against five strains of M. genitalium. We identified 403 genes shared by all five strains, from which 104 non-host homologous proteins were selected, comprising of 44 exposed/secreted/membrane proteins and 60 cytoplasmic proteins. Based on the essentiality, functionality, and structure-based binding affinity, we finally predicted 19 (14 novel) putative vaccine and 7 (2 novel) candidate drug targets. The docking analysis showed six molecules from the ZINC database as promising drug candidates against the identified targets. Altogether, both vaccine candidates and drug targets identified here may contribute to the future development of therapeutic strategies to control the spread of M. genitalium worldwide.
Collapse
Affiliation(s)
- Wylerson G Nogueira
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil..
| | - Rommel T J Ramos
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond VA-23284, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Baradaran R, Anbarkeh FR, Delavar A, Khorasgani EM, Rahimian N, Abbasi Y, Jaberi N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J Chem Neuroanat 2021; 116:101977. [PMID: 34052301 DOI: 10.1016/j.jchemneu.2021.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
To better comprehend the relationship between left/right (L/R) differences and hippocampus functions is necessary knowledge of lateral asymmetry and regional distribution. This research was design to examine hippocampal L/R asymmetry and regional distribution profile of the alpha7 and alpha4 subtypes of nicotinic acetylcholine receptors (nAChRs) in the adult rat. 10-12-week-old twenty-four male wistar rats were randomly selected. After removing the brains, immunohistochemistry, real-time PCR, and western blot methods were applied to distinguish the presence of the receptors in the hippocampus. Outcomes stated that the mentioned receptors expression profile was spatial-dependent. As, the hippocampal dispersal of alpha7 and alpha4 subtypes in the left hippocampus (LH) was remarkably maximum compare with the right hippocampus (RH) (p = 0.001, p = 0.005 respectively). Furthermore, the alpha7 optical density (OD) was not significantly different in the diverse regions in hippocampus of adult rat (p = 0.057), while the maximum OD of the alpha4 was detected in the hippocampal dentate gyrus and CA3 regions of LH (p = 0.007, p = 0.009 respectively) and the minimum OD was in the CA1 of the RH (p = 0.019). In real time PCR evaluation, there is a significantly higher expression of alpha7 and alpha4 in LH compared to RH (p = 0.043, p = 0.049 respectively), also, for western blot (p = 0.042, p = 0.030 respectively). According to present data, the alpha7 and alpha4 nAChR subtypes expression profile demonstrated lateral asymmetry, the uniform regional dispersal for alpha7 and different regional dispersal for alpha4 in the adult rat hippocampus.
Collapse
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Fatemeh Rahimi Anbarkeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Delavar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Najmeh Jaberi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Li W, Hu X, Lu X, Liu J, Chen Z, Zhou X, Liu M, Liu S. RNA-Seq analysis revealed the molecular mechanisms of photobiomodulation effect on human fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:299-307. [PMID: 32187726 DOI: 10.1111/phpp.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The photobiomodulation (PBM) effect has been applied to various clinical therapy for a long time. However, the mechanism related to the PBM effect in terms of wavelengths has been lack of in-depth study, except that ultraviolet radiation has attracted much attention due to its strong cell-killing effect. PURPOSE To clarify the principle behind PBM and the main mechanism of improvement. METHODS To carry on this study, we created light equipment using three LED chips, which emit 390 nm ultraviolet radiation, 415 nm blue light and 660 nm red light, respectively. We choose human fibroblasts (HF) to be irradiated by three different wavelengths for PBM test. In this study, we used cell counting kit (CCK-8) test to show the cell proliferation roughly and reported on a systematic RNA sequencing (RNA-seq) analysis at transcriptional expression levels from HF, which accepted PBM of different wavelengths of light. RESULTS We found that 415 nm blue light inhibited cell proliferation and 660 nm red light stimulated cell proliferation while 390 nm ultraviolet radiation has little influence on cell proliferation. Furthermore, RNA-seq results showed that CSF1R, PPP3CC, ITGAL, ITGAM, IL2RB, and several other differentially expressed genes (DEGs) are involved in the cell proliferation. Relative DEGs values for matrix metalloproteinases (MMPs) gene family have shown a great difference in blue and red light radiation especially on MMP25, MMP9, MMP21, and MMP13. CONCLUSION Taken together, the results provide a valuable resource to describe the variation of HFs under PBM of different light at gene level.
Collapse
Affiliation(s)
- Wenqi Li
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China.,Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Tongji University School of Medicine, Stem Cell Translational Research Center, Tongji Hospital, Shanghai, China
| | - Zeqing Chen
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China.,Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaoli Zhou
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Muqing Liu
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Pandhare A, Pirayesh E, Stuebler AG, Jansen M. Triple arginines as molecular determinants for pentameric assembly of the intracellular domain of 5-HT 3A receptors. J Gen Physiol 2019; 151:1135-1145. [PMID: 31409663 PMCID: PMC6719409 DOI: 10.1085/jgp.201912421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
Serotonin type 3A receptors are homopentameric ligand-gated ion channels that are thought to assemble via interactions involving the subunits’ extracellular and transmembrane domains. Pandhare et al. reveal that channel assembly is also determined by three arginine residues in the receptor’s intracellular domain. Serotonin type 3 receptors (5-HT3Rs) are cation-conducting pentameric ligand-gated ion channels and members of the Cys-loop superfamily in eukaryotes. 5-HT3Rs are found in the peripheral and central nervous system, and they are targets for drugs used to treat anxiety, drug dependence, and schizophrenia, as well as chemotherapy-induced and postoperative nausea and emesis. Decades of research of Cys-loop receptors have identified motifs in both the extracellular and transmembrane domains that mediate pentameric assembly. Those efforts have largely ignored the most diverse domain of these channels, the intracellular domain (ICD). Here we identify molecular determinants within the ICD of serotonin type 3A (5-HT3A) subunits for pentameric assembly by first identifying the segments contributing to pentamerization using deletion constructs of, and finally by making defined amino acid substitutions within, an isolated soluble ICD. Our work provides direct experimental evidence for the contribution of three intracellular arginines, previously implicated in governing the low conductance of 5-HT3ARs, in structural features such as pentameric assembly.
Collapse
Affiliation(s)
- Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Elham Pirayesh
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Antonia G Stuebler
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
8
|
Structural basis of neurosteroid anesthetic action on GABA A receptors. Nat Commun 2018; 9:3972. [PMID: 30266951 PMCID: PMC6162318 DOI: 10.1038/s41467-018-06361-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are inhibitory pentameric ligand-gated ion channels in the brain. Many anesthetics and neurosteroids act through binding to the GABAAR transmembrane domain (TMD), but the structural basis of their actions is not well understood and no resting-state GABAAR structure has been determined. Here, we report crystal structures of apo and the neurosteroid anesthetic alphaxalone-bound desensitized chimeric α1GABAAR (ELIC-α1GABAAR). The chimera retains the functional and pharmacological properties of GABAARs, including potentiation, activation and desensitization by alphaxalone. The apo-state structure reveals an unconventional activation gate at the intracellular end of the pore. The desensitized structure illustrates molecular determinants for alphaxalone binding to an inter-subunit TMD site. These structures suggest a plausible signaling pathway from alphaxalone binding at the bottom of the TMD to the channel gate in the pore-lining TM2 through the TM1–TM2 linker. The study provides a framework to discover new GABAAR modulators with therapeutic potential. The anesthetic alphaxalone binds γ-aminobutyric acid type A receptors (GABAARs) that play an important role in regulating sensory processes. Here the authors present the structures of a α1GABAAR chimera in the resting state and in an alphaxalone-bound desensitized state, which might facilitate the development of new GABAAR modulators.
Collapse
|
9
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
10
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev Anal Chem 2017; 47:418-437. [PMID: 28340309 DOI: 10.1080/10408347.2017.1310613] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current studies related to lipid identification and determination, or lipidomics in biological samples, are one of the most important issues in modern bioanalytical chemistry. There are many articles dedicated to specific analytical strategies used in lipidomics in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to a comprehensive review of the actual analytical methodologies used in lipidomics. The aim of this article is to characterize the lipidomics methods used in modern bioanalysis according to the methodological point of view: (1) chromatography/separation methods, (2) spectroscopic methods and (3) mass spectrometry and also hyphenated methods. In the first part, we discussed thin layer chromatography (TLC), high-pressure liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). The second part includes spectroscopic techniques such as Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). The third part is a synthetic review of mass spectrometry, matrix-assisted laser desorption/ionization (MALDI), hyphenated methods, which include liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and also multidimensional techniques. Other aspects are the possibilities of the application of the described methods in lipidomics studies. Due to the fact that the exploration of new methods of lipidomics analysis and their applications in clinical and medical studies are still challenging for researchers working in life science, we hope that this review article will be very useful for readers.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Kraków Higher School of Health Promotion , Krakow , Poland
| | - Kamila Kochan
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,c Centre for Biospectroscopy and School of Chemistry , Monash University , Clayton , Victoria , Australia
| | - Justyna Walczak
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| | - Małgorzata Barańska
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,e Department of Chemical Physics, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland
| | - Wojciech Piekoszewski
- f Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland.,g School of Biomedicine , Far Eastern Federal University , Vladivostok , Russia
| | - Bogusław Buszewski
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
11
|
Pentameric quaternary structure of the intracellular domain of serotonin type 3A receptors. Sci Rep 2016; 6:23921. [PMID: 27045630 PMCID: PMC4820698 DOI: 10.1038/srep23921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
In spite of extensive efforts over decades an experimentally-derived structure of full-length eukaryotic pentameric ligand-gated ion channels (pLGICs) is still lacking. These pharmaceutically highly-relevant channels contain structurally well-conserved and characterized extracellular and transmembrane domains. The intracellular domain (ICD), however, has been orphaned in structural studies based on the consensus assumption of being largely disordered. In the present study, we demonstrate for the first time that the serotonin type 3A (5-HT3A) ICD assembles into stable pentamers in solution in the absence of the other two domains, thought to be the drivers for oligomerization. Additionally, the soluble 5-HT3A-ICD construct interacted with the protein RIC-3 (resistance to inhibitors of cholinesterase). The interaction provides evidence that the 5-HT3A-ICD is not only required but also sufficient for interaction with RIC-3. Our results suggest the ICD constitutes an oligomerization domain. This novel role significantly adds to its known contributions in receptor trafficking, targeting, and functional fine-tuning. The innate diversity of the ICDs with sizes ranging from 50 to 280 amino acids indicates new methodologies need to be developed to determine the structures of these domains. The use of soluble ICD proteins that we report in the present study constitutes a useful approach to address this gap.
Collapse
|
12
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
13
|
Snijder HJA, Hakulinen J. Membrane Protein Production in E. coli for Applications in Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:59-77. [PMID: 27165319 DOI: 10.1007/978-3-319-27216-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Producing high quality purified membrane proteins for structure-based drug design and biophysical assays compatible with typical timelines in drug discovery is a significant challenge. Escherichia coli has been an expression host of the utmost importance for soluble proteins and has applications for membrane proteins as well. However, membrane protein overexpression in E. coli may lead to toxicity and low yields of functional product. Here, we review the challenges encountered with heterologous overproduction of α-helical membrane proteins in E. coli and a range of strategies to overcome them. A detailed protocol is also provided for expression and screening of membrane proteins in E. coli using a His-specific fluorescent probe and fluorescent size-exclusion chromatography.
Collapse
Affiliation(s)
| | - Jonna Hakulinen
- Discovery Sciences, AstraZeneca R&D, SE-43183, Mölndal, Sweden
| |
Collapse
|
14
|
Kinde MN, Chen Q, Lawless MJ, Mowrey DD, Xu J, Saxena S, Xu Y, Tang P. Conformational Changes Underlying Desensitization of the Pentameric Ligand-Gated Ion Channel ELIC. Structure 2015; 23:995-1004. [PMID: 25960405 DOI: 10.1016/j.str.2015.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022]
Abstract
Structural rearrangements underlying functional transitions of pentameric ligand-gated ion channels (pLGICs) are not fully understood. Using (19)F nuclear magnetic resonance and electron spin resonance spectroscopy, we found that ELIC, a pLGIC from Erwinia chrysanthemi, expanded the extracellular end and contracted the intracellular end of its pore during transition from the resting to an apparent desensitized state. Importantly, the contraction at the intracellular end of the pore likely forms a gate to restrict ion transport in the desensitized state. This gate differs from the hydrophobic gate present in the resting state. Conformational changes of the TM2-TM3 loop were limited to the N-terminal end. The TM4 helices and the TM3-TM4 loop appeared relatively insensitive to agonist-mediated structural rearrangement. These results indicate that conformational changes accompanying functional transitions are not uniform among different ELIC regions. This work also revealed the co-existence of multiple conformations for a given state and suggested asymmetric conformational arrangements in a homomeric pLGIC.
Collapse
Affiliation(s)
- Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jiawei Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Mnatsakanyan N, Nishtala SN, Pandhare A, Fiori MC, Goyal R, Pauwels JE, Navetta AF, Ahrorov A, Jansen M. Functional Chimeras of GLIC Obtained by Adding the Intracellular Domain of Anion- and Cation-Conducting Cys-Loop Receptors. Biochemistry 2015; 54:2670-2682. [PMID: 25861708 DOI: 10.1021/acs.biochem.5b00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs), also called Cys-loop receptors in eukaryotic superfamily members, play diverse roles in neurotransmission and serve as primary targets for many therapeutic drugs. Structural studies of full-length eukaryotic pLGICs have been challenging because of glycosylation, large size, pentameric assembly, and hydrophobicity. X-ray structures of prokaryotic pLGICs, including the Gloeobacter violaceus LGIC (GLIC) and the Erwinia chrysanthemi LGIC (ELIC), and truncated eukaryotic pLGICs have significantly improved and complemented the understanding of structural details previously obtained with acetylcholine-binding protein and Torpedo nicotinic acetylcholine receptors. Prokaryotic pLGICs share their overall structural features with eukaryotic pLGICs for the ligand-binding extracellular and channel-lining transmembrane domains. The large intracellular domain (ICD) is present only in eukaryotic members and is characterized by a low level of sequence conservation and significant variability in length (50-250 amino acids), making the ICD a potential target for the modulation of specific pLGIC subunits. None of the structures includes a complete ICD. Here, we created chimeras by adding the ICD of cation-conducting (nAChR-α7) and anion-conducting (GABAρ1, Glyα1) eukaryotic homopentamer-forming pLGICs to GLIC. GLIC-ICD chimeras assemble into pentamers to form proton-gated channels, as does the parent GLIC. Additionally, the sensitivity of the chimeras toward modulation of functional maturation by chaperone protein RIC-3 is preserved as in those of the parent eukaryotic channels. For a previously described GLIC-5HT3A-ICD chimera, we now provide evidence of its successful large-scale expression and purification to homogeneity. Overall, the chimeras provide valuable tools for functional and structural studies of eukaryotic pLGIC ICDs.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Sita Nirupama Nishtala
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Raman Goyal
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonathan E Pauwels
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79430, United States
| | - Andrew F Navetta
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Medical Student Summer Research Program, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Afzal Ahrorov
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Undergraduate Science Education Program of the Howard Hughes Medical Institute, Texas Tech University, Lubbock, Texas 79430, United States
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
16
|
Side-chain conformation at the selectivity filter shapes the permeation free-energy landscape of an ion channel. Proc Natl Acad Sci U S A 2014; 111:E3196-205. [PMID: 25049389 DOI: 10.1073/pnas.1408950111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of single-channel currents recorded from the muscle nicotinic acetylcholine receptor (AChR), we have recently hypothesized that the conformation adopted by the glutamate side chains at the first turn of the pore-lining α-helices is a key determinant of the rate of ion permeation. In this paper, we set out to test these ideas within a framework of atomic detail and stereochemical rigor by conducting all-atom molecular dynamics and Brownian dynamics simulations on an extensively validated model of the open-channel muscle AChR. Our simulations provided ample support to the notion that the different rotamers of these glutamates partition into two classes that differ markedly in their ability to catalyze ion conduction, and that the conformations of the four wild-type glutamates are such that two of them "fall" in each rotamer class. Moreover, the simulations allowed us to identify the mm (χ(1) ≅ -60°; χ(2) ≅ -60°) and tp (χ(1) ≅ 180°; χ(2) ≅ +60°) rotamers as the likely conduction-catalyzing conformations of the AChR's selectivity-filter glutamates. More generally, our work shows an example of how experimental benchmarks can guide molecular simulations into providing a type of structural and mechanistic insight that seems otherwise unattainable.
Collapse
|
17
|
Abstract
Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins, especially those accomplished with the proteins in phospholipid bilayer environments where they function.
Collapse
|
18
|
Mowrey DD, Kinde MN, Xu Y, Tang P. Atomistic insights into human Cys-loop receptors by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:307-14. [PMID: 24680782 DOI: 10.1016/j.bbamem.2014.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.
Collapse
Affiliation(s)
- David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
19
|
Hamouda AK, Stewart DS, Chiara DC, Savechenkov PY, Bruzik KS, Cohen JB. Identifying barbiturate binding sites in a nicotinic acetylcholine receptor with [3H]allyl m-trifluoromethyldiazirine mephobarbital, a photoreactive barbiturate. Mol Pharmacol 2014; 85:735-46. [PMID: 24563544 DOI: 10.1124/mol.113.090985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
At concentrations that produce anesthesia, many barbituric acid derivatives act as positive allosteric modulators of inhibitory GABAA receptors (GABAARs) and inhibitors of excitatory nicotinic acetylcholine receptors (nAChRs). Recent research on [(3)H]R-mTFD-MPAB ([(3)H]R-5-allyl-1-methyl-5-(m-trifluoromethyldiazirinylphenyl)barbituric acid), a photoreactive barbiturate that is a potent and stereoselective anesthetic and GABAAR potentiator, has identified a second class of intersubunit binding sites for general anesthetics in the α1β3γ2 GABAAR transmembrane domain. We now characterize mTFD-MPAB interactions with the Torpedo (muscle-type) nAChR. For nAChRs expressed in Xenopus oocytes, S- and R-mTFD-MPAB inhibited ACh-induced currents with IC50 values of 5 and 10 µM, respectively. Racemic mTFD-MPAB enhanced the equilibrium binding of [(3)H]ACh to nAChR-rich membranes (EC50 = 9 µM) and inhibited binding of the ion channel blocker [(3)H]tenocyclidine in the nAChR desensitized and resting states with IC50 values of 2 and 170 µM, respectively. Photoaffinity labeling identified two binding sites for [(3)H]R-mTFD-MPAB in the nAChR transmembrane domain: 1) a site within the ion channel, identified by photolabeling in the nAChR desensitized state of amino acids within the M2 helices of each nAChR subunit; and 2) a site at the γ-α subunit interface, identified by photolabeling of γMet299 within the γM3 helix at similar efficiency in the resting and desensitized states. These results establish that mTFD-MPAB is a potent nAChR inhibitor that binds in the ion channel preferentially in the desensitized state and binds with lower affinity to a site at the γ-α subunit interface where etomidate analogs bind that act as positive and negative nAChR modulators.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.C.C., J.B.C.); Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (D.S.S.); and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois (P.Y.S., K.S.B.)
| | | | | | | | | | | |
Collapse
|
20
|
daCosta CJB, Baenziger JE. Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. Structure 2014; 21:1271-83. [PMID: 23931140 DOI: 10.1016/j.str.2013.06.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/31/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic communication by converting chemical signals into an electrical response. Recently solved agonist-bound and agonist-free structures greatly extend our understanding of these complex molecular machines. A key challenge to a full description of function, however, is the ability to unequivocally relate determined structures to the canonical resting, open, and desensitized states. Here, we review current understanding of pLGIC structure, with a focus on the conformational changes underlying channel gating. We compare available structural information and review the evidence supporting the assignment of each structure to a particular conformational state. We discuss multiple factors that may complicate the interpretation of crystal structures, highlighting the potential influence of lipids and detergents. We contend that further advances in the structural biology of pLGICs will require deeper insight into the nature of pLGIC-lipid interactions.
Collapse
Affiliation(s)
- Corrie J B daCosta
- Receptor Biology Laboratory, Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
22
|
Bondarenko V, Targowska-Duda KM, Jozwiak K, Tang P, Arias HR. Molecular interactions between mecamylamine enantiomers and the transmembrane domain of the human α4β2 nicotinic receptor. Biochemistry 2014; 53:908-18. [PMID: 24437521 PMCID: PMC3971955 DOI: 10.1021/bi400969x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To characterize the binding sites of mecamylamine enantiomers on the transmembrane domain (TMD) of human (h) (α4)3(β2)2 and (α4)2(β2)3 nicotinic acetylcholine receptors (AChRs), we used nuclear magnetic resonance (NMR), molecular docking, and radioligand binding approaches. The interactions of (S)-(+)- and (R)-(-)-mecamylamine with several residues, determined by high-resolution NMR, within the hα4β2-TMD indicate different modes of binding at several luminal (L) and nonluminal (NL) sites. In general, the residues sensitive to each mecamylamine enantiomer are similar at both receptor stoichiometries. However, some differences were observed. The molecular docking experiments were crucial for delineating the location and orientation of each enantiomer in its binding site. In the (α4)2(β2)3-TMD, (S)-(+)-mecamylamine interacts with the L1 (i.e., between positions -3' and -5') and L2 (i.e., between positions 16' and 20') sites, whereas the β2-intersubunit (i.e., cytoplasmic end of two β2-TMDs) and α4/β2-intersubunit (i.e., cytoplasmic end of α4-TM1 and β2-TM3) sites are shared by both enantiomers. In the (α4)3(β2)2-TMD, both enantiomers bind with different orientations to the L1' (closer to ring 2') and α4-intrasubunit (i.e., at the cytoplasmic ends of α4-TM1 and α4-TM2) sites, but only (R)-(-)-mecamylamine interacts with the L2' (i.e., closer to ring 20') and α4-TM3-intrasubunit sites. Our findings are important because they provide, for the first time, a structural understanding of the allosteric modulation elicited by mecamylamine enantiomers at each hα4β2 stoichiometry. This advancement could be beneficial for the development of novel therapies for the treatment of several neurological disorders.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | |
Collapse
|
23
|
Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Tang P. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1389-95. [PMID: 24384062 DOI: 10.1016/j.bbamem.2013.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4β2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9'. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4β2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Tommy S Tillman
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Edom Seyoum
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
24
|
Chiara DC, Gill JF, Chen Q, Tillman T, Dailey WP, Eckenhoff RG, Xu Y, Tang P, Cohen JB. Photoaffinity labeling the propofol binding site in GLIC. Biochemistry 2013; 53:135-42. [PMID: 24341978 DOI: 10.1021/bi401492k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Propofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homologue from Gloeobacter violaceus . In the structure of GLIC cocrystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane α-helices (Nury, H, et al. (2011) Nature 469, 428-431). To identify propofol binding sites in GLIC in solution, we used a recently developed photoreactive propofol analogue (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol or AziPm) that acts as an anesthetic in vivo and potentiates GABAAR in vitro. For GLIC expressed in Xenopus oocytes, propofol and AziPm inhibited current responses at pH 5.5 (EC20) with IC50 values of 20 and 50 μM, respectively. When [(3)H]AziPm (7 μM) was used to photolabel detergent-solubilized, affinity-purified GLIC at pH 4.4, protein microsequencing identified propofol-inhibitable photolabeling of three residues in the GLIC transmembrane domain: Met-205, Tyr-254, and Asn-307 in the M1, M3, and M4 transmembrane helices, respectively. Thus, for GLIC in solution, propofol and AziPm bind competitively to a site in proximity to these residues, which, in the GLIC crystal structure, are in contact with the propofol bound in the intrasubunit pocket.
Collapse
Affiliation(s)
- David C Chiara
- Department of Neurobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor. Anesthesiology 2013; 119:1087-95. [PMID: 23770602 DOI: 10.1097/aln.0b013e31829e47e3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. METHODS The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH-sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50s. RESULTS Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between α and β subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. CONCLUSION Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.
Collapse
|
26
|
Mowrey DD, Liu Q, Bondarenko V, Chen Q, Seyoum E, Xu Y, Wu J, Tang P. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane. J Biol Chem 2013; 288:35793-800. [PMID: 24194515 PMCID: PMC3861630 DOI: 10.1074/jbc.m113.508333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.
Collapse
Affiliation(s)
- David D. Mowrey
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
| | - Qiang Liu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | | | | | | | - Yan Xu
- From the Departments of Anesthesiology
- Structural Biology
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | - Jie Wu
- the Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Pei Tang
- From the Departments of Anesthesiology
- Computational and Systems Biology, and
- Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| |
Collapse
|
27
|
Akk G, Eaton M, Li P, Zheng S, Lo J, Steinbach JH. Energetic contributions to channel gating of residues in the muscle nicotinic receptor β1 subunit. PLoS One 2013; 8:e78539. [PMID: 24194945 PMCID: PMC3806828 DOI: 10.1371/journal.pone.0078539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/19/2013] [Indexed: 12/04/2022] Open
Abstract
In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Megan Eaton
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ping Li
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Steven Zheng
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joshua Lo
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joe Henry Steinbach
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
28
|
Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat Commun 2013; 4:1697. [PMID: 23591864 DOI: 10.1038/ncomms2682] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/28/2013] [Indexed: 01/28/2023] Open
Abstract
Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol.
Collapse
|
29
|
Mowrey DD, Cui T, Jia Y, Ma D, Makhov AM, Zhang P, Tang P, Xu Y. Open-channel structures of the human glycine receptor α1 full-length transmembrane domain. Structure 2013; 21:1897-904. [PMID: 23994010 DOI: 10.1016/j.str.2013.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/19/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
Abstract
Glycine receptors play a major role in mediating fast inhibitory neurotransmission in the spinal cord and brain stem, yet their high-resolution structures remain unsolved. We determined open-channel structures of the full-length transmembrane domain (TMD) of the human glycine receptor α1-subunit (hGlyR-α1) using nuclear magnetic resonance (NMR) spectroscopy and electron micrographs. hGlyR-α1 TMD spontaneously forms pentameric Cl(-)-conducting channels, with structures sharing overall topology observed in crystal structures of homologous bacterial and nematode pentameric ligand-gated ion channels (pLGICs). However, the mammalian hGlyR-α1 structures present several distinctive features, including a shorter, pore-lining TM2 helix with helical unwinding near the C-terminal end, a TM3 helical kink at A288 that partially overlaps with the homologous ivermectin-binding site in GluCl, and a highly dynamic segment between S267(15') of TM2 and A288 that likely affects allosteric modulations of channel function. Our structures provide additional templates for identifying potential drug targets in GlyRs and other mammalian pLGICs.
Collapse
Affiliation(s)
- David D Mowrey
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:398-404. [PMID: 23000369 DOI: 10.1016/j.bbamem.2012.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions.
Collapse
|