1
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
2
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
3
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
4
|
Van Liefferinge F, Krammer EM, Sengupta D, Prévost M. Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations. Chem Phys Lipids 2018; 220:66-76. [PMID: 30448398 DOI: 10.1016/j.chemphyslip.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a mitochondrial outer membrane protein whose fundamental function is to facilitate and regulate the flow of metabolites between the cytosol and the mitochondrial intermembrane space. Using coarse-grained molecular dynamics simulations, we investigated the dependence of VDAC selectivity towards small inorganic anions on two factors: the ionic strength and the lipid composition. In agreement with experimental data we found that VDAC becomes less anion selective with increasing salt concentration due to the screening of a few basic residues that point into the pore lumen. The molecular dynamics simulations provide insight into the regulation mechanism of VDAC selectivity by the composition in the lipid membrane and suggest that the ion distribution is differently modulated by POPE compared to the POPC bilayer. This occurs through the more persistent interactions of acidic residues located at both rims of the β-barrel with head groups of POPE which in turn impact the electrostatic potential and thereby the selectivity of the pore. This mechanism occurs not only in POPE single component membranes but also in a mixed POPE/POPC bilayer by an enrichment of POPE over POPC lipids on the surface of VDAC. Thus we show here that computationally-inexpensive coarse-grained simulations are able to capture, in a semi-quantitative way, essential features of VDAC anion selectivity and could pave the way toward a molecular level understanding of metabolite transport in natural membranes.
Collapse
Affiliation(s)
- F Van Liefferinge
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E-M Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - D Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - M Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
5
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
6
|
Mlayeh L, Krammer EM, Léonetti M, Prévost M, Homblé F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:786-794. [PMID: 28666835 DOI: 10.1016/j.bbabio.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/28/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place. In this study, we show that phospholipids are key regulators of Phaseolus VDAC function and, furthermore, that the salt concentration modulates this regulation. Both selectivity and voltage dependence of Phaseolus VDAC are very sensitive to a change in the lipid polar head from PC to PE. Interestingly enough, this dependence is observed only at low salt concentration. Furthermore, significant changes in VDAC functional properties also occur with the gradual methylation of the PE group pointing to the role of subtle chemical variations in the lipid head group. The dependence of PcVDAC gating upon the introduction of a small mole fraction of PE in a PC bilayer has prompted us to propose the existence of a specific interaction site for PE on the outer surface of PcVDAC. Eventually, comparative modeling and molecular dynamics simulations suggest a potential mechanism to get insight into the anion selectivity enhancement of PcVDAC observed in PE relative to PC.
Collapse
Affiliation(s)
- Lamia Mlayeh
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Marc Léonetti
- I.R.P.H.E., Aix-Marseille Université, CNRS, Technopôle de Château-Gombert, F-13384, Marseille Cedex 13, France.
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| |
Collapse
|
7
|
Briones R, Weichbrodt C, Paltrinieri L, Mey I, Villinger S, Giller K, Lange A, Zweckstetter M, Griesinger C, Becker S, Steinem C, de Groot BL. Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophys J 2016; 111:1223-1234. [PMID: 27653481 PMCID: PMC5034351 DOI: 10.1016/j.bpj.2016.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Conrad Weichbrodt
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Licia Paltrinieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Saskia Villinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Adam Lange
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Neurology, University Medical Center, University of Goettingen, Goettingen, Germany
| | - Christian Griesinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
8
|
The VDAC channel: Molecular basis for selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2498-502. [PMID: 26826035 DOI: 10.1016/j.bbamcr.2016.01.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/21/2022]
Abstract
The voltage dependent anion-selective channel, VDAC, is the major permeability pathway by which molecules and ion cross the mitochondrial outer membrane. This pathway has evolved to optimize the flow of these substances and to control this flow by a gating process that is influenced by a variety of factors including transmembrane voltage. The permeation pathway formed through the membrane by VDAC is complex. Small ion flow is primarily influenced by the charged surface of the inner walls of the channel. Channel closure changes this landscape resulting in a change from a channel that favors anions to one that favors cations. Molecular ions interact more intimately with the inner walls of the channel and are selected by their 3-dimensional structure, not merely by their size and charge. Molecular ions typically found in cells are greatly favored over those that are not. For these larger structures the channel may form a low-energy translocation path that complements the structure of the permeant. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
9
|
Krammer EM, Vu GT, Homblé F, Prévost M. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites. PLoS One 2015; 10:e0121746. [PMID: 25860993 PMCID: PMC4393092 DOI: 10.1371/journal.pone.0121746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giang Thi Vu
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (MP)
| |
Collapse
|
10
|
Tewari SG, Zhou Y, Otto BJ, Dash RK, Kwok WM, Beard DA. Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics. Front Physiol 2015; 5:513. [PMID: 25628567 PMCID: PMC4292549 DOI: 10.3389/fphys.2014.00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the main conduit for permeation of solutes (including nucleotides and metabolites) of up to 5 kDa across the mitochondrial outer membrane (MOM). Recent studies suggest that VDAC activity is regulated via post-translational modifications (PTMs). Yet the nature and effect of these modifications is not understood. Herein, single channel currents of wild-type, nitrosated, and phosphorylated VDAC are analyzed using a generalized continuous-time Markov chain Monte Carlo (MCMC) method. This developed method describes three distinct conducting states (open, half-open, and closed) of VDAC activity. Lipid bilayer experiments are also performed to record single VDAC activity under un-phosphorylated and phosphorylated conditions, and are analyzed using the developed stochastic search method. Experimental data show significant alteration in VDAC gating kinetics and conductance as a result of PTMs. The effect of PTMs on VDAC kinetics is captured in the parameters associated with the identified Markov model. Stationary distributions of the Markov model suggest that nitrosation of VDAC not only decreased its conductance but also significantly locked VDAC in a closed state. On the other hand, stationary distributions of the model associated with un-phosphorylated and phosphorylated VDAC suggest a reversal in channel conformation from relatively closed state to an open state. Model analyses of the nitrosated data suggest that faster reaction of nitric oxide with Cys-127 thiol group might be responsible for the biphasic effect of nitric oxide on basal VDAC conductance.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Yifan Zhou
- HD Biosciences Corporation Shanghai, China
| | - Bradley J Otto
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin Milwaukee, WI, USA ; Biotechnology and Bioengineering Center, Medical College of Wisconsin Milwaukee, WI, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
11
|
Weiser BP, Salari R, Eckenhoff RG, Brannigan G. Computational investigation of cholesterol binding sites on mitochondrial VDAC. J Phys Chem B 2014; 118:9852-60. [PMID: 25080204 PMCID: PMC4141696 DOI: 10.1021/jp504516a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
mitochondrial voltage-dependent anion channel (VDAC) allows
passage of ions and metabolites across the mitochondrial outer membrane.
Cholesterol binds mammalian VDAC, and we investigated the effects
of binding to human VDAC1 with atomistic molecular dynamics simulations
that totaled 1.4 μs. We docked cholesterol to specific sites
on VDAC that were previously identified with NMR, and we tested the
reliability of multiple docking results in each site with simulations.
The most favorable binding modes were used to build a VDAC model with
cholesterol occupying five unique sites, and during multiple 100 ns
simulations, cholesterol stably and reproducibly remained bound to
the protein. For comparison, VDAC was simulated in systems with identical
components but with cholesterol initially unbound. The dynamics of
loops that connect adjacent β-strands were most affected by
bound cholesterol, with the averaged root-mean-square fluctuation
(RMSF) of multiple residues altered by 20–30%. Cholesterol
binding also stabilized charged residues inside the channel and localized
the surrounding electrostatic potentials. Despite this, ion diffusion
through the channel was not significantly affected by bound cholesterol,
as evidenced by multi-ion potential of mean force measurements. Although
we observed modest effects of cholesterol on the open channel, our
model will be particularly useful in experiments that investigate
how cholesterol affects VDAC function under applied electrochemical
forces and also how other ligands and proteins interact with the channel.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology and Critical Care and ‡Department of Pharmacology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
12
|
Amodeo GF, Scorciapino MA, Messina A, De Pinto V, Ceccarelli M. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel. PLoS One 2014; 9:e103879. [PMID: 25084457 PMCID: PMC4146382 DOI: 10.1371/journal.pone.0103879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.
Collapse
Affiliation(s)
| | - Mariano Andrea Scorciapino
- Department of Physics, University of Cagliari, Cagliari, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Catania, Italy
- National Institute for Biomembranes and Biosystems, Catania, Italy
| | - Vito De Pinto
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Catania, Italy
- National Institute for Biomembranes and Biosystems, Catania, Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cagliari, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
13
|
Krammer EM, Saidani H, Prévost M, Homblé F. Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion 2014; 19 Pt B:206-13. [PMID: 24742372 DOI: 10.1016/j.mito.2014.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 12/23/2022]
Abstract
The mitochondrial voltage-dependent a nion-selective channel (VDAC) is the major permeation pathway for small ions and metabolites. Although a wealth of electrophysiological data has been obtained on different VDAC species, the physical mechanisms of their ionic selectivity are still elusive. We addressed this issue using electrophysiological experiments performed on plant VDAC. A simple macroscopic electrodiffusion model accounting for ion diffusion and for an effective fixed charge of the channel describes well its selectivity. Brownian Dynamics simulations of ion permeation performed on plant and mammalian VDACs point to the role of specific charged residues located at about the middle of the pore.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Dreyer J, Strodel P, Ippoliti E, Finnerty J, Eisenberg B, Carloni P. Ion permeation in the NanC porin from Escherichia coli: free energy calculations along pathways identified by coarse-grain simulations. J Phys Chem B 2013; 117:13534-42. [PMID: 24147565 DOI: 10.1021/jp4081838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K(+) and Cl(-) ions' permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for umbrella sampling-based free energy simulations. We find distinct tubelike pathways connecting specific binding sites for K(+) and, more pronounced, for Cl(-) ions. Both ions permeate the porin preserving almost all of their first hydration shell. The calculated free energy barriers are G(#) ≈ 4 kJ/mol and G(#) ≈ 8 kJ/mol for Cl(-) and K(+), respectively. Within the approximations associated with these values, discussed in detail in this work, we suggest that the porin is slightly selective for Cl(-) versus K(+). Our suggestion is consistent with the experimentally observed weak Cl(-) over K(+) selectivity. A rationale for the latter is suggested by a comparison with previous calculations on strongly anion selective porins.
Collapse
Affiliation(s)
- Jens Dreyer
- Computational Biophysics, German Research School for Simulation Sciences , D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|