1
|
Wen Y, Lin M, Liu J, Tang J, Qi X. Low-intensity ultrasound activates transmembrane chloride flow through CFTR. Biochem Biophys Rep 2024; 37:101604. [PMID: 38188360 PMCID: PMC10767314 DOI: 10.1016/j.bbrep.2023.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Ultrasound has been demonstrated to activate mechanosensitive channels, which is considered the main mechanism of ultrasound neuromodulation. Currently, all channels that have been shown to be sensitive to ultrasound are cation channels. In addition to cation channels, anion channels also play indispensable roles in neural function. However, there have been no research on ultrasound regulation of anion channels until now. If anion channels can be activated by ultrasound as well, they will inevitably lead to more versatility in ultrasound neuromodulation. Cystic fibrosis transmembrane transduction regulator (CFTR) has been demonstrated to be a mechanically sensitive channel, mediating anionic transmembrane flow. To identify that CFTR is sensitive to ultrasound, CFTR was exogenously expressed in HEK293T cells and was stimulated by low intensity ultrasound. Outward currents in CFTR-expressed HEK293T cells were observed by using whole-cell patch clamp when ultrasound (0.8 MHz, 0.20 MPa) was delivered to these cells. These currents were abolished when the CFTR inhibitor (GlyH101) was applied to the solution or chloride ions was cleared from the solution. Meanwhile, the amplitude of these currents increased when the CFTR agonist (Forskolin) was applied. These results suggest that ultrasound stimuli can activate the CFTR to mediate transmembrane flowing of chloride ions at the single cell level. These findings may expand the application of ultrasound in the neuromodulation field.
Collapse
Affiliation(s)
- Yinchuan Wen
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Manjia Lin
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jing Liu
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaofei Qi
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Restoring airway epithelial homeostasis in Cystic Fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S27-S31. [PMID: 36216743 DOI: 10.1016/j.jcf.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF), the most common life-threatening genetic disorder in Caucasians, is caused by recessive mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene encoding a chloride ion channel. Aberrant function of CFTR involves mucus- and sweat-producing epithelia affecting multiple organs, including airways and lungs. This condition facilitates the colonization of fungi, bacteria, or viruses. Recurrent antibiotic administration is commonly used to treat pathogen infections leading to the insurgence of resistant bacteria and to a chronic inflammatory state that jeopardizes airway epithelium repair. The phenotype of patients carrying CFTR mutations does not always present a strict correlation with their genotype, suggesting that the disease may occur because of multiple additive effects. Among them, the frequent microbiota dysbiosis observed in patients affected by CF, might be one cause of the discrepancy observed in their genotype-phenotype correlation. Interestingly, the abnormal polarity of the CF airway epithelium has been observed also under non-infectious and non-inflammatory conditions, suggesting that CFTR dysfunction "per se" perturbs epithelial homeostasis. New pathogen- or host-directed strategies are thus needed to counteract bacterial infections and restore epithelial homeostasis in individuals with CF. In this review, we summarized alternative cutting-edge approaches to high-efficiency modulator therapy that might be promising for these patients.
Collapse
|
3
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
4
|
Simonin JL, Luscher A, Losa D, Badaoui M, van Delden C, Köhler T, Chanson M. Surface Hydration Protects Cystic Fibrosis Airways from Infection by Restoring Junctional Networks. Cells 2022; 11:cells11091587. [PMID: 35563895 PMCID: PMC9105190 DOI: 10.3390/cells11091587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Defective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator (CFTR) gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and CFTR knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline. CFTR-KD epithelia exhibited strong ASL volume reduction, enhanced susceptibility to infection, and reduced junctional integrity. Interestingly, the presence of an apical physiological saline alleviated disruption of the airway epithelial barrier by stimulating essential junctional protein expression. Thus, rehydrated CFTR-KD cells were protected from infection despite normally intense bacterial growth. This study indicates that an epithelial integrity gatekeeper is modulated by the presence of an apical liquid volume, irrespective of the liquid's composition and of expression of a functional CFTR.
Collapse
Affiliation(s)
- Juliette L. Simonin
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Alexandre Luscher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
| | - Davide Losa
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Mehdi Badaoui
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
- Department of Medicine Specialties, Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.v.D.); (T.K.)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (J.L.S.); (D.L.); (M.B.)
- Correspondence: ; Tel./Fax: +41-22-37-95-206
| |
Collapse
|
5
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
|
7
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Shear force sensing of epithelial Na + channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of αENaC. Proc Natl Acad Sci U S A 2019; 117:717-726. [PMID: 31871197 PMCID: PMC6955349 DOI: 10.1073/pnas.1911243117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ability to sense mechanical forces is essential for all living organisms. Extracellular tethers have been proposed to mediate mechanical activation of channels belonging to the epithelial Na+ channel (ENaC)/degenerin protein family. The nature and architecture of the tethers that link the channel protein with the extracellular matrix are unknown. Our study provides experimental evidence that glycosylated asparagines and their N-glycans are part of tethers for mechanical activation of ENaC by shear force. The identified asparagines are also important for arterial blood pressure regulation in vivo. These findings provide insights into how mechanical forces are sensed by mechanosensitive ENaC channels to regulate blood pressure. Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, β-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC’s ability to mediate SF responsiveness relies on the “force-from-filament” principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.
Collapse
|
9
|
Wang M, Yang Y, Han L, Xu F, Li F. Cell mechanical microenvironment for cell volume regulation. J Cell Physiol 2019; 235:4070-4081. [PMID: 31637722 DOI: 10.1002/jcp.29341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth-division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yaowei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Lichun Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Anesthesia, Xi'an Daxing Hospital, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Hadi A, Rastgoo A, Bolhassani A, Haghighipour N. Effects of stretching on molecular transfer from cell membrane by forming pores. SOFT MATERIALS 2019; 17:391-399. [DOI: 10.1080/1539445x.2019.1610974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/21/2019] [Indexed: 10/06/2024]
Affiliation(s)
- Amin Hadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Abbas Rastgoo
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
11
|
Shear force modulates the activity of acid-sensing ion channels at low pH or in the presence of non-proton ligands. Sci Rep 2019; 9:6781. [PMID: 31043630 PMCID: PMC6494901 DOI: 10.1038/s41598-019-43097-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Acid-sensing ion channels (ASICs) belong to the degenerin/epithelial sodium channel protein family that form mechanosensitive ion channels. Evidence as to whether or not ASICs activity is directly modulated by mechanical force is lacking. Human ASICs (hASIC1V3, hASIC2a and hASIC3a) were heterologously expressed as homomeric channels in Xenopus oocytes and two-electrode voltage-clamp recordings were performed. hASIC3a was expressed in HEK-293 cells and currents measured by whole-cell patch-clamp recordings. ASIC currents in response to shear force (SF) were measured at pH 7.4, acidic pH, or in the presence of non-proton ligands at pH 7.4. SF was applied via a fluid stream generated through a pressurized perfusion system. No effect was observed at pH 7.4. Increased transient currents for each homomeric channel were observed when elevated SF was applied in conjunction with acidic pH (6.0-4.0). The sustained current was not (hASIC2a) or only slightly increased (hASIC1V3 and hASIC3a). SF-induced effects were not seen in water injected oocytes and were blocked by amiloride. Non-proton ligands activated a persistent current in hASIC1V3 and cASIC1 (MitTx) and hASIC3a (GMQ) at pH 7.4. Here SF caused a further current increase. Results suggest that ASICs do have an intrinsic ability to respond to mechanical force, supporting their role as mechanosensors in certain local environments.
Collapse
|
12
|
Vitzthum C, Stein L, Brunner N, Knittel R, Fallier-Becker P, Amasheh S. Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins. FASEB J 2019; 33:5312-5319. [PMID: 30645152 DOI: 10.1096/fj.201801451rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Claudins (cldns) represent the largest family of transmembrane tight junction (TJ) proteins, determining organ-specific epithelial barrier properties. Because methods for the analysis of multiple cldn interaction are limited, we have established the heterologous Xenopus laevis oocyte expression system for TJ protein assembly and interaction analysis. Oocytes were injected with cRNA encoding human cldn-1, -2, or -3 or with a combination of these and were incubated in pairs for interaction analysis. Immunoblotting and immunohistochemistry were performed, and membrane contact areas were analyzed morphometrically and by freeze fracture electron microscopy. Cldns were specifically detected in membranes of expressing oocytes, and coincubation of oocytes resulted in adhesive contact areas that increased with incubation time. Adjacent membrane areas revealed specific cldn signals, including "kissing-point"-like structures representing homophilic trans-interactions of cldns. Contact areas of oocytes expressing a combination markedly exceeded those expressing single cldns, indicating effects on adhesion. Ultrastructural analysis revealed a self-assembly of TJ strands and a cldn-specific strand morphology.-Vitzthum, C., Stein, L., Brunner, N., Knittel, R., Fallier-Becker, P., Amasheh, S. Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins.
Collapse
Affiliation(s)
- Constanze Vitzthum
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Ria Knittel
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| |
Collapse
|
13
|
Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EES, Houwen RHJ, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HGM, de Winter-de Groot KM, Clevers H, van der Ent CK, Beekman JM. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 2017; 8:344ra84. [PMID: 27334259 DOI: 10.1126/scitranslmed.aad8278] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
Abstract
Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Annelotte Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Inez Bronsveld
- Department of Pulmonology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Pulmonology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Edward E S Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Roderick H J Houwen
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Frank P Vleggaar
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Christof J Majoor
- Department of Respiratory Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Harry G M Heijerman
- Department of Pulmonology and Cystic Fibrosis, Haga Teaching Hospital, 2545 CH The Hague, Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.
| |
Collapse
|
14
|
Mießler KS, Vitzthum C, Markov AG, Amasheh S. Basolateral pressure challenges mammary epithelial cell monolayer integrity, in vitro. Cytotechnology 2017; 70:567-576. [PMID: 28852895 DOI: 10.1007/s10616-017-0130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mammary gland epithelium is physiologically exposed to variations of hydrostatic pressure due to accumulation of milk and removal by suckling and mechanical milking. Integrity of the mammary gland epithelium primarily relies on the tight junction. To analyze pressure-induced effects on the tight junction, we established a modified Ussing chamber and tested the hypothesis if hydrostatic pressure on the basal side of the epithelium is able to affect barrier properties in a mammary epithelial cell model, in vitro. Therefore, a conventional Ussing chamber was modified by an additional tube system to apply hydrostatic pressure. Monolayers of the mammary epithelial cell line HC11 were mounted in the modified Ussing chambers and incubated with increasing basal hydrostatic pressure. Transepithelial resistance and short circuit current were recorded and compared to controls. Hydrostatic pressure was stably applied and incubation steps of 30 min were technically feasible, leading to a decrease of transepithelial resistance and an increase of short circuit current in all monolayers. In a series of experiments simulating the physiological exposure time by short intervals of 5 min, these electrophysiological findings were also observed, and monolayer integrity was not significantly perturbed as analyzed by fluorescence immunohistochemistry selectively staining tight junction proteins. Moreover, electrophysiology demonstrated reversibility of effects. In conclusion, the modified Ussing chamber is an adequate method to analyze the effects of hydrostatic pressure on epithelial cell monolayers, in vitro. Both, the reduction of transepithelial resistance and the increase of short circuit current may be interpreted as protective reactions.
Collapse
Affiliation(s)
- Katharina S Mießler
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Constanze Vitzthum
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Alexander G Markov
- Department of General Physiology, St. Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, Russia, 199034
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
15
|
Perniss A, Preiss K, Nier M, Althaus M. Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis. Sci Rep 2017; 7:3517. [PMID: 28615646 PMCID: PMC5471219 DOI: 10.1038/s41598-017-03742-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/05/2017] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized as a signalling molecule which affects the activity of ion channels and transporters in epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial anion channel and a key regulator of electrolyte and fluid homeostasis. In this study, we investigated the regulation of CFTR by H2S. Human CFTR was heterologously expressed in Xenopus oocytes and its activity was electrophysiologically measured by microelectrode recordings. The H2S-forming sulphur salt Na2S as well as the slow-releasing H2S-liberating compound GYY4137 increased transmembrane currents of CFTR-expressing oocytes. Na2S had no effect on native, non-injected oocytes. The effect of Na2S was blocked by the CFTR inhibitor CFTR_inh172, the adenylyl cyclase inhibitor MDL 12330A, and the protein kinase A antagonist cAMPS-Rp. Na2S potentiated CFTR stimulation by forskolin, but not that by IBMX. Na2S enhanced CFTR stimulation by membrane-permeable 8Br-cAMP under inhibition of adenylyl cyclase-mediated cAMP production by MDL 12330A. These data indicate that H2S activates CFTR in Xenopus oocytes by inhibiting phosphodiesterase activity and subsequent stimulation of CFTR by cAMP-dependent protein kinase A. In epithelia, an increased CFTR activity may correspond to a pro-secretory response to H2S which may be endogenously produced by the epithelium or H2S-generating microflora.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany.,Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Kathrin Preiss
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany
| | - Marcel Nier
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany
| | - Mike Althaus
- Institute for Animal Physiology, Justus-Liebig-University, Giessen, Germany. .,School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl - channels in apoptosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:599-610. [PMID: 27270446 DOI: 10.1007/s00249-016-1140-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022]
Abstract
A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K+, Cl-, and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl- channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl- currents and AVD, but it remains unclear whether these anoctamins operate as Cl- channels or as regulators of other apoptotic Cl- channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|