1
|
Shiryaev VA, Radchenko EV, Palyulin VA, Zefirov NS, Bormotov NI, Serova OA, Shishkina LN, Baimuratov MR, Bormasheva KM, Gruzd YA, Ivleva EA, Leonova MV, Lukashenko AV, Osipov DV, Osyanin VA, Reznikov AN, Shadrikova VA, Sibiryakova AE, Tkachenko IM, Klimochkin YN. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. Eur J Med Chem 2018; 158:214-235. [PMID: 30218908 DOI: 10.1016/j.ejmech.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
The hepatitis C caused by the hepatitis C virus (HCV) is an acute and/or chronic liver disease ranging in severity from a mild brief ailment to a serious lifelong illness that affects up to 3% of the world population and imposes significant and increasing social, economic, and humanistic burden. Over the past decade, its treatment was revolutionized by the development and introduction into clinical practice of the direct acting antiviral (DAA) agents targeting the non-structural viral proteins NS3/4A, NS5A, and NS5B. However, the current treatment options still have important limitations, thus, the development of new classes of DAAs acting on different viral targets and having better pharmacological profile is highly desirable. The hepatitis C virus p7 viroporin is a relatively small hydrophobic oligomeric viral ion channel that plays a critical role during virus assembly and maturation, making it an attractive and validated target for the development of the cage compound-based inhibitors. Using the homology modeling, molecular dynamics, and molecular docking techniques, we have built a representative set of models of the hepatitis C virus p7 ion channels (Gt1a, Gt1b, Gt1b_L20F, Gt2a, and Gt2b), analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them. For one promising compound, the binding to these targets was additionally confirmed and the binding modes and probable mechanisms of action were clarified by the molecular dynamics simulations. A number of compounds were synthesized, and the tests of their antiviral activity (using the BVDV model) and cytotoxicity demonstrate their potential therapeutic usefulness and encourage further more detailed studies. The proposed approach is also suitable for the design of broad-spectrum ligands interacting with other multiple labile targets including various viroporins.
Collapse
Affiliation(s)
- Vadim A Shiryaev
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia.
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay S Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Olga A Serova
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Marat R Baimuratov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Kseniya M Bormasheva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yulia A Gruzd
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Elena A Ivleva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Marina V Leonova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anton V Lukashenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Dmitry V Osipov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vitaliy A Osyanin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Alexander N Reznikov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vera A Shadrikova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anastasia E Sibiryakova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Ilya M Tkachenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| |
Collapse
|
2
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
3
|
Abstract
The 97 amino acid bitopic membrane protein M2 of influenza A forms a tetrameric bundle in which two of the monomers are covalently linked via a cysteine bridge. In its tetrameric assembly the protein conducts protons across the viral envelope and within intracellular compartments during the infectivity cycle of the virus. A key residue in the translocation of the protons is His-37 which forms a planar tetrad in the configuration of the bundle accepting and translocating the incoming protons from the N terminal side, exterior of the virus, to the C terminal side, inside the virus. With experimentally available data from NMR spectroscopy of the transmembrane domains of the tetrameric M2 bundle classical MD simulations are conducted with the protein bundle in different protonation stages in respect to His-37. A full correlation analysis (FCA) of the data sets with the His-37 tetrad either in a fully four times unprotonated or protonated state, assumed to mimic high and low pH in vivo, respectively, in both cases reveal asymmetric backbone dynamics. His-37 side chain rotation dynamics is increased at full protonation of the tetrad compared to the dynamics in the fully unprotonated state. The data suggest that proton translocation can be achieved by decoupled side chain or backbone dynamics. Graphical abstract Visualization of the tetrameric bundle of the transmembrane domains of M2 of influenza A after 200 ns of MD simulations (upper left). The four histidine residues 37 are either not protonated as in M20 or fully protonated is in M24+. The asymmetric dynamics of the backbones are shown after a full correlation analysis (FCA) in blue (lower left). The rotational dynamics of the χ2 dihedral angles of the histidines in M20 (upper right) are less than those in M24+ (lower right).
Collapse
Affiliation(s)
- Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan.
| |
Collapse
|
4
|
Mahato DR, Fischer WB. Weak Selectivity Predicted for Modeled Bundles of Viral Channel-Forming Protein E5 of Human Papillomavirus-16. J Phys Chem B 2016; 120:13076-13085. [PMID: 27976908 DOI: 10.1021/acs.jpcb.6b10050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein E5 is a polytopic 83 amino acid membrane protein with three transmembrane domains (TMDs), encoded by high-risk human papillomavirus-16 (HPV-16). HPV-16 is found to be the causative agent for cervical cancer. Protein E5, among other proteins (e.g., E6, E7), is expressed at an "early" (E) stage when the cell turns malignant. It has been experimentally found that E5 forms hexameric assemblies, which show the characteristics of the class of so-called channel-forming proteins by rendering lipid membranes permeable to ions and small molecules. Protein E5 is used to achieve structural models of the protein in assembled bundles using a force field-based docking approach. Extended molecular dynamics simulations of selected bundles in fully hydrated lipid bilayers suggest the second TMD to be pore-lining, allowing for water columns to exist within the lumen of the pore. Full correlation analysis indicates asymmetric dynamics within the monomers of the bundle. Potential of mean force calculations of a snapshot structure of the putative open pore of the protein bundle propose low selectivity.
Collapse
Affiliation(s)
- Dhani Ram Mahato
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University , Taipei 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University , Taipei 112, Taiwan
| |
Collapse
|