1
|
Moritake K, Tsuchida T, Koga R, Hasegawa K, Kuwashima W, Kataoka H, Goto S, Terada H. Equilibrium of monomers, dimers, and polymeric aggregates in the α-aryl-propionic acid-type analgesics naproxen, ketoprofen, and ibuprofen: Comparative study with oxicam-type meloxicam and piroxicam. Int J Pharm 2025:125167. [PMID: 39756600 DOI: 10.1016/j.ijpharm.2025.125167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences. For α-aryl propionic acid and oxicam-type analgesics, the pH profiles and methanol contents dependence on hydrophobicity were examined using reversed-phase HPLC, the conventional flask-shaking method. UV spectroscopy and singular value decomposition (SVD) were used to determine the acid dissociation constants. The dehydration of organic solutes in aqueous solutions by methanol rearranged their dispersion states. Therefore, their fluorescent excitation spectra switched dependently on the fluorophore's concentration, suggesting that α-aryl propionic acid-type analgesics reach equilibrium in monomers, dimers, and polymeric aggregations but the oxicam-type ones cannot achieve dimerization. Their dissolution behaviors are dominated by phenomenological processes, generating a type of dissipative structure that is adaptive to the features of individual solutes. The results of this study suggest that the apparent hydrophobicity of organic solutes is reflected in the dissolved state.
Collapse
Affiliation(s)
- Kota Moritake
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tsuchida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryotaro Koga
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanji Hasegawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wataru Kuwashima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hikaru Kataoka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Ghorbani M, Dehghan G, Allahverdi A. Insight into the effect of ibuprofen on the permeability of the membrane: a molecular dynamic simulation study. J Biomol Struct Dyn 2025; 43:560-570. [PMID: 37982256 DOI: 10.1080/07391102.2023.2283151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Studying interactions between drugs and cell membranes is of great interest to designing novel drugs, optimizing drug delivery, and discerning drug mechanism action. In this study, we investigated the physical properties of the bilayer membrane model of POPC upon interaction with ibuprofen (IBU) using molecular dynamics simulations. The area per lipid (APL) was calculated to describe the effect of ibuprofen on the packing properties of the lipid bilayer. The APL was 0.58 nm2 and 0.63 nm2 for the membrane in low and high IBU respectively, and 0.57 nm2 for the membrane without IBU. Our finding showed that the mean square deviation (MSD) increased with increased ibuprofen content. In addition, the order parameter for the hydrocarbon chain of lipids increased with increased ibuprofen content. There was an increment in the transfer free energy after the head group region while it was maximum in the hydrophobic core for hydrogen peroxide (H2O2) (∼6.2 kcal.mol-1) and H2O (∼3.4 kcal.mol-1) which then decreased to respective values of (∼4.6 kcal.mol-1), and (∼2.3 kcal.mol-1) at the center of the bilayer in the presence of IBU. It seems that in the presence of ibuprofen, the free energy profile of the permeability of water and H2O2 significantly decreased. These findings show that ibuprofen significantly influences the physical properties of the bilayer by decreasing the packing and intermolecular interaction in the hydrocarbon chain region and increasing the water permeability of the bilayer. These results may provide insights into the local cytotoxic side effects of ibuprofen and its underlying molecular mechanisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
4
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
5
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
6
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
7
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Xiong A, Xiong R, Luo F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon 2024; 10:e24471. [PMID: 38298665 PMCID: PMC10827772 DOI: 10.1016/j.heliyon.2024.e24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases and is characterized by cartilage degeneration, synovial inflammation, joint stiffness and even loss of motor function. In the clinical treatment of arthritis, conventional analgesic and anti-inflammatory drugs have great side effects. We have evaluated the possibility of the endogenous transcription regulator Ski as an anti-inflammatory alternative in OA through experimental studies in animal models and in vivo and in vitro. Male Sprague‒Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce symptoms identical to those of human OA. We isolated knee synovial tissue under sterile conditions and cultured primary synovial cells. In vitro, Ski inhibits the proinflammatory factors IL-1β, IL-6 and TNF-α mRNA and protein expression in lipopolysaccharide (LPS)-stimulated fibroblast-like synoviocytes (FLSs) and U-937 cells. In addition, Ski attenuates or inhibits OA-induced synovial inflammation by upregulating the protein expression of the anti-inflammatory factor IL-4 and downregulating the protein expression of downstream molecules related to the NF-κB inflammatory signaling pathway. In vivo, Ski downregulated proinflammatory factors and p-NF-κB p65 in KOA synovial tissue and alleviated pain-related behaviors in KOA rats. These experimental data show that Ski has strong anti-inflammatory activity. Ski is an endogenous factor, and if used in the clinical treatment of OA, the side effects are small. However, the anti-inflammatory mechanism of Ski must be further studied.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Renping Xiong
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
9
|
Kashnik AS, Selyutina OY, Baranov DS, Polyakov NE, Dzuba SA. Localization of the ibuprofen molecule in model lipid membranes revealed by spin-label-enhanced NMR relaxation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184215. [PMID: 37633627 DOI: 10.1016/j.bbamem.2023.184215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have antipyretic, anti-inflammatory and analgesic effects, and can be used in the treatment of various diseases. These drugs have also a number of side effects, which may be related to their interaction with lipid membranes. In this study, we use the spin-labeled NSAID ibuprofen (ibuprofen-SL) as a relaxation enhancer to study its interaction with model lipid membranes employing liquid-state 1H NMR at 500 MHz. The high magnetic moment of unpaired electron in the spin label made it possible to reduce the concentration of the studied drug in the membrane to tenths of a mole percent. As model membranes, unilamellar POPC liposomes and bicelles consisting of a 2:1 mixture of DHPC:DMPC or DHPC:POPC lipids were used. An increase in the rate of proton spin-lattice relaxation, T1-1, selectively detected for protons at different positions in the lipid molecule, showed that ibuprofen-SL is localized in the hydrophobic part of the lipid bilayer. As the concentration of ibuprofen-SL increases to 0.5 mol%, the distribution of positions of ibuprofen-SL across the bilayer becomes wider. In the presence of 20 mol% of cholesterol, ibuprofen-SL is displaced from the core of the membrane to a region closer to the head group of the bilayer. This displacement was also confirmed by the NMR NOESY experiment conducted with unlabeled ibuprofen. For bilayers containing unsaturated POPC lipids, the distribution of ibuprofen positions across the bilayer becomes narrower compared to the presence of saturated DMPC lipids.
Collapse
Affiliation(s)
- Anna S Kashnik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
10
|
Sahu S, Srinivasan H, Jadhav SE, Sharma VK, Debnath A. Aspirin-Induced Ordering and Faster Dynamics of a Cationic Bilayer for Drug Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16432-16443. [PMID: 37948158 DOI: 10.1021/acs.langmuir.3c02241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The lipid dynamics and phase play decisive roles in drug encapsulation and delivery to the intracellular target. Thus, understanding the dynamic and structural alterations of membranes induced by drugs is essential for targeted delivery. To this end, united-atom molecular dynamics simulations of a model bilayer, dioctadecyldimethylammonium bromide (DODAB), are performed in the absence and presence of the usual nonsteroidal anti-inflammatory drug (NSAID), aspirin, at 298, 310, and 345 K. At 298 and 310 K, the bilayers are in the interdigitated two-dimensional square phases, which become rugged in the presence of aspirin, as evident from height fluctuations. At 345 K, the bilayer is in the fluid phase in both the absence and presence of aspirin. Aspirin is preferentially located near the oppositely charged headgroup and creates void space, which leads to an increase in the interdigitation and order parameters. Although the center of mass of lipids experiences structural arrest, they reach the diffusive regime faster and have higher lateral diffusion constants in the presence of aspirin. Results are found to be consistent with recent quasi-elastic neutron scattering studies that reveal that aspirin acts as a plasticizer and enhances lateral diffusion of lipids in both ordered and fluid phases. Different relaxation time scales of the bonds along the alkyl tails of DODAB due to the multitude of lipid motions become faster upon the addition of aspirin. Our results show that aspirin insertion is most favorable at physiological temperature. Thus, the ordered, more stable, and faster DODAB bilayer can be a potential drug carrier for the protected encapsulation of aspirin, followed by targeted and controlled drug release with antibacterial activity in the future.
Collapse
Affiliation(s)
- Samapika Sahu
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sankalp E Jadhav
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| |
Collapse
|
11
|
Ghorbani M, Dehghan G, Allahverdi A. Concentration-dependent mechanism of the binding behavior of ibuprofen to the cell membrane: A molecular dynamic simulation study. J Mol Graph Model 2023; 124:108581. [PMID: 37536233 DOI: 10.1016/j.jmgm.2023.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Ibuprofen is a commonly used drug for treating headaches, pain, and fever. The lipid bilayer is the primary and most important interface for drugs to interact with biological systems. However, the molecular interactions between ibuprofen and the cell membrane are not well understood. Our findings suggest that the interactions between ibuprofen and the bilayer involve multiple steps and depend on the concentration of the drug. At low concentrations of ibuprofen, it can bind to the surface of the lipid bilayer. The electrostatic and vdW energies of IBU-lipid at 0 ns of the simulation were -22.5 ± 3.2 and -5.9 ± 1.2 kj.mol-1 Fig. 2. In the following, the vdW energy of the IBU-lipid was increased by around -134.6 ± 3.7 kj.mol-1 whereas the electrostatic energy of the IBU-lipid was significantly decreased. This binding is facilitated by electrostatic and vdW interactions between ibuprofen and the head group of lipids. In the second step, ibuprofen is inserted into the lipid bilayer and positioned at the interface between the bilayer and the aqueous phase. In high concentrations of ibuprofen, it moved to the central region of the lipid bilayer. At this concentration, the physical and structural properties of the cell membrane change significantly. Results from the radial distribution function analysis indicate that at low concentrations, ibuprofen molecules are situated close to the head groups of phosphate groups. However, at high concentrations of ibuprofen, these molecules move to the inner side of the lipid bilayer. In addition, our findings indicate that at low concentrations of ibuprofen, these molecules did not significantly alter the physical properties of the cell membrane. In contrast, at high concentrations of ibuprofen, the physical parameters of the hydrocarbon tails, such as thickness, fluidity, and order, changed dramatically. APL parameter for POPC membrane increased slightly to 0.60 and 0.63 nm2 in the presence of low and high concentrations of ibuprofen molecules. The three-step interaction between ibuprofen and the lipid bilayer involves several events, such as the movement of ibuprofen molecules towards the central region of the lipid bilayer and the deformation and alteration of the structural and stability properties of the cell membrane. These effects are observed only at high concentrations of ibuprofen. It appears that the side effects of ibuprofen overdose are related to changes in the properties of the cell membrane and, subsequently, the function of membrane-anchored target proteins.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
12
|
Mitra S, Sharma VK, Ghosh SK. Effects of ionic liquids on biomembranes: A review on recent biophysical studies. Chem Phys Lipids 2023; 256:105336. [PMID: 37586678 DOI: 10.1016/j.chemphyslip.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
13
|
Baranov DS, Kashnik AS, Atnyukova AN, Dzuba SA. Spin-Labeled Diclofenac: Synthesis and Interaction with Lipid Membranes. Molecules 2023; 28:5991. [PMID: 37630243 PMCID: PMC10458756 DOI: 10.3390/molecules28165991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.
Collapse
Affiliation(s)
- Denis S. Baranov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | - Anna S. Kashnik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | | | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| |
Collapse
|
14
|
Interactions between DMPC Model Membranes, the Drug Naproxen, and the Saponin β-Aescin. Pharmaceutics 2023; 15:pharmaceutics15020379. [PMID: 36839701 PMCID: PMC9960855 DOI: 10.3390/pharmaceutics15020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
In this study, the interplay among the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane, the nonsteroidal anti-inflammatory drug naproxen, and the saponin β-aescin are investigated. The naproxen amount was fixed to 10 mol%, and the saponin amount varies from 0.0 to 1.0 mol%. Both substances are common ingredients in pharmaceutics; therefore, it is important to obtain deeper knowledge of their impact on lipid membranes. The size and properties of the DMPC model membrane upon naproxen and aescin addition were characterized with differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS, WAXS), and photon correlation spectroscopy (PCS) in a temperature-dependent study. The interaction of all substances was dependent on the lipid phase state, which itself depends on the lipid's main phase transition temperature Tm. The incorporation of naproxen and aescin distorted the lipid membrane structure and lowers Tm. Below Tm, the DMPC-naproxen-aescin mixtures showed a vesicle structure, and the insertion of naproxen and aescin influenced neither the lipid chain-chain correlation distance nor the membrane thickness. Above Tm, the insertion of both molecules instead induced the formation of correlated bilayers and a decrease in the chain-chain correlation distance. The presented data clearly confirm the interaction of naproxen and aescin with DMPC model membranes. Moreover, the incorporation of both additives into the model membranes is evidenced.
Collapse
|
15
|
Lichtenberger LM. Development of the PC-NSAID technology: From contact angle to Vazalore®. Drug Discov Today 2023; 28:103411. [PMID: 36270473 DOI: 10.1016/j.drudis.2022.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
We describe strategies in drug development to reduce the gastrointestinal (GI) toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). We then provide an overview of the experiments that led to the development of PC-NSAIDs, a novel family of NSAIDs associated with phosphatidylcholine (PC) that have reduced GI toxicity and full therapeutic activity. Furthermore, we describe the evidence showing: that the stomach possesses hydrophobic properties that are attributable to phospholipids lining the mucus gel layer; and that NSAIDs chemically associate with intrinsic PC, thereby attenuating the tissue's hydrophobic properties. Further, pre-associating NSAIDs with PC reduces the GI toxicity of these drugs, both in rodent ulcer models and in human subjects, without affecting the drugs' therapeutic activity. Finally, we discuss the commercialization and launch of Aspirin-PC, an over-the-counter (OTC) drug with the brand name Vazalore®.
Collapse
Affiliation(s)
- Lenard M Lichtenberger
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Sharma VK, Gupta J, Mamontov E. Lateral diffusion of lipids in the DMPG membrane across the anomalous melting regime: effects of NaCl. SOFT MATTER 2022; 19:57-68. [PMID: 36458871 DOI: 10.1039/d2sm01425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The anionic dimyristoyl phosphatidylglycerol (DMPG) membrane in solvents with a low ionic strength is known to exhibit an unusually wide melting regime between the gel and fluid phase characterized by various anomalous macroscopic characteristics, such as low turbidity and high electrical conductivity and viscosity. A recent neutron spin echo study [Kelley, E. G. et al., Struct. Dyn., 7 (2020) 054704] revealed that during the extended melting phase transition the DMPG membrane becomes softer and exhibits faster collective bending fluctuation compared to the higher temperature fluid phase. In contrast, in the present work, using incoherent quasielastic neutron scattering through the anomalous phase transition regime we find that single-particle lateral and internal lipid motions in the DMPG membrane show regular temperature dependence, with no enhanced dynamics evident in the anomalous melting regime. Further, we find that incorporation of NaCl in DMPG suppresses the anomalous extended melting regime, concurrently enhancing the single-particle lipid dynamics, both the lateral diffusivity and (to a lesser extent) the internal lipid motion. This seems rather counterintuitive and in variance with the dynamic suppression effect exerted by a salt on a zwitterionic membrane. However, since incorporation of a salt in anionic DMPG leads to enhanced cooperativity, the disrupted cooperativity in the salt-free DMPG is associated with the baseline lipid dynamics that is suppressed to begin with, whereas addition of salt partially restores the cooperativity, thus enhancing lipid dynamics compared to the salt-free baseline DMPG membrane state. These results provide new insights into the ion-membrane interaction and divulge a correlation between microscopic dynamics and the structure of the lipid bilayer.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
17
|
Kashnik AS, Baranov DS, Dzuba SA. Ibuprofen in a Lipid Bilayer: Nanoscale Spatial Arrangement. MEMBRANES 2022; 12:1077. [PMID: 36363632 PMCID: PMC9693523 DOI: 10.3390/membranes12111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic effects. Understanding the molecular mechanisms of drug interaction with cell membranes is important to improving drug delivery, uptake by cells, possible side effects, etc. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) provides information on the nanoscale spatial arrangement of spin-labeled molecules. Here, DEER was applied to study (mono-)spin-labeled ibuprofen (ibuprofen-SL) in a bilayer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC). The results obtained show that the ibuprofen-SL molecules are located within a plane in each bilayer leaflet. At their low molar concentration in the bilayer χ, the found surface concentration of ibuprofen-SL is two times higher than χ, which can be explained by alternative assembling in the two leaflets of the bilayer. When χ > 2 mol%, these assemblies merge. The findings shed new light on the nanoscale spatial arrangement of ibuprofen in biological membranes.
Collapse
|
18
|
Lee YS, Kim SM, Park EJ, Lee HJ. Anti-arthritic effects of Schisandra chinensis extract in monosodium iodoacetate-induced osteoarthritis rats. Inflammopharmacology 2022; 30:2261-2272. [PMID: 36059019 DOI: 10.1007/s10787-022-01060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
The present study aimed to investigate the therapeutic effects of Schisandra chinensis (SC) extract on clinical symptoms of osteoarthritis and the modulating effect on the mechanisms associated with the progression of osteoarthritis in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. Osteoarthritis-induced rats were randomized into four groups: MIA injection control (MC), MIA injection with celecoxib (PC), MIA injection with SC extract 100 mg/kg (SC100), and MIA injection with SC extract 200 mg/kg (SC200). Another healthy group received a saline injection as a negative control (NC). During the treatment, weight-bearing measurements were performed once a week for 4 weeks. Histopathological and biochemical analyses of the joints, blood, and chondrocyte tissue were performed following the completion of treatment. Compared with MC rats, SC rats demonstrated significantly alleviated pain behavior, bone erosion, and cartilage degradation. SC reduced serum levels of matrix metalloproteinases and pro-inflammatory cytokines. SC treatment also reversed the levels of biomarkers such as Collagen II and ADAMTS4 in the cartilage tissue. Moreover, SC administration inhibited the phosphorylation levels of nuclear factor kappa B (NF-κB) and NF-κB Inhibitor alpha. This study demonstrates that SC ameliorated osteoarthritis at in vivo level. Our results suggest that SC might be a potential therapeutic agent for osteoarthritis.
Collapse
Affiliation(s)
- You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sung-Min Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea. .,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea. .,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Gyeonggi-do, 21999, Republic of Korea.
| |
Collapse
|
19
|
Sharma VK, Gupta J, Srinivasan H, Bhatt H, García Sakai V, Mitra S. Curcumin Accelerates the Lateral Motion of DPPC Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9649-9659. [PMID: 35878409 DOI: 10.1021/acs.langmuir.2c01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curcumin, the main ingredient in turmeric, has attracted attention due to its potential anti-inflammatory, anticancer, wound-healing, and antioxidant properties. Though curcumin efficacy is related to its interaction with biomembranes, there are few reports on the effects of curcumin on the lateral motion of lipids, a fundamental process in the cell membrane. Employing the quasielastic neutron scattering technique, we explore the effects of curcumin on the lateral diffusion of the dipalmotylphosphatidylcholine (DPPC) membrane. Our investigation is also supported by Fourier transform infrared spectroscopy, dynamic light scattering, and calorimetry to understand the interaction between curcumin and the DPPC membrane. It is found that curcumin significantly modulates the packing arrangement and conformations of DPPC lipid, leading to enhanced membrane dynamics. In particular, we find that the presence of curcumin substantially accelerates the DPPC lateral motion in both ordered and fluid phases. The effects are more pronounced in the ordered phase where the lateral diffusion coefficient increases by 23% in comparison to 9% in the fluid phase. Our measurements provide critical insights into molecular mechanisms underlying increased lateral diffusion. In contrast, the localized internal motions of DPPC are barely altered, except for a marginal enhancement observed in the ordered phase. In essence, these findings indicate that curcumin is favorably located at the membrane interface rather than in a transbilayer configuration. Further, the unambiguous evidence that curcumin modulates the membrane dynamics at a molecular level supports a possible action mechanism in which curcumin can act as an allosteric regulator of membrane functionality.
Collapse
Affiliation(s)
- Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himal Bhatt
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
20
|
Arango-Varela SS, Luzardo-Ocampo I, Maldonado-Celis ME. Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM-induced colorectal cancer in vivo. Food Res Int 2022; 157:111244. [DOI: 10.1016/j.foodres.2022.111244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
|
21
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
22
|
Synthesis of Spin-Labeled Ibuprofen and Its Interaction with Lipid Membranes. Molecules 2022; 27:molecules27134127. [PMID: 35807376 PMCID: PMC9268589 DOI: 10.3390/molecules27134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Ibuprofen is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic activity. Electron paramagnetic resonance (EPR) spectroscopy could be applied to study its interaction with biological membranes and proteins if its spin-labeled analogs were synthesized. Here, a simple sequence of ibuprofen transformations—nitration, esterification, reduction, Sandmeyer reaction, Sonogashira cross-coupling, oxidation and saponification—was developed to attain this goal. The synthesis resulted in spin-labeled ibuprofen (ibuprofen-SL) in which the spin label TEMPOL is attached to the benzene ring. EPR spectra confirmed interaction of ibuprofen-SL with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Using 2H electron spin echo envelope modulation (ESEEM) spectroscopy, ibuprofen-SL was found to be embedded into the hydrophobic bilayer interior.
Collapse
|
23
|
Anti-Inflammatory and Analgesic Effects of Schisandra chinensis Leaf Extracts and Monosodium Iodoacetate-Induced Osteoarthritis in Rats and Acetic Acid-Induced Writhing in Mice. Nutrients 2022; 14:nu14071356. [PMID: 35405969 PMCID: PMC9003109 DOI: 10.3390/nu14071356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to determine the anti-inflammatory and antinociceptive activities of Schisandra chinensis leaf extracts (SCLE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, an acetic acid-induced mouse model of writhing, and a monosodium iodoacetate (MIA)-induced rat model of osteoarthritis (OA). In LPS-stimulated RAW264.7 cells, a 100 µg/mL dose of SCLE significantly reduced the production of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2). Acetic acid-induced writhing responses in mice that quantitatively determine pain were significantly inhibited by SCLE treatment. In addition, SCLE significantly decreased the MIA-induced elevation in OA symptoms, the expression levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases, and cartilage damage in the serum and joint tissues. Our data demonstrated that SCLE exerts anti-osteoarthritic effects by regulating inflammation and pain and can be a useful therapeutic candidate against OA.
Collapse
|
24
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
25
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
26
|
Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2065-2078. [PMID: 33529530 DOI: 10.1021/acs.langmuir.0c03037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles. Moreover, we have also shown that the dehydration effect of DMSO leads to weakening of the hydrogen bond between lipid headgroups and water molecules and results in faster solvation dynamics as demonstrated by femtosecond time-resolved fluorescence spectroscopy. It has been gleaned that the water dynamics becomes faster because bilayer rigidity decreases in the presence of DMSO, which is also supported by time-resolved rotational anisotropy measurements. The enhanced diffusivity and increased membrane fluidity in the presence of DMSO are further ratified at the single-molecule level through fluorescence correlation spectroscopy (FCS) measurements. Our results indicate that while the presence of DMSO significantly affects the 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphatidylcholine (DPPC) bilayers, it has a weak effect on 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) vesicles, which might explain the preferential interaction of DMSO with the positively charged choline group present in DMPC and DPPC vesicles. The experimental findings have also been further verified with molecular dynamics simulation studies. Moreover, it has been observed that DMSO is likely to have a differential effect on heterogeneous bilayer membranes depending on the structure and composition of their headgroups. Our results illuminate the importance of probing the lipid structure and composition of cellular membranes in determining the effects of cryoprotective agents.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
27
|
Jo HG, Lee GY, Baek CY, Song HS, Lee D. Analgesic and Anti-Inflammatory Effects of Aucklandia lappa Root Extracts on Acetic Acid-Induced Writhing in Mice and Monosodium Iodoacetate-Induced Osteoarthritis in Rats. PLANTS (BASEL, SWITZERLAND) 2020; 10:E42. [PMID: 33375366 PMCID: PMC7824447 DOI: 10.3390/plants10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) is an age-related joint disease and one of the most common degenerative bone diseases among elderly people. The currently used therapeutic strategies relying on nonsteroidal anti-inflammatory drugs (NSAIDs) and steroids for OA are often associated with gastrointestinal, cardiovascular, and kidney disorders, despite being proven effective. Aucklandia lappa is a well-known traditional medicine. The root of A. lappa root has several bioactive compounds and has been in use as a natural remedy for bone diseases and other health conditions. We evaluated the A. lappa root extracts on OA progression as a natural therapeutic agent. A. lappa substantially reduced writhing numbers in mice induced with acetic acid. Monosodium iodoacetate (MIA) was injected into the rats through their knee joints of rats to induce experimental OA, which shows similar pathological characteristics to OA in human. A. lappa substantially reduced the MIA-induced weight-bearing of hind limb and reversed the cartilage erosion in MIA rats. IL-1β, a representative inflammatory mediator in OA, was also markedly decreased by A. lappa in the serum of MIA rats. In vitro, A. lappa lowered the secretion of NO and suppressed the IL-1β, COX-2, IL-6, and iNOS production in RAW264.7 macrophages activated with LPS. Based on its analgesic and anti-inflammatory effects, A. lappa could be a potential remedial agent against OA.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Chung-Yeon Central Institute, 64, Sangmujungang-ro, Seo-gu, Gwangju 61949, Korea;
| | - Geon-Yeong Lee
- Imsil County Health and Medical Center, Imsil 55927, Korea;
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea;
| | - Ho Sueb Song
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea;
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea;
| |
Collapse
|
28
|
Qian S, Sharma VK, Clifton LA. Understanding the Structure and Dynamics of Complex Biomembrane Interactions by Neutron Scattering Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15189-15211. [PMID: 33300335 DOI: 10.1021/acs.langmuir.0c02516] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The membrane is one of the key structural materials of biology at the cellular level. Composed predominantly of a bilayer of lipids with embedded and bound proteins, it defines the boundaries of the cell and many organelles essential to life and therefore is involved in almost all biological processes. Membrane-specific interactions, such as drug binding to a membrane receptor or the interactions of an antimicrobial compound with the lipid matrix of a pathogen membrane, are of interest across the scientific disciplines. Herein we present a review, aimed at nonexperts, of the major neutron scattering techniques used in membrane studies: small-angle neutron scattering, neutron membrane diffraction, neutron reflectometry, quasielastic neutron scattering, and neutron spin echo. Neutron scattering techniques are well suited to studying biological membranes. The nondestructive nature of cold neutrons means that samples can be measured for long periods without fear of beam damage from ultraviolet, electron, or X-ray radiation, and neutron beams are highly penetrating, thus offering flexibility in samples and sample environments. Most important is the strong difference in neutron scattering lengths between the two most abundant forms of hydrogen, protium and deuterium. Changing the relative amounts of protium/deuterium in a sample allows the production of a series of neutron scattering data sets, enabling the observation of differing components within complex membrane architectures. This approach can be as simple as using the naturally occurring neutron contrast between different biomolecules to study components in a complex by changing the solution H2O/D2O ratio or as complex as selectively labeling individual components with hydrogen isotopes. This review presents an overview of each experimental technique with the neutron instrument configuration, related sample preparation and sample environment, and data analysis, highlighted by a special emphasis on using prominent neutron contrast to understand structure and dynamics. This review gives researchers a practical introduction to the often enigmatic suite of neutron beamlines, thereby lowering the barrier to taking advantage of these large-facility techniques to achieve new understandings of membranes and their interactions with other molecules.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, U.K. OX11 0QX
| |
Collapse
|
29
|
Sharma VK, Ghosh SK, García Sakai V, Mukhopadhyay R. Enhanced Microscopic Dynamics of a Liver Lipid Membrane in the Presence of an Ionic Liquid. Front Chem 2020; 8:577508. [PMID: 33330366 PMCID: PMC7710540 DOI: 10.3389/fchem.2020.577508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids (ILs) are an important class of emerging compounds, owing to their widespread industrial applications in high-performance lubricants for food and cellulose processing, despite their toxicity to living organisms. It is believed that this toxicity is related to their actions on the cellular membrane. Hence, it is vital to understand the interaction of ILs with cell membranes. Here, we report on the effects of an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate (DMIM[BF4]), on the microscopic dynamics of a membrane formed by liver extract lipid, using quasielastic neutron scattering (QENS). The presence of significant quasielastic broadening indicates that stochastic molecular motions of the lipids are active in the system. Two distinct molecular motions, (i) lateral motion of the lipid within the membrane leaflet and (ii) localized internal motions of the lipid, are found to contribute to the QENS broadening. While the lateral motion could be described assuming continuous diffusion, the internal motion is explained on the basis of localized translational diffusion. Incorporation of the IL into the liver lipid membrane is found to enhance the membrane dynamics by accelerating both lateral and internal motions of the lipids. This indicates that the IL induces disorder in the membrane and enhances the fluidity of lipids. This could be explained on the basis of its location in the lipid membrane. Results are compared with various other additives and we provide an indication of a possible correlation between the effects of guest molecules on the dynamics of the membrane and its location within the membrane.
Collapse
Affiliation(s)
- Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Victoria García Sakai
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
30
|
Sharma VK, Srinivasan H, García Sakai V, Mitra S. Dioctadecyldimethylammonium bromide, a surfactant model for the cell membrane: Importance of microscopic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:051301. [PMID: 32984433 PMCID: PMC7511241 DOI: 10.1063/4.0000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Cationic lipid membranes have recently attracted huge attention both from a fundamental point of view and due to their practical applications in drug delivery and gene therapy. The dynamical behavior of the lipids in the membrane is a key parameter controlling various physiological processes and drug release kinetics. Here, we review the dynamical and thermotropic phase behavior of an archetypal cationic lipid membrane, dioctadecyldimethylammonium bromide (DODAB), as studied using neutron scattering and molecular dynamics simulation techniques. DODAB membranes exhibit interesting phase behavior, specifically showing coagel, gel, and fluid phases in addition to a large hysteresis when comparing heating and cooling cycles. The dynamics of the lipid membrane is strongly dependent on the physical state of the bilayer. Lateral diffusion of the lipids is faster, by an order of magnitude, in the fluid phase than in the ordered phase. It is not only the characteristic times but also the nature of the segmental motions that differ between the ordered and fluid phases. The effect of different membrane active molecules including drugs, stimulants, gemini surfactants, and unsaturated lipids, on the dynamical and thermotropic phase behavior of the DODAB membrane, is also discussed here. Various interesting features such as induced synchronous ordering between polar head groups and tails, sub diffusive behavior, etc., are observed. The results shed light on the interaction between these additives and the membrane, which is found to be a complex interplay between the physical state of the membrane, charge, concentration, molecular architecture of the additives, and their location within the membrane.
Collapse
Affiliation(s)
- V. K. Sharma
- Author to whom correspondence should be addressed: and . Phone: +91-22-25594604
| | | | - V. García Sakai
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | |
Collapse
|
31
|
Lee D, Ju MK, Kim H. Commiphora Extract Mixture Ameliorates Monosodium Iodoacetate-Induced Osteoarthritis. Nutrients 2020; 12:E1477. [PMID: 32438772 PMCID: PMC7284963 DOI: 10.3390/nu12051477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease that affects millions of elderly people around the world. The conventional treatments for OA consisting of nonsteroidal anti-inflammatory drugs and steroid have negative health consequences, such as gastrointestinal, renal, and cardiac diseases. This study has evaluated the Commiphora extract mixture (HT083) on OA progression as an alternative treatment in animal models. The root of P. lactiflora and the gum resin of C. myrrha have been in use as traditional medicines against many health problems including bone disorders since ancient time. The extracts of P. lactiflora root and C. myrrha gum resin were mixed as 3:1 for their optimal effects. Male Sprague-Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce the symptoms identical to human OA. HT083 substantially prevented the loss of weight-bearing inflicted with MIA in rats. The MIA-induced cartilage erosion as well as the subchondral bone damage in the rats was also reversed. In addition, the increase of serum IL-1β concentration, a crucial pro-inflammatory cytokine involved in OA progression was countered by HT083. Furthermore, HT083 significantly reduced the acetic acid-induced writhing response in mice. In vitro, HT083 has shown potent anti-inflammatory activities by inhibiting the production of NO and suppressing the interleukin -1β, interleukin -6, cyclooxygenase-2, and inducible nitric oxide synthase expression in lipopolysaccharide -stimulated RAW 264.7 cells. Given its potent analgesic and anti-inflammatory activities in MIA rats and acetic acid-induced writhing in mice, HT083 should be further studied in order to explain its mechanism of actions in alleviating OA pain and inflammation.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea;
| | - Mi-Kyoung Ju
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM) NeuMed Inc., 88 Imun-ro, Dongdaemun-gu, Seoul 02440, Korea;
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|