1
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
2
|
Moriyama Y, Hasuzawa N, Nomura M. María Teresa Miras Portugal: a pioneer for vesicular nucleotide storage. Purinergic Signal 2024; 20:93-98. [PMID: 36525101 PMCID: PMC10997567 DOI: 10.1007/s11302-022-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chromaffin granules are secretory granules present in adrenal medulla chromaffin cells. They contain high contents of catecholamines and nucleotides and have been regarded as a model system for the study of vesicular transmitter uptake and release. In 1988, Dr. María Teresa Miras Portugal, when studying catecholamine biosynthesis, detected a novel group of nucleotides, the diadenosine polyphosphates, in the adrenal chromaffin granules. Based on this finding, she unraveled the existence of diadenosine polyphosphate-mediated chemical transmission, leading to a paradigm shift in the field of purinergic signaling. She is also a pioneer in the studies on vesicular nucleotide storage. First, María Teresa and her group characterized nucleotide transport in chromaffin granules and synaptic vesicles using fluorescent nucleotide derivatives such as 1, N6-ethenoadenosine triphosphates. Then, they revealed the presence of a hypothetical vesicular nucleotide transporter with unique properties in terms of substrate specificity. In this article, we will describe her contributions to vesicular nucleotide storage and the foundations she laid for future studies.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
3
|
Skórkowska A, Krzyżanowska W, Bystrowska B, Torregrossa R, Whiteman M, Pomierny B, Budziszewska B. The Hydrogen Sulfide Donor AP39 Reduces Glutamate-mediated Excitotoxicity in a Rat Model of Brain Ischemia. Neuroscience 2024; 539:86-102. [PMID: 37993086 DOI: 10.1016/j.neuroscience.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
The vast majority of stroke cases are classified as ischemic stroke, but effective pharmacotherapy strategies to treat brain infarction are still limited. Glutamate, which is a primary mediator of excitotoxicity, contributes to neuronal damage in numerous pathologies, including ischemia. The aim of this study was to investigate the effect of the hydrogen sulfide donor AP39 on excitotoxicity. AP39 was administered as a single dose of 100 nmol/kg b.w. i.v. 10 min after the restoration of blood flow and 100 min after middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. Neurological deficits by Phillips's score, and infarct volume by TTC staining were evaluated (n = 8). LC-MS was used to determine the extracellular glutamate concentration in microdialysates collected intrasurgically and from freely moving animals 24 h and 3 days after reperfusion (n = 6). The expression of proteins involved in the regulation of glutamatergic transmission was investigated 24 h after reperfusion by Western-blot analysis (n = 6). The results were verified by double-immunostaining of brain cryosections (n = 6). The results showed a significant longitudinal decrease in extracellular glutamate concentrations in the motor cortex and hippocampus in MCAO + AP39 rats compared to MCAO rats. Moreover, the administration of AP39 increased the content of the GLT-1 transporter and reduced the content of VGLUT1 in the ischemic core. Upregulation of the GLT-1 transporter responsible for glutamate reuptake from the synaptic cleft, and downregulation of VGLUT1, which regulates glutamate transport to synaptic vesicles, indicate that these are important mechanisms by which AP39 reduces extracellular glutamate concentrations and, consequently, excitotoxicity after ischemia.
Collapse
Affiliation(s)
- Alicja Skórkowska
- Jagiellonian University Medical College, Department of Toxicological Biochemistry, Chair of Toxicology, Medyczna 9, 30-688 Kraków, Poland.
| | - Weronika Krzyżanowska
- Jagiellonian University Medical College, Department of Toxicological Biochemistry, Chair of Toxicology, Medyczna 9, 30-688 Kraków, Poland.
| | - Beata Bystrowska
- Jagiellonian University Medical College, Department of Toxicological Biochemistry, Chair of Toxicology, Medyczna 9, 30-688 Kraków, Poland.
| | - Roberta Torregrossa
- St. Luke's Campus, University of Exeter Medical School, EX1 2LU Exeter, United Kingdom.
| | - Matthew Whiteman
- St. Luke's Campus, University of Exeter Medical School, EX1 2LU Exeter, United Kingdom.
| | - Bartosz Pomierny
- Jagiellonian University Medical College, Department of Toxicological Biochemistry, Chair of Toxicology, Medyczna 9, 30-688 Kraków, Poland.
| | - Bogusława Budziszewska
- Jagiellonian University Medical College, Department of Toxicological Biochemistry, Chair of Toxicology, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
4
|
Aghayeva A, Gok Yurtseven D, Hasanoglu Akbulut N, Eyigor O. Immunohistochemical determination of the excitatory and inhibitory axonal endings contacting NUCB2/nesfatin-1 neurons. Neuropeptides 2024; 103:102401. [PMID: 38157780 DOI: 10.1016/j.npep.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters. In double labeling applied on floating sections, the NUCB2/nesfatin-1 reaction was determined in brown color with diaminobenzidine, while vesicular carrier proteins were marked in black. Slides were analyzed to determine the ratio of nesfatin-1 neurons in the three hypothalamic nucleus in contact with a relevant vesicular carrier protein. The ratios of NUCB2/nesfatin-1 neurons with the innervation were compared among neurotransmitters. In addition, possible gender differences between males and females were examined. The difference in the number of VGLUT2-contacting NUCB2/nesfatin-1 neurons was significantly higher in males when compared to females. When both genders were compared in different nuclei, it was seen that there was no statistical significance in terms of the percentage of NUCB2/nesfatin-1 neuron apposition with VGLUT3. The statistical evaluation showed that number of NUCB2/nesfatin-1 neurons receiving GABAergic innervation is higher in males when compared to females (*p ≤ 0.05; p = 0.045). When the axonal contact of vesicular neurotransmitter transporter proteins was compared between the neurotransmitters, it was determined that the most prominent innervation is GABAergic. In the supraoptic region, no contacts of VAChT-containing axons were found on NUCB2/nesfatin-1 neurons in both female and male subjects. In conclusion, it is understood that both excitatory and inhibitory neurons can innervate the NUCB2/nesfatin-1 neurons and the glutamatergic system is effective in the excitatory innervation while the GABAergic system plays a role in the inhibitory mechanism.
Collapse
Affiliation(s)
- Aynura Aghayeva
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Duygu Gok Yurtseven
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye.
| |
Collapse
|
5
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
6
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
7
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
8
|
Dittrich A, Ramesh G, Jung M, Schmitz F. Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses. Cells 2023; 12:1665. [PMID: 37371135 DOI: 10.3390/cells12121665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)-alternative name Dmx-like 2 (DMXL2)-is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication.
Collapse
Affiliation(s)
- Alina Dittrich
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Girish Ramesh
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Institute of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
9
|
Zhao C, Wang C, Zhang H, Yan W. A mini-review of the role of vesicular glutamate transporters in Parkinson's disease. Front Mol Neurosci 2023; 16:1118078. [PMID: 37251642 PMCID: PMC10211467 DOI: 10.3389/fnmol.2023.1118078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease implicated in multiple interacting neurotransmitter pathways. Glutamate is the central excitatory neurotransmitter in the brain and plays critical influence in the control of neuronal activity. Impaired Glutamate homeostasis has been shown to be closely associated with PD. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). Following its exocytotic release, Glutamate activates Glutamate receptors (GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly removed by excitatory amino acid transporters (EAATs) to maintain its relatively low extracellular concentration and prevent excitotoxicity. The involvement of GluRs and EAATs in the pathophysiology of PD has been widely studied, but little is known about the role of VGLUTs in the PD. In this review, we highlight the role of VGLUTs in neurotransmitter and synaptic communication, as well as the massive alterations in Glutamate transmission and VGLUTs levels in PD. Among them, adaptive changes in the expression level and function of VGLUTs may exert a crucial role in excitatory damage in PD, and VGLUTs are considered as novel potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Kolen B, Borghans B, Kortzak D, Lugo V, Hannack C, Guzman RE, Ullah G, Fahlke C. Vesicular glutamate transporters are H +-anion exchangers that operate at variable stoichiometry. Nat Commun 2023; 14:2723. [PMID: 37169755 PMCID: PMC10175566 DOI: 10.1038/s41467-023-38340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.
Collapse
Affiliation(s)
- Bettina Kolen
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Bart Borghans
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Victor Lugo
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Cora Hannack
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Raul E Guzman
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
11
|
Batarni S, Nayak N, Chang A, Li F, Hareendranath S, Zhou L, Xu H, Stroud R, Eriksen J, Edwards RH. Substrate recognition and proton coupling by a bacterial member of solute carrier family 17. J Biol Chem 2023; 299:104646. [PMID: 36965620 PMCID: PMC10149257 DOI: 10.1016/j.jbc.2023.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
The solute carrier 17 family transports diverse organic anions using two distinct modes of coupling to a source of energy. Transporters that package glutamate and nucleotide into secretory vesicles for regulated release by exocytosis are driven by membrane potential but subject to allosteric regulation by H+ and Cl-. Other solute carrier 17 members including the lysosomal sialic acid exporter couple the flux of organic anion to cotransport of H+. To begin to understand how similar proteins can perform such different functions, we have studied Escherichia coli DgoT, a H+/galactonate cotransporter. A recent structure of DgoT showed many residues contacting D-galactonate, and we now find that they do not tolerate even conservative substitutions. In contrast, the closely related lysosomal H+/sialic acid cotransporter Sialin tolerates similar mutations, consistent with its recognition of diverse substrates with relatively low affinity. We also find that despite coupling to H+, DgoT transports more rapidly but with lower apparent affinity at high pH. Indeed, membrane potential can drive uptake, indicating electrogenic transport and suggesting a H+:galactonate stoichiometry >1. Located in a polar pocket of the N-terminal helical bundle, Asp46 and Glu133 are each required for net flux by DgoT, but the E133Q mutant exhibits robust exchange activity and rescues exchange by D46N, suggesting that these two residues operate in series to translocate protons. E133Q also shifts the pH sensitivity of exchange by DgoT, supporting a central role for the highly conserved TM4 glutamate in H+ coupling by DgoT.
Collapse
Affiliation(s)
- Samir Batarni
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Nanda Nayak
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Audrey Chang
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Surabhi Hareendranath
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Lexi Zhou
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Hongfei Xu
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California
| | - Robert Stroud
- Department of Biochemistry & Biophysics, UCSF School of Medicine, San Francisco, California
| | - Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California.
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California.
| |
Collapse
|
12
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
13
|
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S, Musante I, Iacomino M, Traverso M, Corradi A, Scudieri P, Maura G, Marcoli M, Zara F. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. Int J Mol Sci 2022; 23:ijms231810545. [PMID: 36142455 PMCID: PMC9501332 DOI: 10.3390/ijms231810545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.
Collapse
Affiliation(s)
- Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Correspondence: (C.C.); (M.M.)
| | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Floriana Fruscione
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Simone Pelassa
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Monica Traverso
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Center of Excellence for Biomedical Research, Viale Benedetto XV, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| |
Collapse
|
14
|
Rostamipour K, Talandashti R, Mehrnejad F. Atomistic insight into the luminal allosteric regulation of vesicular glutamate transporter 2 by chloride and protons: An
all‐atom
molecular dynamics simulation study. Proteins 2022; 90:2045-2057. [DOI: 10.1002/prot.26396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kiana Rostamipour
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Reza Talandashti
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran
| |
Collapse
|
15
|
Pulido C, Ryan TA. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. SCIENCE ADVANCES 2021; 7:eabi9027. [PMID: 34860552 PMCID: PMC8641928 DOI: 10.1126/sciadv.abi9027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/14/2021] [Indexed: 05/15/2023]
Abstract
The brain is a metabolically fragile organ as compromises in fuel availability rapidly degrade cognitive function. Nerve terminals are likely loci of this vulnerability as they do not store sufficient ATP molecules, needing to synthesize them during activity or suffer acute degradation in performance. The ability of on-demand ATP synthesis to satisfy activity-driven ATP hydrolysis will depend additionally on the magnitude of local resting metabolic processes. We show here that synaptic vesicle (SV) pools are a major source of presynaptic basal energy consumption. This basal metabolic processes arises from SV-resident V-ATPases compensating for a hidden resting H+ efflux from the SV lumen. We show that this steady-state H+ efflux (i) is mediated by vesicular neurotransmitter transporters, (ii) is independent of the SV cycle, (iii) accounts for up to 44% of the resting synaptic energy consumption, and (iv) contributes substantially to nerve terminal intolerance of fuel deprivation.
Collapse
Affiliation(s)
- Camila Pulido
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
16
|
Eriksen J, Li F, Stroud RM, Edwards RH. Allosteric Inhibition of a Vesicular Glutamate Transporter by an Isoform-Specific Antibody. Biochemistry 2021; 60:2463-2470. [PMID: 34319067 DOI: 10.1021/acs.biochem.1c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.
Collapse
Affiliation(s)
- Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States.,Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
17
|
Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183408. [PMID: 32652056 DOI: 10.1016/j.bbamem.2020.183408] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Vesicular nucleotide transporter (VNUT) is the last identified member of the SLC17 organic anion transporter family, which plays a central role in vesicular storage in ATP-secreting cells. The discovery of VNUT demonstrated that, despite having been neglected for a long time, vesicular ATP release represents a major pathway for purinergic chemical transmission, which had been mainly attributed to ATP permeation channels. This article summarizes recent advances in our understanding of the mechanism of VNUT and its physiopathological roles as well as the development of inhibitors. Regulating the activity and/or the expression of VNUT represents a new and promising therapeutic strategy for the treatment of multiple diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|