1
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Duart G, Graña-Montes R, Pastor-Cantizano N, Mingarro I. Experimental and computational approaches for membrane protein insertion and topology determination. Methods 2024; 226:102-119. [PMID: 38604415 DOI: 10.1016/j.ymeth.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.
Collapse
Affiliation(s)
- Gerard Duart
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ricardo Graña-Montes
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Noelia Pastor-Cantizano
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain.
| |
Collapse
|
3
|
Zhou S, Lv P, Li M, Chen Z, Xin H, Reilly S, Zhang X. SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development. Biomed Pharmacother 2023; 159:114242. [PMID: 36652729 PMCID: PMC9832061 DOI: 10.1016/j.biopha.2023.114242] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, which has seriously affected human health worldwide. The discovery of therapeutic agents is extremely urgent, and the viral structural proteins are particularly important as potential drug targets. SARS-CoV-2 envelope (E) protein is one of the main structural proteins of the virus, which is involved in multiple processes of the virus life cycle and is directly related to pathogenesis process. In this review, we present the amino acid sequence of the E protein and compare it with other two human coronaviruses. We then explored the role of E protein in the viral life cycle and discussed the pathogenic mechanisms that E protein may be involved in. Next, we summarize the potential drugs against E protein discovered in the current studies. Finally, we described the possible effects of E protein mutation on virus and host. This established a knowledge system of E protein to date, aiming to provide theoretical insights for mitigating the current COVID-19 pandemic and potential future coronavirus outbreaks.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China.
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
In Silico Screening of Drugs That Target Different Forms of E Protein for Potential Treatment of COVID-19. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Recently the E protein of SARS-CoV-2 has become a very important target in the potential treatment of COVID-19 since it is known to regulate different stages of the viral cycle. There is biochemical evidence that E protein exists in two forms, as monomer and homopentamer. An in silico screening analysis was carried out employing 5852 ligands (from Zinc databases), and performing an ADMET analysis, remaining a set of 2155 compounds. Furthermore, docking analysis was performed on specific sites and different forms of the E protein. From this study we could identify that the following ligands showed the highest binding affinity: nilotinib, dutasteride, irinotecan, saquinavir and alectinib. We carried out some molecular dynamics simulations and free energy MM–PBSA calculations of the protein–ligand complexes (with the mentioned ligands). Of worthy interest is that saquinavir, nilotinib and alectinib are also considered as a promising multitarget ligand because it seems to inhibit three targets, which play an important role in the viral cycle. On the other side, saquinavir was shown to be able to bind to E protein both in its monomeric as well as pentameric forms. Finally, further experimental assays are needed to probe our hypothesis derived from in silico studies.
Collapse
|
5
|
Henke W, Waisner H, Arachchige SP, Kalamvoki M, Stephens E. The envelope proteins from SARS-CoV-2 and SARS-CoV potently reduce the infectivity of human immunodeficiency virus type 1 (HIV-1). Retrovirology 2022; 19:25. [PMID: 36403071 PMCID: PMC9675205 DOI: 10.1186/s12977-022-00611-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different β-coronavirus E proteins. RESULTS We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). CONCLUSIONS The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Hope Waisner
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Sachith Polpitiya Arachchige
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Edward Stephens
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| |
Collapse
|
6
|
Henke W, Waisner H, Arachchige SP, Kalamvoki M, Stephens E. The Envelope Proteins from SARS-CoV-2 and SARS-CoV Potently Reduce the Infectivity of Human Immunodeficiency Virus type 1 (HIV-1). RESEARCH SQUARE 2022:rs.3.rs-2175808. [PMID: 36324807 PMCID: PMC9628187 DOI: 10.21203/rs.3.rs-2175808/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different β-coronavirus E proteins. Results We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). Conclusions The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.
Collapse
|
7
|
Probing effects of the SARS-CoV-2 E protein on membrane curvature and intracellular calcium. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:183994. [PMID: 35724739 PMCID: PMC9212275 DOI: 10.1016/j.bbamem.2022.183994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 contains four structural proteins in its genome. These proteins aid in the assembly and budding of new virions at the ER-Golgi intermediate compartment (ERGIC). Current fundamental research efforts largely focus on one of these proteins – the spike (S) protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other structural proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length envelope (E) protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.
Collapse
|
8
|
Kuzmin A, Orekhov P, Astashkin R, Gordeliy V, Gushchin I. Structure and dynamics of the SARS-CoV-2 envelope protein monomer. Proteins 2022; 90:1102-1114. [PMID: 35119706 DOI: 10.1002/prot.26317] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Coronaviruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), present an ongoing threat to human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with the host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied. Here, we use molecular dynamics simulations to analyze the structure and dynamics of the SARS-CoV-2 envelope (E) protein (a viroporin) in the monomeric form. The protein consists of the hydrophobic α-helical transmembrane domain (TMD) and amphiphilic α-helices H2 and H3, connected by flexible linkers. We show that TMD has a preferable orientation in the membrane, while H2 and H3 reside at the membrane surface. Orientation of H2 is strongly influenced by palmitoylation of cysteines Cys40, Cys43, and Cys44. Glycosylation of Asn66 affects the orientation of H3. We also observe that the monomeric E protein both generates and senses the membrane curvature, preferably localizing with the C-terminus at the convex regions of the membrane; the protein in the pentameric form displays these properties as well. Localization to curved regions may be favorable for assembly of the E protein oligomers, whereas induction of curvature may facilitate the budding of the viral particles. The presented results may be helpful for a better understanding of the function of the coronaviral E protein and viroporins in general, and for overcoming the ongoing SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
9
|
Bañó-Polo M, Martínez-Gil L, Sánchez del Pino MM, Massoli A, Mingarro I, Léon R, Garcia-Murria MJ. Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. J Oral Microbiol 2022; 14:2030094. [PMID: 35087641 PMCID: PMC8788378 DOI: 10.1080/20002297.2022.2030094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background SARS-CoV-2 is continuously disseminating worldwide. The development of strategies to break transmission is mandatory. Aim of the study To investigate the potential of cetylpyridinium chloride (CPC) as a viral inhibitor. Methods SARS-CoV-2 Virus Like-Particles (VLPs) were incubated with CPC, a potent surfactant routinely included in mouthwash preparations. Results Concentrations of 0.05% CPC (w/v) commonly used in mouthwash preparations are sufficient to promote the rupture of SARS-CoV-2 VLP membranes. Conclusion Including CPC in mouthwashes could be a prophylactic strategy to keep SARS-CoV-2 from spreading.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Department of Microbiology. Dentaid Research Center, Cerdanyola del Vallès, Barcelona, Spain
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Manuel M. Sánchez del Pino
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Alberto Massoli
- Department of Microbiology. Dentaid Research Center, Cerdanyola del Vallès, Barcelona, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Rubén Léon
- Department of Microbiology. Dentaid Research Center, Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Jesus Garcia-Murria
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Kumar A, Kumar P, Saumya KU, Giri R. Investigating the conformational dynamics of SARS-CoV-2 NSP6 protein with emphasis on non-transmembrane 91-112 & 231-290 regions. Microb Pathog 2021; 161:105236. [PMID: 34648928 PMCID: PMC8505028 DOI: 10.1016/j.micpath.2021.105236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/05/2022]
Abstract
The NSP6 protein of SARS-CoV-2 is a transmembrane protein, with some regions lying outside the membrane. Besides a brief role of NSP6 in autophagosome formation, this is not studied significantly. Also, there is no structural information available to date. Based on the prediction by TMHMM server for transmembrane prediction, it is found that the N-terminal residues (1-11), middle region residues (91–112), and C-terminal residues (231–290) lies outside the membrane. Molecular Dynamics (MD) simulations showed that NSP6 consists of helical structures. In contrast, the membrane outside lying region (91–112) showed partial helicity, which was further used as a model and obtained disordered type conformation during 1.5 μs. Additionally, a 200ns simulation study of residues 231–290 have shown significant conformational changes. As compared to helical and beta-sheet conformations in its structure model, the 200ns simulation resulted in the loss of beta-sheet structures while helical regions remained intact. Further, we have experimentally characterized the residue 91–112 by using reductionist approaches. CD spectroscopy suggests that the NSP6 (91–112) is disordered-like region in isolation, which gains helical conformation in different biological mimic environmental conditions. These studies can be helpful to study NSP6 (91–112) interactions with host proteins, where different protein conformations might play a significant role. The present study adds up more information about the NSP6 protein aspect, which could be exploited for its host protein interaction and pathogenesis.
Collapse
Affiliation(s)
- Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Kumar Udit Saumya
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
11
|
Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52651-52674. [PMID: 34453253 PMCID: PMC8397333 DOI: 10.1007/s11356-021-16024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/14/2021] [Indexed: 06/02/2023]
Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2, which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover, viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater. Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic in different communities as well as possible infection dynamics to prevent future outbreaks.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
- Consejo Mexiquense de Ciencia y Tecnología - COMECYT, Diagonal Alfredo del Mazo 198 y 103, Guadalupe y Club Jardín, C.P. 50010, Toluca de Lerdo, Estado de México, México.
| |
Collapse
|
12
|
Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol 2021; 18:2293-2306. [PMID: 34497376 PMCID: PMC8424621 DOI: 10.1038/s41423-021-00752-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus-cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|