1
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Pooe K, Thulo M, Makumbe H, Akumadu B, Otun O, Aloke C, Achilonu I. Biophysical description of Bromosulfophthalein interaction with the 28-kDa glutathione transferase from Schistosoma japonicum. Mol Biochem Parasitol 2022; 252:111524. [PMID: 36195242 DOI: 10.1016/j.molbiopara.2022.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 12/31/2022]
Abstract
Glutathione transferases (GSTs) are major detoxification enzymes vital for the survival and reproduction of schistosomes during infection in humans. Schistosoma encode two GST isoenzymes, the 26- and 28-kDa isoforms, that show different substrate specificities and cellular localisations. Bromosulfophthalein (BSP) has been identified and characterised as a potent 26-kDa Schistosoma japonicum GST (Sj26GST) inhibitor with an anthelmintic potential. This study describes the structure, function, and ligandin properties of the 28-kDa Schistosoma japonicum GST (Sj28GST) towards BSP. Enzyme kinetics show that BSP is a potent enzyme inhibitor, with a specific activity decreases from 60.4 µmol/min/mg to 0.0742 µmol/min/mg and an IC50 in the micromolar range of 0.74 µM. Far-UV circular dichroism confirmed that purified Sj28GST follows a typical GST fold, which is predominantly alpha-helical. Fluorescence spectroscopy suggests that BSP binding occurs at a site distinct from the glutathione-binding site (G-site); however, the binding does not alter the local G-site environment. Isothermal titration calorimetry studies show that the binding of BSP to Sj28GST is exergonic (∆G°= -33 kJ/mol) and enthalpically-driven, with a stoichiometry of one BSP per dimer. The stability of Sj28GST (∆G(H2O) = 4.7 kcal/mol) is notably lower than Sj26GST, owing to differences in the enzyme's dimeric interfaces. We conclude that Sj28GST shares similar biophysical characteristics with Sj26GST based on its kinetic properties and susceptibility to low concentrations of BSP. The study supports the potential benefits of re-purposing BSP as a potential drug or prodrug to mitigate the scourge of schistosomiasis.
Collapse
Affiliation(s)
- Kagiso Pooe
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Monare Thulo
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Hattie Makumbe
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Blessing Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Oluwatobin Otun
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa.
| |
Collapse
|
3
|
Valli A, Achilonu I. Comparative structural analysis of the human and
Schistosoma
glutathione transferase dimer interface using selective binding of bromosulfophthalein. Proteins 2022; 90:1561-1569. [DOI: 10.1002/prot.26338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Akeel Valli
- Protein Structure‐Function Research Unit, School of Molecular and Cell Biology, Faculty of Science University of the Witwatersrand Johannesburg South Africa
| | - Ikechukwu Achilonu
- Protein Structure‐Function Research Unit, School of Molecular and Cell Biology, Faculty of Science University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
4
|
Padi N, Akumadu BO, Faerch O, Aloke C, Meyer V, Achilonu I. Engineering a Pseudo-26-kDa Schistosoma Glutathione Transferase from bovis/ haematobium for Structure, Kinetics, and Ligandin Studies. Biomolecules 2021; 11:1844. [PMID: 34944488 PMCID: PMC8699318 DOI: 10.3390/biom11121844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Glutathione transferases (GSTs) are the main detoxification enzymes in schistosomes. These parasitic enzymes tend to be upregulated during drug treatment, with Schistosoma haematobium being one of the species that mainly affect humans. There is a lack of complete sequence information on the closely related bovis and haematobium 26-kDa GST isoforms in any database. Consequently, we engineered a pseudo-26-kDa S. bovis/haematobium GST (Sbh26GST) to understand structure-function relations and ligandin activity towards selected potential ligands. Sbh26GST was overexpressed in Escherichia coli as an MBP-fusion protein, purified to homogeneity and catalyzed 1-chloro-2,4-dinitrobenzene-glutathione (CDNB-GSH) conjugation activity, with a specific activity of 13 μmol/min/mg. This activity decreased by ~95% in the presence of bromosulfophthalein (BSP), which showed an IC50 of 27 µM. Additionally, enzyme kinetics revealed that BSP acts as a non-competitive inhibitor relative to GSH. Spectroscopic studies affirmed that Sbh26GST adopts the canonical GST structure, which is predominantly α-helical. Further extrinsic 8-anilino-1-naphthalenesulfonate (ANS) spectroscopy illustrated that BSP, praziquantel (PZQ), and artemisinin (ART) might preferentially bind at the dimer interface or in proximity to the hydrophobic substrate-binding site of the enzyme. The Sbh26GST-BSP interaction is both enthalpically and entropically driven, with a stoichiometry of one BSP molecule per Sbh26GST dimer. Enzyme stability appeared enhanced in the presence of BSP and GSH. Induced fit ligand docking affirmed the spectroscopic, thermodynamic, and molecular modelling results. In conclusion, BSP is a potent inhibitor of Sbh26GST and could potentially be rationalized as a treatment for schistosomiasis.
Collapse
Affiliation(s)
- Neo Padi
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Blessing Oluebube Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Olga Faerch
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Vanessa Meyer
- Functional Genomics and Immunogenetics Laboratory, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| |
Collapse
|
5
|
Pooe K, Worth R, Iwuchukwu EA, Dirr HW, Achilonu I. An empirical and theoretical description of Schistosoma japonicum glutathione transferase inhibition by bromosulfophthalein and indanyloxyacetic acid 94. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Akumadu BO, Pandian R, Olfsen J, Worth R, Thulo M, Mentor T, Fanucchi S, Sayed Y, Dirr HW, Achilonu I. Molecular basis of inhibition of Schistosoma japonicum glutathione transferase by ellagic acid: Insights into biophysical and structural studies. Mol Biochem Parasitol 2020; 240:111319. [PMID: 32961204 DOI: 10.1016/j.molbiopara.2020.111319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA). Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as Sj26GST substrates, EA was shown to inhibit Sj26GST activity by 66 % with an IC50 of 2.4 μM. Fluorescence spectroscopy showed that EA altered the polarity of the environment of intrinsic tryptophan and that EA decreased (in a dose-dependent manner) the interaction between Sj26GST and 8-Anilino-1-naphthalenesulfonate (ANS), which is a known GST H-site ligand. Thermodynamic studies indicated that the interaction between Sj26GST and EA is spontaneous (ΔG = -29.88 ± 0.07 kJ/mol), enthalpically-driven (ΔH = -9.48 ± 0.42 kJ/mol) with a favourable entropic change (ΔS = 20.40 ± 0.08 kJ/mol/K), and with a stoichiometry of four EA molecules bound per Sj26GST dimer. The 1.53 Å-resolution Sj26GST crystal structure (P 21 21 21 space group) complexed with GSH and EA shows that EA binds primarily at the dimer interface, stabilised largely by Van der Waal forces and H-bonding. Besides, EA bound near the H-site and less than 3.5 Å from the ε-NH2 of the γ-glutamyl moiety of GSH, in each subunit.
Collapse
Affiliation(s)
- Blessing O Akumadu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Jessica Olfsen
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Monare Thulo
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tshireletso Mentor
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
7
|
Martos-Maldonado MC, Casas-Solvas JM, Vargas-Berenguel A, García-Fuentes L. Electrochemical detection of glutathione S-transferase: an important enzyme in the cell protective mechanism against oxidative stress. Methods Mol Biol 2015; 1208:123-138. [PMID: 25323504 DOI: 10.1007/978-1-4939-1441-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oxidative stress arises when the antioxidant capacity of cells to clean the excess production of reactive oxygen species (ROS) decreases. Several human diseases seem to be related with an increment in the oxidative stress. In this regard, GSH present in the cells works by neutralizing ROS and other xenobiotics through the glutathione S-transferase (GST) enzyme. Thus, the level of expression of GST is an important factor in determining the sensitivity of cells to toxic chemicals or xenobiotic compounds. Therefore, the detection of GST levels is fundamental in the clinical diagnosis of ROS-related diseases. Here, we describe a methodology, based on the voltammetric properties of the ferrocene group (used as electrochemical probe), which can be applied for selective detection of GST levels in human cells. The electrochemical signal measured is associated to the specific interaction of a ferrocenyl-GSH derivate with the G- and H-sites of this enzyme.
Collapse
Affiliation(s)
- Manuel C Martos-Maldonado
- Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | | | | | | |
Collapse
|
8
|
Xu B, Tan D, Yang X, Hu X, Xie Y, Qin J, Chen C, He C, Li Y, Pu J, Liao F. Fluorometric titration assay of affinity of tight-binding nonfluorescent inhibitor of glutathione S-transferase. J Fluoresc 2014; 25:1-8. [PMID: 25349115 DOI: 10.1007/s10895-014-1475-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 11/27/2022]
Abstract
To determine inhibition constant (K(i)) of tight-binding inhibitor, the putative method estimated an apparent K(i) from the response of initial rates to total concentrations of the inhibitor considering its depletion during binding for conversion into the true K(i), but was impractical with glutathione S-transferase of sophisticated kinetics. A fluorometric titration assay of dissociation constant (K(d)) was thus proposed. Schistosoma japonicum glutathione S-transferase (SjGST) action on a nonfluorescent divalent pro-inhibitor and glutathione yielded a divalent product in active site to act as a tight-binding inhibitor, whose binding quenched fluorescence of SjGST at 340 nm under the excitation at 280 nm. K(d) was estimated from the response of fluorescence of SjGST at 340 nm to total concentrations of the divalent product considering its depletion during binding. By fluorometric titration assay, K(d) of two tested nonfluorescent divalent products varied from subnanomolar to nanomolar, but both were resistant to change of SjGST levels and consistent with their apparent K(i) estimated via the putative method. Hence, fluorometric titration assay of K(d) of nonfluorescent tight-binding inhibitors/ligands was effective to GST and may be universally applicable to common enzymes/proteins; affinities of tight-binding inhibitors of GST can be approximated by their apparent K(i) estimated via the putative method.
Collapse
Affiliation(s)
- Bangtian Xu
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lea WA, Simeonov A. Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase. PLoS One 2012; 7:e36219. [PMID: 22558390 PMCID: PMC3340335 DOI: 10.1371/journal.pone.0036219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 01/02/2023] Open
Abstract
Differential scanning fluorometry (DSF), also referred to as fluorescence thermal shift, is emerging as a convenient method to evaluate the stabilizing effect of small molecules on proteins of interest. However, its use in the mechanism of action studies has received far less attention. Herein, the ability of DSF to report on inhibitor mode of action was evaluated using glutathione S-transferase (GST) as a model enzyme that utilizes two distinct substrates and is known to be subject to a range of inhibition modes. Detailed investigation of the propensity of small molecule inhibitors to protect GST from thermal denaturation revealed that compounds with different inhibition modes displayed distinct thermal shift signatures when tested in the presence or absence of the enzyme's native co-substrate glutathione (GSH). Glutathione-competitive inhibitors produced dose-dependent thermal shift trendlines that converged at high compound concentrations. Inhibitors acting via the formation of glutathione conjugates induced a very pronounced stabilizing effect toward the protein only when GSH was present. Lastly, compounds known to act as noncompetitive inhibitors exhibited parallel concentration-dependent trends. Similar effects were observed with human GST isozymes A1-1 and M1-1. The results illustrate the potential of DSF as a tool to differentiate diverse classes of inhibitors based on simple analysis of co-substrate dependency of protein stabilization.
Collapse
Affiliation(s)
- Wendy A Lea
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Martos-Maldonado MC, Casas-Solvas JM, Téllez-Sanz R, Mesa-Valle C, Quesada-Soriano I, García-Maroto F, Vargas-Berenguel A, García-Fuentes L. Binding properties of ferrocene–glutathione conjugates as inhibitors and sensors for glutathione S-transferases. Biochimie 2012; 94:541-50. [DOI: 10.1016/j.biochi.2011.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022]
|
11
|
Shimada J, Maruyama T, Kitaoka M, Kamiya N, Goto M. DNA-enzyme conjugate with a weak inhibitor that can specifically detect thrombin in a homogeneous medium. Anal Biochem 2011; 414:103-8. [PMID: 21371416 DOI: 10.1016/j.ab.2011.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 01/02/2023]
Abstract
We present the DNA-assisted control of enzymatic activity for the detection of a target protein using a new type of DNA-enzyme conjugate. The conjugate is composed of an enzyme inhibitor to regulate enzyme activity and a DNA aptamer to be responsive toward the analyte protein. Glutathione S-transferase (GST) and thrombin were selected as a model enzyme and an analyte protein. A hexahistidine tag was genetically attached to the C terminus of the GST, and the 5' end of an oligonucleotide was conjugated with nitrilotriacetic acid (NTA) for the site-specific conjugation of the DNA with the GST based on a Ni(2+) complex interaction. We found that fluorescein acted as a weak inhibitor of GST and succeeded in the regulation of GST activity by increasing the local concentration of the weak inhibitor by the hybridization of a 3'-end fluorescein-modified DNA. The catalytic activity of the DNA aptamer-enzyme conjugate showed a dose-dependent response to thrombin, indicating that the GST activity was clearly recovered by the binding of the DNA aptamer to thrombin. The current system enables the sensitive and specific detection of thrombin simply by measuring the enzymatic activity in a homogeneous medium.
Collapse
Affiliation(s)
- Josui Shimada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
12
|
Gildenhuys S, Wallace LA, Burke JP, Balchin D, Sayed Y, Dirr HW. Class Pi glutathione transferase unfolds via a dimeric and not monomeric intermediate: functional implications for an unstable monomer. Biochemistry 2010; 49:5074-81. [PMID: 20481548 DOI: 10.1021/bi100552d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cytosolic class pi glutathione transferase P1-1 (GSTP1-1) is associated with drug resistance and proliferative pathways because of its catalytic detoxification properties and ability to bind and regulate protein kinases. The native wild-type protein is homodimeric, and whereas the dimeric structure is required for catalytic functionality, a monomeric and not dimeric form of class pi GST is reported to mediate its interaction with and inhibit the activity of the pro-apoptotic enzyme c-Jun N-terminal kinase (JNK) [Adler, V., et al. (1999) EMBO J. 18, 1321-1334]. Thus, the existence of a stable monomeric form of wild-type class pi GST appears to have physiological relevance. However, there are conflicting accounts of the subunit's intrinsic stability since it has been reported to be either unstable [Dirr, H., and Reinemer, P. (1991) Biochem. Biophys. Res. Commun. 180, 294-300] or stable [Aceto, A., et al. (1992) Biochem. J. 285, 241-245]. In this study, the conformational stability of GSTP1-1 was re-examined by equilibrium folding and unfolding kinetics experiments. The data do not demonstrate the existence of a stable monomer but that unfolding of hGSTP1-1 proceeds via an inactive, nativelike dimeric intermediate in which the highly dynamic helix 2 is unfolded. Furthermore, molecular modeling results indicate that a dimeric GSTP1-1 can bind JNK. According to the available evidence with regard to the stability of the monomeric and dimeric forms of GSTP1-1 and the modality of the GST-JNK interaction, formation of a complex between GSTP1-1 and JNK most likely involves the dimeric form of the GST and not its monomer as is commonly reported.
Collapse
Affiliation(s)
- Samantha Gildenhuys
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | | | | | | | | | | |
Collapse
|
13
|
Kinsley N, Sayed Y, Mosebi S, Armstrong RN, Dirr HW. Characterization of the binding of 8-anilinonaphthalene sulfonate to rat class Mu GST M1-1. Biophys Chem 2008; 137:100-4. [PMID: 18703268 DOI: 10.1016/j.bpc.2008.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/26/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulfonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5-30 degrees C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a DeltaC(p) of -80+/-4 cal K(-1) mol(-1) indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins.
Collapse
Affiliation(s)
- Nichole Kinsley
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Wiwatersrand, Johannesburg 2050, South Africa
| | | | | | | | | |
Collapse
|
14
|
Quesada-Soriano I, Musso-Buendia JA, Tellez-Sanz R, Ruíz-Pérez LM, Barón C, González-Pacanowska D, García-Fuentes L. Plasmodium falciparum dUTPase: studies on protein stability and binding of deoxyuridine derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:936-45. [PMID: 17544982 DOI: 10.1016/j.bbapap.2007.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a ubiquitous enzyme preventing a deleterious incorporation of uracil into DNA, has been thought of as a novel target for anticancer and antiviral drug design. The interaction of Plasmodium falciparum dUTPase (PfdUTPase) with deoxyuridine derivatives (dU, dUMP, dUDP and dUpNHpp) has been studied thermodynamically by both isothermal titration and differential scanning calorimetry. ITC shows no cooperativity for the binding of these derivatives. Dependencies in the binding thermodynamic parameters (enthalpy, entropy and Gibbs energy changes) with the number of phosphate groups in the nucleotide are obtained, and from the heat capacity changes no significant conformational changes upon binding are inferred. DSC shows PfdUTPase trimer is very stable but denatures irreversibly, with a more complex denaturation profile than other homologous trimeric dUTPases. The presence of magnesium ions does not influence the denaturation profile, while the presence of deoxyuridine derivatives increases the stability. The increase depends upon nucleotide concentration and type, with dUDP having the greater effect.
Collapse
Affiliation(s)
- Indalecio Quesada-Soriano
- Dipartimento de Química Física, Bioquímica y Q. Inorgánica, Facultad de Ciencias Experimentales, Universidad de Almería, La Cañada de San Urbano, 04120 Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Téllez-Sanz R, Yassin Z, Bernier-Villamor V, Ortiz-Salmerón E, Musso-Buendia JA, Barón C, Ruíz-Pérez LM, González-Pacanowska D, García-Fuentes L. Effect of an Asp80Ala substitution on the binding of dUTP and dUMP to Trypanosoma cruzi dUTPase. Biochimie 2007; 89:972-80. [PMID: 17459559 DOI: 10.1016/j.biochi.2007.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
dUTPase (deoxyuridine 5'-triphosphate nucleotide hydrolase) is an enzyme responsible for maintaining low levels of intracellular dUTP and thus prevents uracil incorporation into DNA by DNA polymerases during replication and repair processes. The thermodynamics of binding for both dUTP and dUMP (deoxyuridine 5'-monophosphate) to the D80A mutant form of Trypanosoma cruzi dUTPase have been investigated by fluorescence spectroscopy and high-sensitivity isothermal titration calorimetry. In the presence of magnesium, approximately a 30-fold decrease in the value of the k(cat) and a 15-fold increase in the K(m) for dUTP hydrolysis was calculated while a 5-fold decrease was observed in the affinity for dUMP. In the absence of magnesium, the affinity for dUTP binding was similar for both enzymes while that for dUMP was lowered 3-fold as a consequence of the mutation. Calorimetric titrations in several buffers with different ionization heats rendered similar proton exchanges during the binding of dUMP. Thus, apparently the side chain of Asp 80 does not seem to vary its protonation state during the binding process. The enthalpy change values for the D80A mutant hardly change with temperature and, in addition, were Mg(2+) independent. We conclude that the D80A mutation induces only a slight conformational change in the active site yet results in a significant alteration of nucleotide binding and modifies the ability of the enzyme to discriminate between dUTP and dUMP when magnesium is present.
Collapse
Affiliation(s)
- Ramiro Téllez-Sanz
- Departamento de Química Física, Bioquímica y Química Inorgánica, Facultad de Ciencias Experimentales, Universidad de Almería, La Cañada de San Urbano, 04120 Almería, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quesada-Soriano I, García-Maroto F, García-Fuentes L. Kinetic study on the irreversible thermal denaturation of Schistosoma japonicum glutathione s-transferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:979-84. [PMID: 16630751 DOI: 10.1016/j.bbapap.2006.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/03/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
The thermal unfolding pathway of the Schistosoma japonicum glutathione S-transferase (Sj26GST) was previously interpreted by applying equilibrium thermodynamics and a reversible two-state model (Kaplan et al., (1997) Protein Science, 6, 399-406), though weak support for this interpretation was provided. In our study, thermal denaturation of Sj26GST has been re-examined by differential scanning calorimetry in the pH range of 6.5-8.5 and in the presence of the substrate and S-hexylglutathione. Calorimetric traces were found to be irreversible and highly scan-rate dependent. Thermogram shapes, as well as their scan-rate dependence, can be globally explained by assuming that thermal denaturation takes place according to one irreversible step described by a first-order kinetic constant that changes with temperature, as given by an Arrhenius equation. On the basis of this model, values for the rate constant as a function of temperature and the activation energy have been determined. Data also indicate that binding of GSH or S-hexylglutathione just exert a very little stabilising effect on the dimeric structure of the molecule.
Collapse
Affiliation(s)
- Indalecio Quesada-Soriano
- Dpto. de Química Física, Bioquímica y Q. Inorgánica, Facultad de Ciencias Experimentales, Universidad de Almería, La Cañada de San Urbano, 04120 Almería, Spain
| | | | | |
Collapse
|
17
|
Wongsantichon J, Ketterman A. An intersubunit lock-and-key 'clasp' motif in the dimer interface of Delta class glutathione transferase. Biochem J 2006; 394:135-44. [PMID: 16225458 PMCID: PMC1386011 DOI: 10.1042/bj20050915] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structural investigations of a GST (glutathione transferase), adGSTD4-4, from the malaria vector Anopheles dirus show a novel lock-and-key 'Clasp' motif in the dimer interface of the Delta class enzyme. This motif also appears to be highly conserved across several insect GST classes, but differs from a previously reported mammalian lock-and-key motif. The aromatic 'key' residue not only inserts into a hydrophobic pocket, the 'lock', of the neighbouring subunit, but also acts as part of the 'lock' for the other subunit 'key'. The 'key' residues from both subunits show aromatic ring stacking with each other in a pi-pi interaction, generating a 'Clasp' in the middle of the subunit interface. Enzyme catalytic and structural characterizations revealed that single amino acid replacements in this 'Clasp' motif impacted on catalytic efficiencies, substrate selectivity and stability. Substitutions to the 'key' residue create strong positive co-operativity for glutathione binding, with a Hill coefficient approaching 2. The lock-and-key motif in general and especially the 'Clasp' motif with the pi-pi interaction appear to play a pivotal role in subunit communication between active sites, as well as in stabilizing the quaternary structure. Evidence of allosteric effects suggests an important role for this particular intersubunit architecture in regulating catalytic activity through conformational transitions of subunits. The observation of co-operativity in the mutants also implies that glutathione ligand binding and dimerization are linked. Quaternary structural changes of all mutants suggest that subunit assembly or dimerization basically manipulates subunit communication.
Collapse
Affiliation(s)
- Jantana Wongsantichon
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 25/25 Phutthamonthol Road 4, Salaya, Nakhon Pathom 73170, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 25/25 Phutthamonthol Road 4, Salaya, Nakhon Pathom 73170, Thailand
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Jao SC, Chen J, Yang K, Li WS. Design of potent inhibitors for Schistosoma japonica glutathione S-transferase. Bioorg Med Chem 2005; 14:304-18. [PMID: 16275109 DOI: 10.1016/j.bmc.2005.07.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/22/2005] [Accepted: 07/22/2005] [Indexed: 11/18/2022]
Abstract
We implemented both structure-based drug design and the concept of polyvalency to discover a series of potent and unsymmetrical Schistosoma japonicum glutathione S-transferase (SjGST) inhibitors 10-12. This strategy achieved not only an excellent enhancement (10- to 490-fold) in the inhibitory potency, compared to the monofunctional analogues 1-5, but was also an effective modification by selecting a hydrophobic moiety with a flexible linker. The designed compounds with a low micromolar hit demonstrate special values in refining the new generation of SjGST inhibitors. The stoichiometry of the binding is one inhibitor molecule per SjGST monomer via isothermal titration calorimetric measurement.
Collapse
Affiliation(s)
- Shu-Chuan Jao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
19
|
Kimura T, Akiyama S, Uzawa T, Ishimori K, Morishima I, Fujisawa T, Takahashi S. Specifically collapsed intermediate in the early stage of the folding of ribonuclease A. J Mol Biol 2005; 350:349-62. [PMID: 15935376 DOI: 10.1016/j.jmb.2005.04.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/21/2022]
Abstract
Nature of the burst-phase signals of protein folding has been the subject of much debate as to whether the signals represent the formation of early intermediates or the non-specific collapse of unfolded polypeptides. To distinguish the two possibilities, the submillisecond folding dynamics of ribonuclease A (RNase A) was examined, and compared with those of the disulfide bond-ruptured analog of RNase A (r-RNase A). The circular dichroism measurements on RNase A showed the burst-phase signal within 320 micros after the initiation of the folding reaction, which was identical to that observed for r-RNase A. In contrast, the burst phase increase in the extrinsic fluorescence from 1-anilino-8-naphthalene sulfonate (ANS) was observed for RNase A but not for r-RNase A. The kinetic titration experiment of the ANS fluorescence intensity showed the presence of a specific binding site for ANS in the fast-refolding component of RNase A. The small-angle X-ray scattering measurements at approximately 22 ms after initiating the folding reaction demonstrated that the burst phase conformations of the medium and slow-refolding components of RNase A were distinctly smaller than that of r-RNase A. These results indicated the difference in the burst phase conformations of RNase A and r-RNase A. Since r-RNase A is denatured in the physiological solution condition, the burst-phase signal of RNase A was interpreted as the formation of the folding intermediate with specific conformations.
Collapse
Affiliation(s)
- Tetsunari Kimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ababou A, Ladbury JE. Survey of the year 2004: literature on applications of isothermal titration calorimetry. J Mol Recognit 2005; 19:79-89. [PMID: 16220545 DOI: 10.1002/jmr.750] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The market for commercially available isothermal titration calorimeters continues to grow as new applications and methodologies are developed. Concomitantly the number of users (and abusers) increases dramatically, resulting in a steady increase in the number of publications in which isothermal titration calorimetry (ITC) plays a role. In the present review, we will focus on areas where ITC is making a significant contribution and will highlight some interesting applications of the technique. This overview of papers published in 2004 also discusses current issues of interest in the development of ITC as a tool of choice in the determination of the thermodynamics of molecular recognition and interaction.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|