1
|
Ungureanu D, Popa A, Nemeș A, Crișan CA. Concomitant Administration of Psychotropic and Prostate Cancer Drugs: A Pharmacoepidemiologic Study Using Drug-Drug Interaction Databases. Biomedicines 2024; 12:1971. [PMID: 39335485 PMCID: PMC11429183 DOI: 10.3390/biomedicines12091971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PC) represents the second most common diagnosed cancer in men. The burden of diagnosis and long-term treatment may frequently cause psychiatric disorders in patients, particularly depression. The most common PC treatment option is androgen deprivation therapy (ADT), which may be associated with taxane chemotherapy. In patients with both PC and psychiatric disorders, polypharmacy is frequently present, which increases the risk of drug-drug interactions (DDIs) and drug-related adverse effects. Therefore, this study aimed to conduct a pharmacoepidemiologic study of the concomitant administration of PC drugs and psychotropics using three drug interaction databases (Lexicomp®, drugs.com®, and Medscape®). This study assayed 4320 drug-drug combinations (DDCs) and identified 814 DDIs, out of which 405 (49.63%) were pharmacokinetic (PK) interactions and 411 (50.37%) were pharmacodynamic (PD) interactions. The most common PK interactions were based on CYP3A4 induction (n = 275, 67.90%), while the most common PD interactions were based on additive torsadogenicity (n = 391, 95.13%). Proposed measures for managing the identified DDIs included dose adjustments, drug substitutions, supplementary agents, parameters monitoring, or simply the avoidance of a given DDC. A significant heterogenicity was observed between the selected drug interaction databases, which can be mitigated by cross-referencing multiple databases in clinical practice.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department Pharmacy I, Discipline of Pharmaceutical Chemistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- "Prof. Dr. Ion Chiricuță" Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department Pharmacy II, Discipline of Clinical Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Adina Popa
- Department Pharmacy II, Discipline of Clinical Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Adina Nemeș
- "Prof. Dr. Ion Chiricuță" Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Oncology, Discipline of Medical Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cătălina-Angela Crișan
- Department of Neurosciences, Discipline of Psychiatry and Pediatric Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 43 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- First Psychiatric Clinic, Emergency County Hospital, 43 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
3
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
4
|
Advani P, Joseph B, Ambre P, Pissurlenkar R, Khedkar V, Iyer K, Gabhe S, Iyer RP, Coutinho E. In silico optimization of pharmacokinetic properties and receptor binding affinity simultaneously: a 'parallel progression approach to drug design' applied to β-blockers. J Biomol Struct Dyn 2015; 34:384-98. [PMID: 25854164 DOI: 10.1080/07391102.2015.1033646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.
Collapse
Affiliation(s)
- Poonam Advani
- a Department of Pharmaceutical Chemistry , C.U. Shah College of Pharmacy, S.N.D.T. Women's University , Mumbai , Maharashtra , India.,e Mumbai Educational Trust , Institute of Pharmacy , Bandra Reclamation, Bandra (W), Mumbai , India
| | - Blessy Joseph
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Premlata Ambre
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Raghuvir Pissurlenkar
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Vijay Khedkar
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Krishna Iyer
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Satish Gabhe
- c Department of Pharmaceutical Chemistry , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , India
| | | | - Evans Coutinho
- b Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| |
Collapse
|
5
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
6
|
Rebouças JS, James BR. Molecular Recognition Using Ruthenium(II) Porphyrin Thiol Complexes as Probes. Inorg Chem 2013; 52:1084-98. [DOI: 10.1021/ic302401m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Júlio S. Rebouças
- Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58.051-900,
Brazil
| | - Brian R. James
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Evaluation of structural features in fungal cytochromes P450 predicted to rule catalytic diversification. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:205-20. [DOI: 10.1016/j.bbapap.2012.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 01/11/2023]
|
8
|
Plowright AT, Nilsson K, Antonsson M, Amin K, Broddefalk J, Jensen J, Lehmann A, Jin S, St-Onge S, Tomaszewski MJ, Tremblay M, Walpole C, Wei Z, Yang H, Ulander J. Discovery of Agonists of Cannabinoid Receptor 1 with Restricted Central Nervous System Penetration Aimed for Treatment of Gastroesophageal Reflux Disease. J Med Chem 2012; 56:220-40. [DOI: 10.1021/jm301511h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alleyn T. Plowright
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Karolina Nilsson
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Madeleine Antonsson
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Kosrat Amin
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Johan Broddefalk
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Jörgen Jensen
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Anders Lehmann
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Shujuan Jin
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Stephane St-Onge
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Mirosław J. Tomaszewski
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Maxime Tremblay
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Christopher Walpole
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Zhongyong Wei
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Hua Yang
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Johan Ulander
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| |
Collapse
|
9
|
Insect cytochromes P450: Topology of structural elements predicted to govern catalytic versatility. J Inorg Biochem 2011; 105:1354-64. [DOI: 10.1016/j.jinorgbio.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 01/30/2023]
|
10
|
Conner KP, Woods C, Atkins WM. Interactions of cytochrome P450s with their ligands. Arch Biochem Biophys 2011; 507:56-65. [PMID: 20939998 PMCID: PMC3041843 DOI: 10.1016/j.abb.2010.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome P450s (CYPs) are heme-containing monooxygenases that contribute to an enormous range of enzymatic function including biosynthetic and detoxification roles. This review summarizes recent studies concerning interactions of CYPs with ligands including substrates, inhibitors, and diatomic heme-ligating molecules. These studies highlight the complexity in the relationship between the heme spin state and active site occupancy, the roles of water in directing protein-ligand and ligand-heme interactions, and the details of interactions between heme and gaseous diatomic CYP ligands. Both kinetic and thermodynamic aspects of ligand binding are considered.
Collapse
Affiliation(s)
- Kip P. Conner
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - Caleb Woods
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - William M. Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| |
Collapse
|
11
|
Mast N, Charvet C, Pikuleva IA, Stout CD. Structural basis of drug binding to CYP46A1, an enzyme that controls cholesterol turnover in the brain. J Biol Chem 2010; 285:31783-95. [PMID: 20667828 PMCID: PMC2951250 DOI: 10.1074/jbc.m110.143313] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/14/2010] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme.
Collapse
Affiliation(s)
- Natalia Mast
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Casey Charvet
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Irina A. Pikuleva
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - C. David Stout
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
12
|
Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal 2010; 13:1273-96. [PMID: 20446763 PMCID: PMC2959183 DOI: 10.1089/ars.2010.3109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
13
|
Jiang H, Zhong F, Sun L, Feng W, Huang ZX, Tan X. Structural and functional insights into polymorphic enzymes of cytochrome P450 2C8. Amino Acids 2010; 40:1195-204. [DOI: 10.1007/s00726-010-0743-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
|
14
|
Wang T, Yin Z, Zhang Z, Bender JA, Yang Z, Johnson G, Yang Z, Zadjura LM, D’Arienzo CJ, DiGiugno Parker D, Gesenberg C, Yamanaka GA, Gong YF, Ho HT, Fang H, Zhou N, McAuliffe BV, Eggers BJ, Fan L, Nowicka-Sans B, Dicker IB, Gao Q, Colonno RJ, Lin PF, Meanwell NA, Kadow JF. Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Attachment. 5. An Evolution from Indole to Azaindoles Leading to the Discovery of 1-(4-Benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a Drug Candidate That Demonstrates Antiviral Activity in HIV-1-Infected Subjects. J Med Chem 2009; 52:7778-87. [DOI: 10.1021/jm900843g] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Zheng Yang
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | - Lisa M. Zadjura
- Metabolism and Pharmacokinetics, Preclinical Candidate Optimization
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Gao
- Analytical Research and Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08901
| | | | | | | | | |
Collapse
|
15
|
Podust LM, Ouellet H, von Kries JP, de Montellano PRO. Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines. J Biol Chem 2009; 284:25211-9. [PMID: 19605350 DOI: 10.1074/jbc.m109.017632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis P450 enzymes are of interest for their pharmacological development potential, as evidenced by their susceptibility to inhibition by antifungal azole drugs that normally target sterol 14alpha-demethylase (CYP51). Although antifungal azoles show promise, direct screening of compounds against M. tuberculosis P450 enzymes may identify novel, more potent, and selective inhibitory scaffolds. Here we report that CYP130 from M. tuberculosis has a natural propensity to bind primary arylamines with particular chemical architectures. These compounds were identified via a high throughput screen of CYP130 with a library of synthetic organic molecules. As revealed by subsequent x-ray structure analysis, selected compounds bind in the active site by Fe-coordination and hydrogen bonding of the arylamine group to the carbonyl oxygen of Gly(243). As evidenced by the binding of structural analogs, the primary arylamine group is indispensable, but synergism due to hydrophobic contacts between the rest of the molecule and protein amino acid residues is responsible for a binding affinity comparable with that of the antifungal azole drugs. The topology of the CYP130 active site favors angular coordination of the arylamine group over the orthogonal coordination of azoles. Upon substitution of Gly(243) by an alanine, the binding mode of azoles and some arylamines reverted from type II to type I because of hydrophobic and steric interactions with the alanine side chain. We suggest a role for the conserved Ala(Gly)(243)-Gly(244) motif in the I-helix in modulating both the binding affinity of the axial water ligand and the ligand selectivity of cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Larissa M Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
16
|
Meng XY, Zheng QC, Zhang HX. A comparative analysis of binding sites between mouse CYP2C38 and CYP2C39 based on homology modeling, molecular dynamics simulation and docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1066-72. [PMID: 19358898 DOI: 10.1016/j.bbapap.2009.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/13/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Mouse CYP2C38 and CYP2C39 are two closely related enzymes with 91.8% sequence identity. But they exhibit different substrate binding features. In this study, three-dimensional models of CYP2C38 and CYP2C39 were constructed using X-ray crystal structure of human CYP2C8 as the template based on homology modeling methods and molecular dynamics simulations. Tolbutamide as the common substrate of CYP2C38 and CYP2C39 was docked into them and positioned in their active sites with different orientation. All-trans retinoic acid (atRA) is a specific substrate for CYP2C39 and not catalyzed by CYP2C38. By comparison of active site architectures between CYP2C38 and CYP2C39, the possible reasons affecting their substrate binding were proposed. In addition, Arg241, Glu300, Leu366 and Leu476 are identified as critical residue for substrates binding.
Collapse
Affiliation(s)
- Xuan-Yu Meng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China
| | | | | |
Collapse
|
17
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
18
|
Yu KL, Sin N, Civiello RL, Wang XA, Combrink KD, Gulgeze HB, Venables BL, Wright JJK, Dalterio RA, Zadjura L, Marino A, Dando S, D'Arienzo C, Kadow KF, Cianci CW, Li Z, Clarke J, Genovesi EV, Medina I, Lamb L, Colonno RJ, Yang Z, Krystal M, Meanwell NA. Respiratory syncytial virus fusion inhibitors. Part 4: optimization for oral bioavailability. Bioorg Med Chem Lett 2006; 17:895-901. [PMID: 17169560 DOI: 10.1016/j.bmcl.2006.11.063] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
A series of benzimidazole-based inhibitors of respiratory syncytial virus (RSV) fusion were optimized for antiviral potency, membrane permeability and metabolic stability in human liver microsomes. 1-Cyclopropyl-1,3-dihydro-3-[[1-(4-hydroxybutyl)-1H-benzimidazol-2-yl]methyl]-2H-imidazo[4,5-c]pyridin-2-one (6m, BMS-433771) was identified as a potent RSV inhibitor demonstrating good bioavailability in the mouse, rat, dog and cynomolgus monkey that demonstrated antiviral activity in the BALB/c and cotton rat models of infection following oral administration.
Collapse
Affiliation(s)
- Kuo-Long Yu
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|