1
|
Ismail NZ, Khairuddean M, Al-Anazi M, Arsad H. Tri-chalcone suppressed breast cancer cell proliferation and induced apoptosis through intrinsic and extrinsic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8993-9006. [PMID: 38874806 DOI: 10.1007/s00210-024-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer development depends critically on antiproliferative and apoptotic mechanisms. However, the mechanisms underlying the antiproliferative and apoptosis effects of breast cancer treated with tri-chalcone remain unclear. Tri-chalcones have been demonstrated in prior studies to inhibit the proliferation of breast cancer cells (MCF-7). Following the discovery, this study seeks to investigate the effect of tri-chalcone compounds on targets involved in antiproliferative and apoptosis mechanisms. In this study, we employed bioinformatics analysis along with in vitro evaluation using tri-chalcone-treated MCF-7 cells to determine the responses of antiproliferative and apoptosis mechanisms. The analysis revealed that the compounds interact with six apoptosis target receptors: TNFα, Bak, Bcl-2, caspase-9, and caspase-8. Tri-chalcone S1-2 exhibited the strongest binding affinities for TNFα (-7.39 kcal/mol), caspase-8 (-8.43 kcal/mol), caspase-9 (-8.53 kcal/mol), Bcl-2 (-8.51 kcal/mol), and Bak (-7.15 kcal/mol). The tri-chalcone S1-2 paired with the corresponding proteins showed minor flexibility and extremely small changes of less than 0.25 nm during the MD simulation. Additionally, tri-chalcone S1-2 had a significant inhibitory effect on the proliferation of MCF-7 cells (5.31 ± 0.26 µg/mL) compared to other compounds. S1-2 also induced apoptosis, affecting nearly half (43.80%) of the total early and late apoptosis in MCF-7 cells. S1-2-treated MCF-7 cells also demonstrated upregulations of genes TNFα (1.50), Bak (1.42), caspase-8 (1.24), and caspase-9 (1.61), accompanied by a downregulation of gene Bcl-2 (0.71). The discovery gives us a better understanding of how tri-chalcone S1-2 suppressed MCF-7 cell proliferation and induced apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
2
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
3
|
Yu M, Shen Z, Zhang S, Zhang Y, Zhao H, Zhang L. The active components of Erzhi wan and their anti-Alzheimer's disease mechanisms determined by an integrative approach of network pharmacology, bioinformatics, molecular docking, and molecular dynamics simulation. Heliyon 2024; 10:e33761. [PMID: 39027618 PMCID: PMC11255520 DOI: 10.1016/j.heliyon.2024.e33761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Erzhi Wan (EZW), a classic Traditional Chinese Medicine formula, has shown promise as a potential therapeutic option for Alzheimer's disease (AD), yet its mechanism remains elusive. Herein, we employed an integrative in-silico approach to investigate the active components and their mechanisms against AD. We screened four active components with blood-brain barrier permeabilities from TCMSP, along with 307 corresponding targets predicted by SwissTargetPrediction, PharmMapper, and TCMbank websites. Then, we retrieved 2260 AD-related targets from Genecards, OMIM, and NCBI databases. Furthermore, we constructed the protein-protein interaction (PPI) network of the intersected targets via the STRING database and performed the GO and KEGG enrichment analyses using the "clusterProfiler" R package. The results showed that the intersected targets were intimately related to the p53/PI3K/Akt signaling pathway, serotonergic synapse, and response to oxygen level. Subsequently, 25 core targets were found differentially expressed in brain regions by bioinformatics analyses of GEO datasets of clinical samples from the Alzdata database. The binding sites and stabilities between the active components and the core targets were investigated by the molecular docking approach using Autodock 4.2.6 software, followed by pocket detection and druggability assessment via the DoGSiteScorer server. The results showed that acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II strongly interacted with the druggable pockets of AR, CASP8, POLB, and PREP. Eventually, the docking results were further cross-referenced with the literature research and validated by 100 ns of molecular dynamics simulations using GROMACS software. Binding free energies were calculated via MM/PBSA strategy combined with interaction entropy. The simulation results indicated stable bindings between four docking pairs including acacetin-AR, acacetin-CASP8, β-sitosterol-POLB, and 3-O-acetyldammarenediol-II-PREP. Overall, our study demonstrated a theoretical basis for how three active components of EZW confer efficacy against AD. It provides a promising reference for subsequent research regarding drug discoveries and clinical applications.
Collapse
Affiliation(s)
- Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhongqi Shen
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Shaozhi Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Hongwei Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Longfei Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| |
Collapse
|
4
|
Wang W, Wang S, Li Y, Zhu M, Xu Q, Luo B, Liu Y, Liu Y. Network pharmacology, molecular docking, and in vitro experimental verification of the mechanism of Guanxining in treating diabetic atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117792. [PMID: 38290612 DOI: 10.1016/j.jep.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Sutong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qian Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China; The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Fikry E, Orfali R, El-Sayed SS, Perveen S, Ghafar S, El-Shafae AM, El-Domiaty MM, Tawfeek N. Potential Hepatoprotective Effects of Chamaecyparis lawsoniana against Methotrexate-Induced Liver Injury: Integrated Phytochemical Profiling, Target Network Analysis, and Experimental Validation. Antioxidants (Basel) 2023; 12:2118. [PMID: 38136237 PMCID: PMC10740566 DOI: 10.3390/antiox12122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Methotrexate (MTX) therapy encounters significant limitations due to the significant concern of drug-induced liver injury (DILI), which poses a significant challenge to its usage. To mitigate the deleterious effects of MTX on hepatic function, researchers have explored plant sources to discover potential hepatoprotective agents. This study investigated the hepatoprotective effects of the ethanolic extract derived from the aerial parts of Chamaecyparis lawsoniana (CLAE) against DILI, specifically focusing on MTX-induced hepatotoxicity. UPLC-ESI-MS/MS was used to identify 61 compounds in CLAE, with 31 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 195 potential DILI targets for the bioactive compounds, including TP53, IL6, TNF, HSP90AA1, EGFR, IL1B, BCL2, and CASP3 as top targets. In vivo experiments conducted on rats with acute MTX-hepatotoxicity revealed that administering CLAE orally at 200 and 400 mg/kg/day for ten days dose-dependently improved liver function, attenuated hepatic oxidative stress, inflammation, and apoptosis, and reversed the disarrayed hepatic histological features induced by MTX. In general, the findings of the present study provide evidence in favor of the hepatoprotective capabilities of CLAE in DILI, thereby justifying the need for additional preclinical and clinical investigations.
Collapse
Affiliation(s)
- Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Safina Ghafar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Maher M. El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| |
Collapse
|
6
|
Shi X, Huang B, Zhu J, Yamaguchi T, Hu A, Tabuchi M, Watanabe D, Yoshikawa S, Mizushima S, Mizushima A, Xia S. A network pharmacology-based investigation of emodin against pancreatic adenocarcinoma. Medicine (Baltimore) 2023; 102:e33521. [PMID: 37335741 DOI: 10.1097/md.0000000000033521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyi Zhu
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Takuji Yamaguchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ailing Hu
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Tabuchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiichiro Yoshikawa
- Cancer therapeutic center, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Akio Mizushima
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Carmo Bastos ML, Silva-Silva JV, Neves Cruz J, Palheta da Silva AR, Bentaberry-Rosa AA, da Costa Ramos G, de Sousa Siqueira JE, Coelho-Ferreira MR, Percário S, Santana Barbosa Marinho P, Marinho AMDR, de Oliveira Bahia M, Dolabela MF. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16050765. [PMID: 37242548 DOI: 10.3390/ph16050765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer is among the major causes of death from neoplasia leading causes of death worldwide, with high incidence rates and problems related to its treatment. Here, we outline how Geissospermum sericeum exerts antitumor activity on the ACP02 cell line (human gastric adenocarcinoma) and the mechanism of cell death. The ethanol extract and fractions, neutral fraction and alkaloid fraction, were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid (geissoschizoline N4-methylchlorine) identified by NMR. The cytotoxicity activity of the samples (ethanol extract, neutral fraction, alkaloid fraction, and geissoschizoline N4-methylchlorine) in HepG2 and VERO cells was determined by MTT. The ACP02 cell line was used to assess the anticancer potential. Cell death was quantified with the fluorescent dyes Hoechst 33342, propidium iodide, and fluorescein diacetate. The geissoschizoline N4-methylchlorine was evaluated in silico against caspase 3 and 8. In the antitumor evaluation, there was observed a more significant inhibitory effect of the alkaloid fraction (IC50 18.29 µg/mL) and the geissoschizoline N4-methylchlorine (IC50 12.06 µg/mL). However, geissoschizoline N4-methylchlorine showed lower cytotoxicity in the VERO (CC50 476.0 µg/mL) and HepG2 (CC50 503.5 µg/mL) cell lines, with high selectivity against ACP02 cells (SI 39.47 and 41.75, respectively). The alkaloid fraction showed more significant apoptosis and necrosis in 24 h and 48 h, with increased necrosis in higher concentrations and increased exposure time. For the alkaloid, apoptosis and necrosis were concentration- and time-dependent, with a lower necrosis rate. Molecular modeling studies demonstrated that geissoschizoline N4-methylchlorine could occupy the active site of caspases 3 and 8 energetically favorably. The results showed that fractionation contributed to the activity with pronounced selectivity for ACP02 cells, and geissoschizoline N4-methylchlor is a promising candidate for caspase inhibitors of apoptosis in gastric cancer. Thus, this study provides a scientific basis for the biological functions of Geissospermum sericeum, as well as demonstrates the potential of the geissoschizoline N4-methylchlorine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Mirian Letícia Carmo Bastos
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor Silva-Silva
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Jorddy Neves Cruz
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Gisele da Costa Ramos
- Post-Graduate Program in Chemistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Márlia Regina Coelho-Ferreira
- Emílio Goeldi Paraense Museum, Coordination of Botany, Ministry of Science, Technology, Innovation and Communications, Belém 66077-830, PA, Brazil
| | - Sandro Percário
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Marcelo de Oliveira Bahia
- Laboratory of Human Cytogenetic, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Fâni Dolabela
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
8
|
Synthesis and Chemopreventive Potential of 5-FU/Genistein Hybrids on Colorectal Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15101299. [PMID: 36297411 PMCID: PMC9606943 DOI: 10.3390/ph15101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
A series of 5-FU-Genistein hybrids were synthesized and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated in human colon adenocarcinoma cells (SW480 and SW620) and non-malignant cell lines (HaCaT and CHO-K1). Hybrid 4a displayed cytotoxicity against SW480 and SW620 cells with IC50 values of 62.73 ± 7.26 µM and 50.58 ± 1.33 µM, respectively; compound 4g induced cytotoxicity in SW620 cells with an IC50 value of 36.84 ± 0.71 µM. These compounds were even more selective than genistein alone, the reference drug (5-FU) and the equimolar mixture of genistein plus 5-FU. In addition, hybrids 4a and 4g induced time- and concentration-dependent antiproliferative activity and cell cycle arrest at the S-phase and G2/M. It was also observed that hybrid 4a induced apoptosis in SW620 cells probably triggered by the extrinsic pathway in response to the activation of p53, as evidenced by the increase in the levels of caspases 3/8 and the tumor suppressor protein (Tp53). Molecular docking studies suggest that the most active compound 4a would bind efficiently to proapoptotic human caspases 3/8 and human Tp53, which in turn could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. On the other hand, molecular dynamics (MD) studies provided strong evidence of the conformational stability of the complex between caspase-3 and hybrid 4a obtained throughout 100 ns all-atom MD simulation. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of the complex with caspase-3 showed that the interaction between the ligand and the target protein is stable. Altogether, the results suggest that the active hybrids, mainly compound 4a, might act by modulating caspase-3 activity in a colorectal cancer model, making it a privileged scaffold that could be used in future investigations.
Collapse
|
9
|
Noureldeen AFH, Aziz SW, Shouman SA, Mohamed MM, Attia YM, Ramadan RM, Elhady MM. Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)-Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013624. [PMID: 36294202 PMCID: PMC9603487 DOI: 10.3390/ijerph192013624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.
Collapse
Affiliation(s)
- Amani F. H. Noureldeen
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Safa W. Aziz
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Samia A. Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Magdy M. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Attia
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.F.H.N.); (R.M.R.)
| | - Mostafa M. Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
10
|
Ismail NZ, Mohamed WAS, Ab Rahim N, Hashim NM, Adebayo IA, Mohamad Zain NN, Arsad H. Molecular docking and molecular dynamic simulations of apoptosis proteins with potential anticancer compounds present in Clinacanthus nutans extract using gas chromatography-mass spectrometry. J Biomol Struct Dyn 2022:1-17. [PMID: 35899385 DOI: 10.1080/07391102.2022.2101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Clinacanthus nutans is a medicinal plant recognised for its anticancer properties. We previously discovered that the C. nutans extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of C. nutans-derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the C. nutans extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of C. nutans were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wan Ahmad Syazani Mohamed
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Coordination of Clinical Research Network, National Institute of Health, Shah Alam, Malaysia
| | - Nurhidayah Ab Rahim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.,Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | - Nor Munira Hashim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Ismail Abiola Adebayo
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Ishaka, Uganda.,Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
11
|
Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6153772. [PMID: 35571249 PMCID: PMC9095366 DOI: 10.1155/2022/6153772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an efficient antitumor anthracycline drug, but its cardiotoxicity adversely affects the prognosis of the patients. In this study, we explored whether endogenous gasotransmitter hydrogen sulfide (H2S) could protect against DOX-induced cardiomyocyte apoptosis and its mechanisms. The results indicated that DOX significantly downregulated endogenous H2S production and endogenous synthetase cystathionine γ-lyase (CSE) expression and obviously stimulated the apoptosis in H9C2 cells. The supplement of H2S donor sodium hydrosulfide (NaHS) or overexpression of CSE inhibited DOX-induced H9C2 cell apoptosis. DOX enhanced the activities of caspase family members in cardiomyocytes, while NaHS attenuated DOX-enhanced caspase-3, caspase-2, and caspase-9 activities by 223.1%, 73.94%, and 52.29%, respectively. Therefore, taking caspase-3 as a main target, we demonstrated that NaHS or CSE overexpression alleviated the cleavage of caspase-3, suppressed caspase-3 activity, and inhibited the cleavage of poly ADP-ribose polymerase (PARP). Mechanistically, we found that H2S persulfidated caspase-3 in H9C2 cells and human recombinant caspase-3 protein, while the thiol-reducing agent dithiothreitol (DTT) abolished H2S-induced persulfidation of caspase-3 and thereby prevented the antiapoptotic effect of H2S on caspase-3 in H9C2 cells. The mutation of caspase-3 C148S and C170S failed to block caspase-3 persulfidation by H2S in H9C2 cells. However, caspase-3 C163S mutation successfully abolished the effect of H2S on caspase-3 persulfidation and the corresponding protection of H9C2 cells. Collectively, these findings indicate that endogenous H2S persulfidates caspase-3 at cysteine 163, inhibiting its activity and cardiomyocyte apoptosis. Sufficient endogenous H2S might be necessary for the protection against myocardial cell apoptosis induced by DOX. The results of the study might open new avenues with respect to the therapy of DOX-stimulated cardiomyopathy.
Collapse
|
12
|
Peng T, Tao X, Xia Z, Hu S, Xue J, Zhu Q, Pan X, Zhang Q, Li S. Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. Mol Cell 2022; 82:1806-1820.e8. [PMID: 35338844 DOI: 10.1016/j.molcel.2022.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Caspases are evolutionarily conserved cysteine proteases that are essential for regulating cell death and are involved in multiple development and disease processes, including immunity. Here, we show that the bacterial type III secretion system (T3SS) effector CopC (Chromobacterium outer protein C) from the environmental pathogen Chromobacterium violaceum attacks caspase-3/-7/-8/-9 by ADPR-deacylization to dysregulate programmed cell death, including apoptosis, necroptosis, and pyroptosis. This modification involves ADP-ribosylation- and deamination-mediated cyclization on Arg207 of caspase-3 by a mechanism that requires the eukaryote-specific protein calmodulin (CaM), leading to inhibition of caspase activity. The manipulation of cell death signaling by CopC is essential for the virulence of C. violaceum in a mouse infection model. CopC represents a family of enzymes existing in taxonomically diverse bacteria associated with a wide spectrum of eukaryotes ranging from humans to plants. The unique activity of CopC establishes a mechanism by which bacteria counteract host defenses through a previously unrecognized post-translational modification.
Collapse
Affiliation(s)
- Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinyuan Tao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhujun Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiuyu Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shan Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Ma XY, Zhang M, Fang G, Cheng CJ, Wang MK, Han YM, Hou XT, Hao EW, Hou YY, Bai G. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo. Acta Pharmacol Sin 2021; 42:1101-1110. [PMID: 33028983 PMCID: PMC8209164 DOI: 10.1038/s41401-020-00534-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the pathogenic factors of chronic liver disease with the highest clinical morbidity worldwide. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, has shown many health benefits including antioxidative, anti-inflammatory, anticancer, and hepatoprotective activities. We previously found that UA was metabolized in vivo into epoxy-modified UA containing an epoxy electrophilic group and had the potential to react with nucleophilic groups. In this study we prepared an alkynyl-modified UA (AM-UA) probe for tracing and capturing the target protein of UA from liver in mice, then investigated the mode by which UA bound to its target in vivo. By conducting proteome identification and bioinformatics analysis, we identified caspase-3 (CASP3) as the primary target protein of UA associated with liver protection. Molecule docking analysis showed that the epoxy group of the UA metabolite reacted with Cys-163 of CASP3, forming a covalent bond with CASP3. The binding mode of the UA metabolites (UA, CM-UA, and EM-UA) was verified by biochemical evaluation, demonstrating that the epoxy group produced by metabolism played an important role in the inhibition of CASP3. In alcohol-treated HepG2 cells, pretreatment with the UA metabolite (10 μM) irreversibly inhibited CASP3 activities, and subsequently decreased the cleavage of PARP and cell apoptosis. Finally, pre-administration of UA (20-80 mg· kg-1 per day, ig, for 1 week) dose-dependently alleviated alcohol-induced liver injury in mice mainly via the inhibition of CASP3. In conclusion, this study demonstrates that UA is a valuable lead compound for the treatment of ALD.
Collapse
Affiliation(s)
- Xiao-Yao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Ge Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Chuan-Jing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Mu-Kuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Yi-Man Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Xiao-Tao Hou
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Er-Wei Hao
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuan-Yuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| |
Collapse
|
14
|
Kоbylinska L, Khylyuk D, Subtelna I, Kitsera M, Lesyk R. In silico identification and biochemical validation of plausible molecular targets of 4-thiazolidinone derivative Les-3833 as a potential anticancer agent. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
15
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
16
|
Cryo-EM structural analysis of FADD:Caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nat Commun 2021; 12:819. [PMID: 33547302 PMCID: PMC7864959 DOI: 10.1038/s41467-020-20806-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome. The core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP, coordinate cell fate. Here authors present the structure of full-length procaspase-8 in a complex with FADD and reveal how recruitment of c-FLIPS into this complex inhibits Caspase-8 activity.
Collapse
|
17
|
Gizawy MA, El-Tahawy MMT, Motaleb MA. Radiosynthesis, molecular modeling and biodistribution of 99mTc-Protoporphyrin as a preclinical model for tumor diagnosis. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrins are among the most important and widely used compounds involved in a variety of chemical and biochemical applications. These molecules exhibit very special properties that encourage researchers to label many derivatives with diagnostic or therapeutic radionuclides for medical applications. This study reports the radiolabeling and biodistribution of [Formula: see text]Tc-protoporphyrin IX ([Formula: see text]Tc-PPIX) as a novel potential solid-tumor imaging agent. The factors affecting the radiolabeling process were varied to achieve maximum radiochemical yield. [Formula: see text]Tc-PPIX was obtained in high yield of 97.34 ± 0.21% and high stability in serum up to 24 h. The radiochemical yield of [Formula: see text]Tc-PPIX was assessed by a combination of a paper chromatographic technique and HPLC. A computational analysis for all the potential structures that may be formed due to the interaction between protoporphyrin IX and technetium was performed via the DFT method of calculations in gas phase to predict the most likely structure. Molecular docking was further employed to shed light on the nature of the interaction between the most stable complexes with the target protein. Finally, the in-vivo biodistribution of [Formula: see text]Tc-PPIX complex was evaluated in solid-tumor-bearing mice and high tumor/tissue ratio of 5.17 ± 0.34 at 60 min post injection was obtained. Our finding clearly suggests [Formula: see text]Tc-PPIX as a potential SPECT agent for tumor imaging.
Collapse
Affiliation(s)
- Mohamed A. Gizawy
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
- Radioisotopes Production Facility (RPF), Egyptian Second Research Reactor (ETRR-2), Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | | | - Mohamed A. Motaleb
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
18
|
Jiang GJ, Fan TJ. Novel techniques to prevent apoptosis and improve regeneration in corneal endothelial cells. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1794821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Guo-Jian Jiang
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Pathak N, Fatima K, Singh S, Mishra D, Gupta AC, Kumar Y, Chanda D, Bawankule DU, Shanker K, Khan F, Gupta A, Luqman S, Negi AS. Bivalent furostene carbamates as antiproliferative and antiinflammatory agents. J Steroid Biochem Mol Biol 2019; 194:105457. [PMID: 31454535 DOI: 10.1016/j.jsbmb.2019.105457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023]
Abstract
Breast cancer is the most prevalent cancer in women affecting about 12% of world's female population. It is a multifactorial disease, mostly invasive in nature. Diosgenin and related compounds are potent antiproliferative agents. Carbamate derivatives have been synthesized at C26 of furostene ring after opening spiroketal bond (F-ring) of diosgenin. Compound 10 possessed significant antiproliferative activity against human breast cancer cells by arresting the population at G1 phase of cell division cycle and induced apoptosis. Induction of apoptosis was observed through the caspase signalling cascade by activating caspase-3. Moreover, carbamate 10 exhibited moderate antiinflammatory activity by decreasing the expression of cytokines, TNF-α and IL-6 in LPS-induced inflammation in primary macrophage cells. Furthermore, compound 10 significantly reduced Ehrlich ascites carcinoma significantly in mice. It was well tolerated and safe in acute oral toxicity in Swiss albino mice. The concomitant anticancer and antiinflammatory properties of carbamate 10 are important and thus, can further be optimized for a better anti-breast cancer candidate.
Collapse
Affiliation(s)
- Nandini Pathak
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India
| | - Kaneez Fatima
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sneha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India
| | - Divya Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India
| | - Amit Chand Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India
| | - Yogesh Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - D U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Atul Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Yu HS, Gao C, Lupyan D, Wu Y, Kimura T, Wu C, Jacobson L, Harder E, Abel R, Wang L. Toward Atomistic Modeling of Irreversible Covalent Inhibitor Binding Kinetics. J Chem Inf Model 2019; 59:3955-3967. [PMID: 31425654 DOI: 10.1021/acs.jcim.9b00268] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent inhibitors have emerged as an important drug class in recent years, largely due to their many unique advantages as compared to noncovalent inhibitors, including longer duration of action, lower prolonged systemic exposure, higher potency, and selectivity. However, the potential off-target toxicity of covalent inhibitors, particularly of irreversible covalent inhibitors, represents a great challenge in covalent drug development. Therefore, accurate calculation of protein covalent inhibitor reaction kinetics to guide the design of selective inhibitors would greatly benefit covalent drug discovery efforts. In the present paper, we present a computational method to calculate the relative reaction kinetics between congeneric irreversible covalent inhibitors and their protein receptors. The method combines density functional theory calculations of the transition state barrier height of the rate-limiting step for reaction between the warhead of the inhibitor and a single protein residue, and molecular-mechanics-based free energy calculations to account for the interactions between the ligand in the transition state and the protein environment. The method was tested on four pharmaceutically interesting irreversible covalent binding systems involving 28 ligands; the mean unsigned error (MUE) of the relative reaction rate for all pairs of ligands between the predictions and experimental results for these tested systems is 0.79 log unit. This is to our knowledge the first time where the reaction kinetics of protein irreversible covalent inhibition have been directly calculated with physics-based free energy calculation methods and transition state theory. We anticipate the outstanding accuracy demonstrated here across a broad range of target classes will have a strong impact on the design of selective covalent inhibitors.
Collapse
Affiliation(s)
- Haoyu S Yu
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Cen Gao
- Eli Lilly and Company , Lilly Corporate Center , Indianapolis , Indiana 46285 , United States
| | - Dmitry Lupyan
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Yujie Wu
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Takayuki Kimura
- Schrodinger, Inc. , 101 SW Main Street, Suite 1300 , Portland , Oregon 97204 , United States
| | - Chuanjie Wu
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Leif Jacobson
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Edward Harder
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Robert Abel
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Lingle Wang
- Schrodinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| |
Collapse
|
21
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Spinello A, Vecile E, Abbate A, Dobrina A, Magistrato A. How Can Interleukin-1 Receptor Antagonist Modulate Distinct Cell Death Pathways? J Chem Inf Model 2019; 59:351-359. [PMID: 30586302 DOI: 10.1021/acs.jcim.8b00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple mechanisms of cell death exist (apoptosis, necroptosis, pyroptosis) and the subtle balance of several distinct proteins and inhibitors tightly regulates the cell fate toward one or the other pathway. Here, by combining coimmunoprecipitation, enzyme assays, and molecular simulations, we ascribe a new role, within this entangled regulatory network, to the interleukin-1 receptor antagonist (IL-1Ra). Our study enlightens that IL-1Ra, which usually inhibits the inflammatory effects of IL-1α/β by binding to IL-1 receptor, under advanced pathological states prevents apoptosis and/or necroptosis by noncompetitively inhibiting the activity of caspase-8 and -9. Consensus docking, followed by cumulative 10 μs of molecular dynamics simulations unprecedentedly reveal that IL-1Ra binds both caspases at their dimeric interface, preventing, in this manner, the formation of their catalytically/signaling active form. The resulting IL-1Ra/caspase-8(9) adducts are stabilized by hydrophobic and by few key hydrogen bonding interactions, formed by residues fully conserved across distinct caspases (-3, -6, -7, -8, and -9), and closely resemble the binding mode of the caspases inhibitors XIAP (X-linked inhibitor of apoptosis) and c-FLIP (cellular FLICE-like inhibitory protein). Tight regulation of the different forms of cell death has a major impact on distinct human illnesses (i.e., cancer, neurodegeneration, ischemic injury, atherosclerosis, viral/bacterial infections, and immune reaction). Hence, our study, pinpointing IL-1Ra as new actor of the intricate cell death regulatory network and gaining an atomic-scale understanding of its mechanism may open new avenues toward innovative therapeutic strategies to tackle major human diseases.
Collapse
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| | - Elena Vecile
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center , Virginia Commonwealth University , 1200 E Broad St , PO Box 980281, Richmond , Virginia United States of America
| | - Aldo Dobrina
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| |
Collapse
|
23
|
Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding. Comput Biol Chem 2017; 71:117-128. [PMID: 29153890 DOI: 10.1016/j.compbiolchem.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S1; π stack with bicyclic isatin moiety), Gly122 (S1; H bond with carbonyl oxygen) and Tyr204 (S2; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors.
Collapse
|
25
|
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, Hirota JA, Wood LG, Simpson JL, Knight DA, Wark PA, Gibson PG, O'Neill LAJ, Cooper MA, Horvat JC, Hansbro PM. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 2017; 196:283-297. [PMID: 28252317 DOI: 10.1164/rccm.201609-1830oc] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. OBJECTIVES To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. METHODS We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. MEASUREMENTS AND MAIN RESULTS Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1β-induced steroid-resistant airway hyperresponsiveness. CONCLUSIONS NLRP3 inflammasome responses drive experimental severe, steroid-resistant asthma and are potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Richard Y Kim
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ama T Essilfie
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avril A B Robertson
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine J Baines
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alexandra C Brown
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Khadem Ali
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeremy A Hirota
- 3 James Hogg Research Centre, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Lisa G Wood
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jodie L Simpson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl A Knight
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Luke A J O'Neill
- 4 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthew A Cooper
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jay C Horvat
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Byler KG, Collins JT, Ogungbe IV, Setzer WN. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem 2016; 64:163-184. [DOI: 10.1016/j.compbiolchem.2016.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/08/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
|
27
|
Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening. Chem Biol Interact 2016; 254:207-20. [PMID: 27291469 DOI: 10.1016/j.cbi.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
Abstract
Enormous caspase-3-non-peptide crystal structures have been developed to study the structural basis of caspase-3 enzyme inhibition using active site directed small molecular design. These complexes have not been explored thoroughly to decipher the essential non-covalent interactions made by crystal ligands. We present here a multi-level analysis of these caspase-3 complexes using structure-based pharmacophore approach wherein numerous candidate pharmacophore hypotheses were assessed for its ability to cover available caspase-3 small molecular inhibitor dataset. The reliability of the resultant pharmacophores was evaluated using three different validation sets comprising focussed caspase-3 inhibitors, focussed + random decoys, and focussed + structurally similar random decoys and its performance was measured by the Güner-Henry (GH) scoring and enrichment statistics. Furthermore, the effect on excluded volumes toward caspase-3 inhibitors mapping was investigated by an iterative deletion in the structure-based models and created optimal structure-based pharmacophore models to enable effective design of caspase-3 small molecular inhibitor design.
Collapse
|
28
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
29
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
30
|
Buscemi G, Ricci C, Zannini L, Fontanella E, Plevani P, Delia D. Bimodal regulation of p21(waf1) protein as function of DNA damage levels. Cell Cycle 2015; 13:2901-12. [PMID: 25486478 PMCID: PMC4615108 DOI: 10.4161/15384101.2014.946852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human p21Waf1 protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21Waf1 protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21Waf1 on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21Waf1 degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21Waf1 at any dose of damage. We also found that p21Waf1 ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21Waf1 protein levels in relation to cytostatic and cytotoxic doses of DNA damage.
Collapse
Affiliation(s)
- G Buscemi
- a Department of Experimental Oncology; Fondazione IRCCS Istituto Nazionale dei Tumori ; Milan , Italy
| | | | | | | | | | | |
Collapse
|
31
|
Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet. Sci Rep 2014; 4:7589. [PMID: 25534001 PMCID: PMC4274518 DOI: 10.1038/srep07589] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/28/2014] [Indexed: 12/03/2022] Open
Abstract
Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.
Collapse
|
32
|
Vickers CJ, González-Páez GE, Litwin KM, Umotoy JC, Coutsias EA, Wolan DW. Selective inhibition of initiator versus executioner caspases using small peptides containing unnatural amino acids. ACS Chem Biol 2014; 9:2194-8. [PMID: 25079698 DOI: 10.1021/cb5004256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caspases are fundamental to many essential biological processes, including apoptosis, differentiation, and inflammation. Unregulated caspase activity is also implicated in the development and progression of several diseases, such as cancer, neurodegenerative disorders, and sepsis. Unfortunately, it is difficult to determine exactly which caspase(s) of the 11 isoforms that humans express is responsible for specific biological functions. This lack of resolution is primarily due to highly homologous active sites and overlapping substrates. Currently available peptide-based inhibitors and probes are based on specificity garnered from peptide substrate libraries. For example, the canonical tetrapeptide LETD was discovered as the canonical sequence that is optimally recognized by caspase-8; however, LETD-based inhibitors and substrates promiscuously bind to other isoforms with equal affinity, including caspases-3, -6, and -9. In order to mitigate this problem, we report the identification of a new series of compounds that are >100-fold selective for inhibiting the initiator caspases-8 and -9 over the executioner caspases-3, -6, and -7.
Collapse
Affiliation(s)
- Chris J. Vickers
- Departments
of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gonzalo E. González-Páez
- Departments
of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kevin M. Litwin
- Departments
of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey C. Umotoy
- Departments
of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Evangelos A. Coutsias
- Department
of Applied Mathematics and Statistics and Laufer Center for Physical
and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Dennis W. Wolan
- Departments
of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Hamid AA, Hasanain M, Singh A, Bhukya B, Vasudev PG, Sarkar J, Chanda D, Khan F, Aiyelaagbe OO, Negi AS. Synthesis of novel anticancer agents through opening of spiroacetal ring of diosgenin. Steroids 2014; 87:108-18. [PMID: 24929045 DOI: 10.1016/j.steroids.2014.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Diosgenin has been modified to furostane derivatives after opening the F-spiroacetal ring. The aldehyde group at C26 in derivative 8 was unexpectedly transformed to the ketone 9. The structure of ketone 9 was confirmed by spectroscopy and finally by X-ray crystallography. Five of the diosgenin derivatives showed significant anticancer activity against human cancer cell lines. The most potent molecule of this series i.e. compound 7, inhibited cellular growth by arresting the population at G0/G1 phase of cell division cycle. Cells undergo apoptosis after exposure to the derivative 7 which was evident by increase in sub G0 population in cell cycle analysis. Docking experiments showed caspase-3 and caspase-9 as possible molecular targets for these compounds. This was further validated by cleavage of PARP, a caspase target in apoptotic pathway. Compound 7 was found non-toxic up to 1000mg/kg dose in acute oral toxicity in Swiss albino mice.
Collapse
Affiliation(s)
- A A Hamid
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India; Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Mohammad Hasanain
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arjun Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Balakishan Bhukya
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Prema G Vasudev
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - O O Aiyelaagbe
- Organic Chemistry Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
34
|
Hight MR, Cheung YY, Nickels ML, Dawson ES, Zhao P, Saleh S, Buck JR, Tang D, Washington MK, Coffey RJ, Manning HC. A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 2014; 20:2126-35. [PMID: 24573549 PMCID: PMC3989451 DOI: 10.1158/1078-0432.ccr-13-2444] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Apoptosis, or programmed cell death, can be leveraged as a surrogate measure of response to therapeutic interventions in medicine. Cysteine aspartic acid-specific proteases, or caspases, are essential determinants of apoptosis signaling cascades and represent promising targets for molecular imaging. Here, we report development and in vivo validation of [(18)F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone ([(18)F]FB-VAD-FMK), a novel peptide-based molecular probe suitable for quantification of caspase activity in vivo using positron emission tomography (PET). EXPERIMENTAL DESIGN Supported by molecular modeling studies and subsequent in vitro assays suggesting probe feasibility, the labeled pan-caspase inhibitory peptide, [(18)F]FB-VAD-FMK, was produced in high radiochemical yield and purity using a simple two-step, radiofluorination. The biodistribution of [(18)F]FB-VAD-FMK in normal tissue and its efficacy to predict response to molecularly targeted therapy in tumors was evaluated using microPET imaging of mouse models of human colorectal cancer. RESULTS Accumulation of [(18)F]FB-VAD-FMK was found to agree with elevated caspase-3 activity in response to Aurora B kinase inhibition as well as a multidrug regimen that combined an inhibitor of mutant BRAF and a dual PI3K/mTOR inhibitor in (V600E)BRAF colon cancer. In the latter setting, [(18)F]FB-VAD-FMK PET was also elevated in the tumors of cohorts that exhibited reduction in size. CONCLUSIONS These studies illuminate [(18)F]FB-VAD-FMK as a promising PET imaging probe to detect apoptosis in tumors and as a novel, potentially translatable biomarker for predicting response to personalized medicine.
Collapse
Affiliation(s)
- Matthew R. Hight
- Interdisciplinary Materials Science Program, Department of Physics & Astronomy Department, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael L. Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric S. Dawson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt University Center for Structural Biology (CSB), Vanderbilt University, Nashville, Tennessee 37232
| | - Ping Zhao
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Samir Saleh
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jason R. Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Robert J. Coffey
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232
- Department of Veterans Affairs Medical Center, Nashville, Tennessee 37232
| | - H. Charles Manning
- Interdisciplinary Materials Science Program, Department of Physics & Astronomy Department, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232
- Department of Veterans Affairs Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
35
|
Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Methods Enzymol 2014; 544:215-49. [PMID: 24974292 DOI: 10.1016/b978-0-12-417158-9.00009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most promising and as yet underutilized means of regulating protein function is exploitation of allosteric sites. All caspases catalyze the same overall reaction, but they perform different biological roles and are differentially regulated. It is our hypothesis that many allosteric sites exist on various caspases and that understanding both the distinct and overlapping mechanisms by which each caspase can be allosterically controlled should ultimately enable caspase-specific inhibition. Here we describe the ongoing work and methods for compiling a comprehensive map of apoptotic caspase allostery. Central to this approach are the use of (i) the embedded record of naturally evolved allosteric sites that are sensitive to zinc-mediated inhibition, phosphorylation, and other posttranslational modifications, (ii) structural and mutagenic approaches, and (iii) novel binding sites identified by both rationally-designed and screening-derived small-molecule inhibitors.
Collapse
Affiliation(s)
- Kevin Dagbay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Scott J Eron
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Banyuhay P Serrano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Yunlong Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Di Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sravanti Vaidya
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
36
|
Zapf CW, Gerstenberger BS, Xing L, Limburg DC, Anderson DR, Caspers N, Han S, Aulabaugh A, Kurumbail R, Shakya S, Li X, Spaulding V, Czerwinski RM, Seth N, Medley QG. Covalent Inhibitors of Interleukin-2 Inducible T Cell Kinase (Itk) with Nanomolar Potency in a Whole-Blood Assay. J Med Chem 2012; 55:10047-63. [DOI: 10.1021/jm301190s] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christoph W. Zapf
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - Brian S. Gerstenberger
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Li Xing
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - David C. Limburg
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David R. Anderson
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ann Aulabaugh
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ravi Kurumbail
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Subarna Shakya
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Xin Li
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Vikki Spaulding
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Robert M. Czerwinski
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Nilufer Seth
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Quintus G. Medley
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
37
|
The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorg Med Chem Lett 2012; 22:3900-4. [PMID: 22617491 DOI: 10.1016/j.bmcl.2012.04.124] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 Å resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1' (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.
Collapse
|
38
|
Hart MJ, Glicksman M, Liu M, Sharma MK, Cuny G, Galvan V. Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Anal Biochem 2012; 421:467-76. [DOI: 10.1016/j.ab.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 01/17/2023]
|
39
|
Kim KH, Maderna A, Schnute ME, Hegen M, Mohan S, Miyashiro J, Lin L, Li E, Keegan S, Lussier J, Wrocklage C, Nickerson-Nutter CL, Wittwer AJ, Soutter H, Caspers N, Han S, Kurumbail R, Dunussi-Joannopoulos K, Douhan J, Wissner A. Imidazo[1,5-a]quinoxalines as irreversible BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 2011; 21:6258-63. [DOI: 10.1016/j.bmcl.2011.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 01/28/2023]
|
40
|
Häcker HG, Sisay MT, Gütschow M. Allosteric modulation of caspases. Pharmacol Ther 2011; 132:180-95. [DOI: 10.1016/j.pharmthera.2011.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022]
|