1
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
3
|
Kappen J, Manurung J, Fuchs T, Vemulapalli SPB, Schmitz LM, Frolov A, Agusta A, Muellner-Riehl AN, Griesinger C, Franke K, Wessjohann LA. Challenging Structure Elucidation of Lumnitzeralactone, an Ellagic Acid Derivative from the Mangrove Lumnitzera racemosa. Mar Drugs 2023; 21:md21040242. [PMID: 37103381 PMCID: PMC10144801 DOI: 10.3390/md21040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed aromatic ring system, was unambiguously elucidated by extensive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and 1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi have been suggested.
Collapse
Affiliation(s)
- Jonas Kappen
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Jeprianto Manurung
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Tristan Fuchs
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Sahithya Phani Babu Vemulapalli
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Lea M Schmitz
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Alexandra N Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Medeiros WB, Medina KJD, Sponchiado SRP. Improved natural melanin production by Aspergillus nidulans after optimization of factors involved in the pigment biosynthesis pathway. Microb Cell Fact 2022; 21:278. [PMID: 36585654 PMCID: PMC9801647 DOI: 10.1186/s12934-022-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Melanin is a natural pigment that can be applied in different fields such as medicine, environment, pharmaceutical, and nanotechnology. Studies carried out previously showed that the melanin produced by the mel1 mutant from Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities, without any cytotoxic or mutagenic effect. These results taken together suggest the potential application of melanin from A. nidulans in the pharmaceutical industry. In this context, this study aimed to evaluate the effect of factors L-tyrosine, glucose, glutamic acid, L-DOPA, and copper on melanin production by the mel1 mutant and to establish the optimal concentration of these factors to maximize melanin production. RESULTS The results showed that L-DOPA, glucose, and copper sulfate significantly affected melanin production, where L-DOPA was the only factor that exerted a positive effect on melanin yield. Besides, the tyrosinase activity was higher in the presence of L-DOPA, considered a substrate required for enzyme activation, this would explain the increased production of melanin in this condition. After establishing the optimal concentrations of the analyzed factors, the melanin synthesis was increased by 640% compared to the previous studies. CONCLUSIONS This study contributed to elucidating the mechanisms involved in melanin synthesis in A. nidulans as well as to determining the optimal composition of the culture medium for greater melanin production that will make it possible to scale the process for a future biotechnological application.
Collapse
Affiliation(s)
- William Bartolomeu Medeiros
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
- Division of Microbial Resources - Research Center for Agriculture, Biology, and Chemical, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Kelly Johana Dussán Medina
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
5
|
Kaya ED, Türkhan A, Gür F, Gür B. A novel method for explaining the product inhibition mechanisms via molecular docking: inhibition studies for tyrosinase from Agaricus bisporus. J Biomol Struct Dyn 2021; 40:7926-7939. [PMID: 33779508 DOI: 10.1080/07391102.2021.1905069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study aims to investigate the substrate (4-methyl catechol and catechol) specificity and inhibition mechanisms (l-ascorbic acid, citric acid, and l-cysteine) of the tyrosinase enzyme (TYR), which is held responsible for browning in foods and hyperpigmentation in the human skin, through kinetic and molecular docking studies. During the experimental studies, the diphenolase activities of TYR were determined, following which the inhibitory effects of the inhibitors upon the diphenolase activities of TYR. The inhibition types were determined as competitively for l-ascorbic acid and citric acid and noncompetitive for l-cysteine. The kinetic results showed that the substrate specificity was better for catechol while l-cysteine showed the best inhibition profile. As for the in silico studies, they also showed that catechol had a better affinity in line with the experimental results of this study, considering the interactions of the substrates with TYR's active site residues and their distance to CuB metal ion, which is an indicator of diphenolase activity. Besides, the inhibitory mechanisms of the inhibitor molecules were explained by the molecular modeling studies, considering the binding number of the inhibitors with the active site amino acid residues of TYR, the number and length of H bonds, negative binding energy values, and their distance to CuB metal ion. Based on our results, we suggest that the novel method used in this study to explain the inhibitory mechanism of l-cysteine may provide an affordable alternative to the expensive methods available for explaining the inhibitory mechanism of TYR and those of other enzymes. HighlightsThe best affinity for the tyrosinase enzyme occurred with catechol.l-Ascorbic acid, citric acid, l-cysteine inhibited the diphenolic activity of tyrosinase.In silico studies confirmed the best affinity shown by catechol.Product inhibition mechanism of l-cysteine explained by in silico for the first time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elif Duygu Kaya
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey
| | - Ayşe Türkhan
- Vocational School of Technical Sciences, Department of Chemistry and Chemical Processing Technologies, Iğdır University, Iğdır, Turkey
| | - Fatma Gür
- Department of Medical Services and Techniques, Health Services Vocational School, Atatürk University, Erzurum, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkey
| |
Collapse
|
6
|
Nihei KI, Kubo I. Benzonitriles as tyrosinase inhibitors with hyperbolic inhibition manner. Int J Biol Macromol 2019; 133:929-932. [DOI: 10.1016/j.ijbiomac.2019.04.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
|
7
|
Penttinen L, Rutanen C, Jänis J, Rouvinen J, Hakulinen N. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae
Catechol Oxidase. Chembiochem 2018; 19:2348-2352. [DOI: 10.1002/cbic.201800387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Leena Penttinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Chiara Rutanen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Janne Jänis
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Juha Rouvinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Nina Hakulinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| |
Collapse
|
8
|
Malik W, Ahmed D, Izhar S. Tyrosinase Inhibitory Activities of Carissa opaca Stapf ex Haines Roots Extracts and Their Phytochemical Analysis. Pharmacogn Mag 2017; 13:S544-S548. [PMID: 29142412 PMCID: PMC5669095 DOI: 10.4103/pm.pm_561_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
Objective Carissa opaca is a medicinal plant with rich folkloric applications. The present research was conducted to explore the tyrosinase inhibitory potential of aqueous decoction (AD) and methanolic extract (ME) of roots of C. opaca and its fractions in various solvents and their phytochemical analysis. Materials and Methods AD of the dried powdered roots of C. opaca was prepared by boiling in water. ME was prepared by cold maceration. Its fractions were obtained in solvents of increasing polarity, i.e., hexane, chloroform, ethyl acetate, n-butanol, and water. The biomass left after extraction with methanol was boiled in water to get its decoction Biomass aqueous decoction (BAD). Tyrosinase inhibitory activities of the samples were studied according to a reported method. Chemical compounds in the samples were identified by gas chromatography-mass spectrometry (GC-MS). Results The AD, BAD, and ME and its fractions displayed remarkable tyrosinase inhibitory activity. The IC50 of AD was 23.33 μg/mL as compared to 15.80 μg/mL of the standard arbutin and that of BAD was 21.24 μg/mL. The IC50 of ME was 34.76 μg/mL while that of hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions was 21.0, 44.73, 43.40, 27.66, and 25.06 μg/mL, respectively. The hexane fraction was thus most potent followed by aqueous fraction. By phytochemical analysis, campesterol, stigmasterol, gamma-sitosterol, alpha-amyrin, 9,19-cyclolanostan-3-ol, 24-methylene-,(3 β)-, lupeol, lup-20(29)-en-3-one, lup-20(29)-en-3-ol, acetate,(3 β)-, 2(1H) naphthalenone, 3,5,6,7,8,8a-hexahydro-4,8a-dimethyl-6-(1-methylethenyl)-, and 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone were identified in the extracts by GC-MS. Other compounds included fatty acids and their esters. Some of these compounds are being first time reported here from this plant. Conclusions The roots extracts exhibited considerable tyrosinase inhibitory activities, alluding to a possible application of the plant in cosmetic as whitening agent subject to further pharmacological studies. SUMMARY The present study aimed to explore the tyrosinase inhibitory potential of aqueous decoction and methanolic extract of roots of Carissa opaca and its fractions in various solvents and their phytochemical constituents. GCMS analysis was conducted to identify the phytochemicals. The extracts and fractions of C. opaca roots showed remarkable anti-tyrosinase activities alluding to their possible application to treat disorders related to overproduction of melanin. Abbreviations used: AD: Aqueous decoction; ME: Methanolic extract; BAD: Biomass aqueous decoction; GC-MS: Gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Wajeeha Malik
- Department of Chemistry, Forman Christian College, Lahore, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College, Lahore, Pakistan
| | - Sania Izhar
- Department of Chemistry, Forman Christian College, Lahore, Pakistan
| |
Collapse
|
9
|
Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chem 2017; 231:87-95. [PMID: 28450027 DOI: 10.1016/j.foodchem.2017.03.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 11/24/2022]
Abstract
Oat and faba bean protein isolates were treated with transglutaminase from Streptomyces mobaraensis and tyrosinase from Trichoderma reesei to modify the colloidal properties of protein particles in order to improve their colloidal stability and foaming properties. Transglutaminase crosslinked faba bean protein extensively already with 10nkat/g enzyme dosage. Oat protein was crosslinked to some extent with transglutaminase with higher dosages (100 and 1000nkat/g). Transglutaminase increased the absolute zeta-potential values and reduced the particle size of oat protein particles. As a result, the colloidal stability and foaming properties were improved. Tyrosinase had limited crosslinking ability on both plant protein materials. Tyrosinase greatly reduced the solubility of oat protein despite limited crosslinking. Tyrosinase did not have effect on zeta-potential or colloidal stability of either protein, but it impaired foaming properties of both. Thus, the crosslinking enzymes studied caused significantly different end product functionality, presumably due to the different mechanism of action.
Collapse
|
10
|
Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int J Biol Macromol 2017; 95:1289-1297. [DOI: 10.1016/j.ijbiomac.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022]
|
11
|
Martínková L, Chmátal M. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters. WATER RESEARCH 2016; 102:90-95. [PMID: 27328365 DOI: 10.1016/j.watres.2016.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution.
Collapse
Affiliation(s)
- Ludmila Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, CZ-142 20 Prague 4, Czech Republic.
| | - Martin Chmátal
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
12
|
Agarwal P, Pareek N, Dubey S, Singh J, Singh RP. Aspergillus niger PA2: a novel strain for extracellular biotransformation of l-tyrosine into l-DOPA. Amino Acids 2016; 48:1253-62. [DOI: 10.1007/s00726-016-2174-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
13
|
Campos PM, Prudente AS, Horinouchi CDDS, Cechinel-Filho V, Fávero GM, Cabrini DA, Otuki MF. Inhibitory effect of GB-2a (I3-naringenin-II8-eriodictyol) on melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:224-229. [PMID: 26297636 DOI: 10.1016/j.jep.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/26/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE GB-2a is a I3-naringenin-II8-eriodictyol compound isolated from Garcinia gardneriana (Planchon & Triana) Zappi, a plant used in folk medicine for the treatment of skin disorders. AIM OF STUDY In the search for new depigmenting agents, this study was carried out to investigate the in vitro effects of GB-2a isolated from G. gardneriana (Planchon & Triana) Zappi in B16F10 melanoma cells. MATERIALS AND METHODS The effects of GB-2a were evaluated through determination of melanin biosynthesis in B16F10 melanoma cells in comparison with the reference drug kojic acid (500µM). In parallel, the GB-2a effect was assessed in a cell viability assay. Mushroom tyrosinase activity assays were conducted to verify the effect of this enzyme. In order to ascertain the nature of enzyme inhibition on tyrosinase, kinetics analysis of the GB-2a was performed with L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA) substrates. RESULTS The results showed that GB-2a biflavonoid significantly inhibited the melanin content, without reducing cell viability. GB-2a also showed a strong antityrosinase activity in the mushroom tyrosinase assay. GB-2a inhibited the tyrosinase activity, exerting a mixed inhibition. For the L-tyrosine substrate the inhibition was in non-competitive mode and for L-DOPA it was in uncompetitive mode. CONCLUSION GB-2a biflavonoid promoted inhibition on tyrosinase activity and reduced melanin biosynthesis in B16F10 cells, which suggests great potential for medical and cosmetic uses as a depigmenting agent.
Collapse
Affiliation(s)
- Patrícia Mazureki Campos
- Department of Pharmaceutical Sciences, Federal University of Parana, CEP 80210-170, Curitiba, PR, Brazil
| | | | | | - Valdir Cechinel-Filho
- Investigation Centre of Pharmaceutical Chemistry, University of Itajai Valley, CEP 88302-202, Itajai, SC, Brazil
| | - Giovani Marino Fávero
- Department of Biological Sciences, State University of Ponta Grossa, CEP 84030-900, Ponta Grossa, PR, Brazil
| | - Daniela Almeida Cabrini
- Department of Pharmacology, Federal University of Parana, CEP 81530-900, Curitiba, PR, Brazil
| | - Michel Fleith Otuki
- Department of Pharmacology, Federal University of Parana, CEP 81530-900, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Fogal S, Carotti M, Giaretta L, Lanciai F, Nogara L, Bubacco L, Bergantino E. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity. Mol Biotechnol 2015; 57:45-57. [PMID: 25189462 DOI: 10.1007/s12033-014-9800-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human tyrosinase is the first enzyme of the multistep process of melanogenesis. It catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine and the following oxidation of o-diphenol to the corresponding quinone, L-dopaquinone. In spite of its biomedical relevance, its reactivity is far from being fully understood, mostly because of the lack of a suitable expression system. Indeed, until now, studies on substrates and inhibitors of tyrosinases have been performed in vitro almost exclusively using mushroom or bacterial enzymes. We report on the production of a recombinant human tyrosinase in insect cells (Sf9 line). Engineering the protein, improving cell culture conditions, and setting a suitable purification protocol optimized product yield. The obtained active enzyme was truthfully characterized with a number of substrate and inhibitor molecules. These results were compared to those gained from a parallel analysis of the bacterial (Streptomyces antibioticus) enzyme and those acquired from the literature for mushroom tyrosinase, showing that the reactivity of the human enzyme appears unique and pointing out the great bias introduced when using non-human tyrosinases to measure the inhibitory efficacy of new molecules. The described enzyme is therefore an indispensable paradigm in testing pharmaceutical or cosmetic agents addressing tyrosinase activity.
Collapse
Affiliation(s)
- Stefano Fogal
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Matos MJ, Varela C, Vilar S, Hripcsak G, Borges F, Santana L, Uriarte E, Fais A, Di Petrillo A, Pintus F, Era B. Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Adv 2015. [DOI: 10.1039/c5ra14465e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel series of 3-aryl and 3-heteroarylcoumarins displaying tyrosinase inhibitory activity.
Collapse
|
16
|
Wang CS, Stewart RJ. Multipart Copolyelectrolyte Adhesive of the Sandcastle Worm, Phragmatopoma californica (Fewkes): Catechol Oxidase Catalyzed Curing through Peptidyl-DOPA. Biomacromolecules 2013; 14:1607-17. [DOI: 10.1021/bm400251k] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ching Shuen Wang
- Department
of Bioeningeering, University of Utah, 20 South 2030 East,
Room 506C, Salt Lake City, Utah 84112, United States
| | - Russell J. Stewart
- Department
of Bioeningeering, University of Utah, 20 South 2030 East,
Room 506C, Salt Lake City, Utah 84112, United States
| |
Collapse
|