1
|
Eliaz D, Kellersztein I, Miali ME, Benyamin D, Brookstein O, Daraio C, Wagner HD, Raviv U, Shimanovich U. Fine Structural Analysis of Degummed Fibroin Fibers Reveals Its Superior Mechanical Capabilities. CHEMSUSCHEM 2024:e202401148. [PMID: 39023515 DOI: 10.1002/cssc.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Bombyx mori silk fibroin fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the asymmetrical cross-sectional area (CSA) as a perfect circle. The thermal treatments impact not only the mechanics of the degummed fibroin fibers, but also the structural configuration of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength, by increasing the extent of the fibers' crystallinity, by approximately 40 % and 50 %, respectively, without compromising their strain. Furthermore, we have shown that this treatment facilitated further production of high-purity soluble silk protein with rheological and self-assembly characteristics comparable to those of native silk feedstock, initially stored in the animal's silk gland. The developed approaches benefits both the development of silk-based materials with tailored properties and the proper mechanical characterization of asymmetrical fibrous biological materials made of natural building blocks.
Collapse
Affiliation(s)
- D Eliaz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Present address: SilkIt Ltd., Ness Ziona, 7403626, Israel
| | - I Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - M E Miali
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - D Benyamin
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Present address: Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - O Brookstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - C Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - H D Wagner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - U Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - U Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
2
|
Eliaz D, Paul S, Benyamin D, Cernescu A, Cohen SR, Rosenhek-Goldian I, Brookstein O, Miali ME, Solomonov A, Greenblatt M, Levy Y, Raviv U, Barth A, Shimanovich U. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat Commun 2022; 13:7856. [PMID: 36543800 PMCID: PMC9772184 DOI: 10.1038/s41467-022-35505-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Silk is a unique, remarkably strong biomaterial made of simple protein building blocks. To date, no synthetic method has come close to reproducing the properties of natural silk, due to the complexity and insufficient understanding of the mechanism of the silk fiber formation. Here, we use a combination of bulk analytical techniques and nanoscale analytical methods, including nano-infrared spectroscopy coupled with atomic force microscopy, to probe the structural characteristics directly, transitions, and evolution of the associated mechanical properties of silk protein species corresponding to the supramolecular phase states inside the silkworm's silk gland. We found that the key step in silk-fiber production is the formation of nanoscale compartments that guide the structural transition of proteins from their native fold into crystalline β-sheets. Remarkably, this process is reversible. Such reversibility enables the remodeling of the final mechanical characteristics of silk materials. These results open a new route for tailoring silk processing for a wide range of new material formats by controlling the structural transitions and self-assembly of the silk protein's supramolecular phases.
Collapse
Affiliation(s)
- D. Eliaz
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - S. Paul
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - D. Benyamin
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Cernescu
- grid.431971.9Neaspec—Attocube Systems AG, Eglfinger Weg 2, Haar, 85540 Munich Germany
| | - S. R. Cohen
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - I. Rosenhek-Goldian
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - O. Brookstein
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. E. Miali
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - A. Solomonov
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. Greenblatt
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Y. Levy
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - U. Raviv
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Barth
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - U. Shimanovich
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
3
|
Wan Q, Yang M, Hu J, Lei F, Shuai Y, Wang J, Holland C, Rodenburg C, Yang M. Mesoscale structure development reveals when a silkworm silk is spun. Nat Commun 2021; 12:3711. [PMID: 34140492 PMCID: PMC8211695 DOI: 10.1038/s41467-021-23960-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/29/2021] [Indexed: 11/14/2022] Open
Abstract
Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.
Collapse
Affiliation(s)
- Quan Wan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mei Yang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiaqi Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Fang Lei
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yajun Shuai
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Chris Holland
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Cornelia Rodenburg
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Shiraga K, Urabe M, Matsui T, Kikuchi S, Ogawa Y. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor. Phys Chem Chem Phys 2020; 22:19468-19479. [PMID: 32761010 DOI: 10.1039/d0cp02265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological functions of proteins depend on harmonization with hydration water surrounding them. Indeed, the dynamical transition of proteins, such as thermal denaturation, is dependent on the changes in the mobility of hydration water. However, the role of hydration water during dynamical transition is yet to be fully understood due to technical limitations in precisely characterizing the amount of hydration water. A state-of-the-art CMOS dielectric sensor consisting of 65 GHz LC resonators addressed this issue by utilizing the feature that oscillation frequency sensitively shifts in response to the complex dielectric constant at 65 GHz with extremely high precision. This study aimed to establish an analytical algorithm to derive the hydration number from the measured frequency shift and to demonstrate the transition of hydration number upon the thermal denaturation of human serum albumin. The determined hydration number in the native state drew a "global" hydration picture beyond the first solvation shell, with substantially reduced uncertainty of the hydration number (about ±1%). This allowed the detection of a rapid increase in the hydration number at about 55 °C during the heating process, which was in excellent phase with the irreversible rupture of the α-helical structure into solvent-exposed extended chains, whereas the hydration number did not trace the forward path in the subsequent cooling process. Our result indicates that the weakening of water hydrogen bonds trigger the unfolding of the protein structure first, followed by the changes in the number of hydration water as a consequence of thermal denaturation.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|
5
|
Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM). Processes (Basel) 2019. [DOI: 10.3390/pr7090591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pelletization is a significant approach for the efficient utilization of biomass energy. Sunflower seed husk is a common solid waste in the process of oil production. The novelty of this study was to determine the parameters during production of a novel pellet made from sunflower seed husk. The energy consumption (W) and physical properties (bulk density (BD) and mechanical durability (DU)) of the novel pellet were evaluated and optimized at the laboratory by using a pelletizer and response surface methodology (RSM) under a controlled moisture content (4%–14%), compression pressure (100–200 MPa), and die temperature (70–170 °C). The results show that the variables of temperature, pressure, and moisture content of raw material are positively correlated with BD and DU. Increasing the temperature and moisture content of raw materials can effectively reduce W, while increasing the pressure has an adverse effect on W. The optimum conditions of temperature (150 °C), pressure (180 MPa), and moisture content (12%) led to a BD of 1117.44 kg/m3, DU of 98.8%, and W of 25.3 kJ/kg in the lab. Overall, although the nitrogen content was slightly high, the novel manufactured pellets had excellent performance based on ISO 17225 (International Organization for Standardization of 17225, Geneva, Switzerland, 2016). Thus, sunflower seed husk could be considered as a potential feedstock for biomass pelletization.
Collapse
|
7
|
Holland C, Numata K, Rnjak‐Kovacina J, Seib FP. The Biomedical Use of Silk: Past, Present, Future. Adv Healthc Mater 2019; 8:e1800465. [PMID: 30238637 DOI: 10.1002/adhm.201800465] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/04/2018] [Indexed: 11/07/2022]
Abstract
Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure-function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use.
Collapse
Affiliation(s)
- Chris Holland
- Department of Materials Science and Engineering The University of Sheffield Sir Robert Hadfield Building, Mappin Street Sheffield South Yorkshire S1 3JD UK
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science 2‐1 Hirosawa Wako Saitama 351‐0198 Japan
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - F. Philipp Seib
- Leibniz Institute of Polymer Research Dresden Max Bergmann Center of Biomaterials Dresden Dresden 01069 Germany
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE UK
| |
Collapse
|
8
|
Holland C, Hawkins N, Frydrych M, Laity P, Porter D, Vollrath F. Differential Scanning Calorimetry of Native Silk Feedstock. Macromol Biosci 2018; 19:e1800228. [PMID: 30411857 DOI: 10.1002/mabi.201800228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Native silk proteins, extracted directly from the silk gland prior to spinning, offer access to a naturally hydrated protein that has undergone little to no processing. Combined with differential scanning calorimetry (DSC), it is possible to probe the thermal stability and hydration status of silk and thus investigate its denaturation and solidification, echoing that of the natural spinning process. It is found that native silk is stable between -10 °C and 55 °C, and both the high-temperature enthalpy of denaturation (measured via modulated temperature DSC) and a newly reported low-temperature ice-melting transition may serve as useful quality indicators in the future for artificial silks. Finally, compared to albumin, silk's denaturation enthalpy is much lower than expected, which is interpreted within a recently proposed entropic desolvation framework which can serve to unveil the low-energy aquamelt processing pathway.
Collapse
Affiliation(s)
- Chris Holland
- Natural Materials Group, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Nicholas Hawkins
- N. Hawkins, Dr. M. Frydrych, Dr. D. Porter, Prof. F. Vollrath, The Oxford Silk Group, Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Martin Frydrych
- N. Hawkins, Dr. M. Frydrych, Dr. D. Porter, Prof. F. Vollrath, The Oxford Silk Group, Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Peter Laity
- Natural Materials Group, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - David Porter
- N. Hawkins, Dr. M. Frydrych, Dr. D. Porter, Prof. F. Vollrath, The Oxford Silk Group, Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Fritz Vollrath
- N. Hawkins, Dr. M. Frydrych, Dr. D. Porter, Prof. F. Vollrath, The Oxford Silk Group, Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
9
|
Liu Q, Wang F, Gu Z, Ma Q, Hu X. Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films. Int J Mol Sci 2018; 19:E3309. [PMID: 30355987 PMCID: PMC6274861 DOI: 10.3390/ijms19113309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Silk fibroin (SF) is a protein polymer derived from insects, which has unique mechanical properties and tunable biodegradation rate due to its variable structures. Here, the variability of structural, thermal, and mechanical properties of two domesticated silk films (Chinese and Thailand B. Mori) regenerated from formic acid solution, as well as their original fibers, were compared and investigated using dynamic mechanical analysis (DMA) and Fourier transform infrared spectrometry (FTIR). Four relaxation events appeared clearly during the temperature region of 25 °C to 280 °C in DMA curves, and their disorder degree (fdis) and glass transition temperature (Tg) were predicted using Group Interaction Modeling (GIM). Compared with Thai (Thailand) regenerated silks, Chin (Chinese) silks possess a lower Tg, higher fdis, and better elasticity and mechanical strength. As the calcium chloride content in the initial processing solvent increases (1%⁻6%), the Tg of the final SF samples gradually decrease, while their fdis increase. Besides, SF with more non-crystalline structures shows high plasticity. Two α- relaxations in the glass transition region of tan δ curve were identified due to the structural transition of silk protein. These findings provide a new perspective for the design of advanced protein biomaterials with different secondary structures, and facilitate a comprehensive understanding of the structure-property relationship of various biopolymers in the future.
Collapse
Affiliation(s)
- Qichun Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China.
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, China.
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China.
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, China.
| | - Qingyu Ma
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
10
|
Sparkes J, Holland C. The Energy Requirements for Flow‐Induced Solidification of Silk. Macromol Biosci 2018; 19:e1800229. [DOI: 10.1002/mabi.201800229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Indexed: 01/07/2023]
Affiliation(s)
- James Sparkes
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| | - Chris Holland
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| |
Collapse
|
11
|
Physicochemical properties and relaxation time in strength analysis of amorphous poly (vinyl-pyrrolidone) and maltodextrin: Effects of water, molecular weight, and lactose addition. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Fink TD, Zha RH. Silk and Silk-Like Supramolecular Materials. Macromol Rapid Commun 2018; 39:e1700834. [DOI: 10.1002/marc.201700834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Tanner D. Fink
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| | - R. Helen Zha
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| |
Collapse
|
13
|
Wan Q, Abrams KJ, Masters RC, Talari ACS, Rehman IU, Claeyssens F, Holland C, Rodenburg C. Mapping Nanostructural Variations in Silk by Secondary Electron Hyperspectral Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703510. [PMID: 29116662 DOI: 10.1002/adma.201703510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Nanostructures underpin the excellent properties of silk. Although the bulk nanocomposition of silks is well studied, direct evidence of the spatial variation of nanocrystalline (ordered) and amorphous (disordered) structures remains elusive. Here, secondary electron hyperspectral imaging can be exploited for direct imaging of hierarchical structures in carbon-based materials, which cannot be revealed by any other standard characterization methods. Through applying this technique to silks from domesticated (Bombyx mori) and wild (Antheraea mylitta) silkworms, a variety of previously unseen features are reported, highlighting the local interplay between ordered and disordered structures. This technique is able to differentiate composition on the nanoscale and enables in-depth studies into the relationship between morphology and performance of these complex biopolymer systems.
Collapse
Affiliation(s)
- Quan Wan
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Kerry J Abrams
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Robert C Masters
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Abdullah C S Talari
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Ihtesham U Rehman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
14
|
Glass Transition-Associated Structural Relaxations and Applications of Relaxation Times in Amorphous Food Solids: a Review. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-017-9166-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kasoju N, Hawkins N, Pop-Georgievski O, Kubies D, Vollrath F. Silk fibroin gelation via non-solvent induced phase separation. Biomater Sci 2017; 4:460-73. [PMID: 26730413 DOI: 10.1039/c5bm00471c] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs.
Collapse
Affiliation(s)
- Naresh Kasoju
- Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. and Department of Zoology, University of Oxford, Oxford, UK.
| | | | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Dana Kubies
- Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Laity PR, Holland C. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks. Int J Mol Sci 2016; 17:E1812. [PMID: 27801879 PMCID: PMC5133813 DOI: 10.3390/ijms17111812] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.
Collapse
Affiliation(s)
- Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
17
|
Guan J, Wang Y, Mortimer B, Holland C, Shao Z, Porter D, Vollrath F. Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis. SOFT MATTER 2016; 12:5926-5936. [PMID: 27320178 DOI: 10.1039/c6sm00019c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silks are a family of semi-crystalline structural materials, spun naturally by insects, spiders and even crustaceans. Compared to the characteristic β-sheet crystalline structure in silks, the non-crystalline structure and its composition deserves more attention as it is equally critical to the filaments' high toughness and strength. Here we further unravel the structure-property relationship in silks using Dynamic Mechanical Thermal Analysis (DMTA). This technique allows us to examine the most important structural relaxation event of the disordered structure the disordered structure, the glass transition (GT), in native silk fibres of the lepidopteran Bombyx mori and Antheraea pernyi and the spider Nephila edulis. The measured glass transition temperature Tg, loss tangent tan δ and dynamic storage modulus are quantitatively modelled based on Group Interaction Modelling (GIM). The "variability" issue in native silks can be conveniently explained by the different degrees of structural disorder as revealed by DMTA. The new insights will facilitate a more comprehensive understanding of the structure-property relations for a wide range of biopolymers.
Collapse
Affiliation(s)
- Juan Guan
- School of Materials Science and Engineering, International Research Center for Advanced Structural and Biomaterials, Beihang University, Beijing, 100191, China.
| | - Yu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Beth Mortimer
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - David Porter
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
18
|
The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:1-9. [PMID: 27040189 DOI: 10.1016/j.msec.2016.02.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/23/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples.
Collapse
|
19
|
Dicko C, Kasoju N, Hawkins N, Vollrath F. Differential scanning fluorimetry illuminates silk feedstock stability and processability. SOFT MATTER 2016; 12:255-262. [PMID: 26457973 DOI: 10.1039/c5sm02036k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.
Collapse
Affiliation(s)
- C Dicko
- Department of Chemistry, Division for Pure and Applied Biochemistry, Lund University, Getigevägen 60, 2241, Lund, Sweden.
| | - N Kasoju
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK and Department of Biomaterials and Bioanalogous Polymer Systems, Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, Heyrovského Square 2, 162 06, Prague, Czech Republic
| | - N Hawkins
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| | - F Vollrath
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| |
Collapse
|
20
|
Jiang L, Liang J, Yuan X, Li H, Li C, Xiao Z, Huang H, Wang H, Zeng G. Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. BIORESOURCE TECHNOLOGY 2014; 166:435-43. [PMID: 24935004 DOI: 10.1016/j.biortech.2014.05.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 05/26/2023]
Abstract
In the present study, the effects of process parameters on pellet properties were investigated for the co-pelletization of sludge and biomass materials. The relaxed pellet density and Meyer hardness of pellets were identified. Scanning electron microscopy, FT-IR spectra and chemical analysis were conducted to investigate the mechanisms of inter-particular adhesion bonding. Thermogravimetric analysis was applied to investigate the combustion characteristics. Results showed that the pellet density was increased with the parameters increasing, such as pressure, sludge ratio and temperature. High hardness pellets could be obtained at low pressure, temperature and biomass size. The optimal moisture content for co-pelletization was 10-15%. Moreover, the addition of sludge can reduce the diversity of pellet hardness caused by the heterogeneity of biomass. Increasing ratio of sludge in the pellet would slow down the release of volatile. Synergistic effects of protein and lignin can be the mechanism in the co-pelletization of sludge and biomass.
Collapse
Affiliation(s)
- Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hui Li
- Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004, PR China.
| | - Changzhu Li
- Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhihua Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
21
|
Differential Scanning Fluorimetry provides high throughput data on silk protein transitions. Sci Rep 2014; 4:5625. [PMID: 25004800 PMCID: PMC4088128 DOI: 10.1038/srep05625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022] Open
Abstract
Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers.
Collapse
|
22
|
Tulachan B, Meena SK, Rai RK, Mallick C, Kusurkar TS, Teotia AK, Sethy NK, Bhargava K, Bhattacharya S, Kumar A, Sharma RK, Sinha N, Singh SK, Das M. Electricity from the silk cocoon membrane. Sci Rep 2014; 4:5434. [PMID: 24961354 PMCID: PMC4069722 DOI: 10.1038/srep05434] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/05/2014] [Indexed: 11/16/2022] Open
Abstract
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.
Collapse
Affiliation(s)
- Brindan Tulachan
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Sunil Kumar Meena
- Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Ratan Kumar Rai
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Chandrakant Mallick
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Tejas Sanjeev Kusurkar
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Shantanu Bhattacharya
- Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | | | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Sushil Kumar Singh
- Functional Materials Group, Solid State Physics Laboratory, Defense Research Development Organization, Delhi, 110054, India
| | - Mainak Das
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| |
Collapse
|
23
|
Kitevski-LeBlanc JL, Hoang J, Thach W, Larda ST, Prosser RS. 19F NMR Studies of a Desolvated Near-Native Protein Folding Intermediate. Biochemistry 2013; 52:5780-9. [DOI: 10.1021/bi4010057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julianne L. Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hoang
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - William Thach
- Department of Biochemistry, University of Toronto, 1 King’s College Circle,
Toronto, Ontario M5S 1A8, Canada
| | - Sacha Thierry Larda
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
- Department of Biochemistry, University of Toronto, 1 King’s College Circle,
Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
|
25
|
Guan J, Porter D, Vollrath F. Thermally Induced Changes in Dynamic Mechanical Properties of Native Silks. Biomacromolecules 2013; 14:930-7. [DOI: 10.1021/bm400012k] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Guan
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - David Porter
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - Fritz Vollrath
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| |
Collapse
|