1
|
Chacko N, Ankri R. Non-invasive early-stage cancer detection: current methods and future perspectives. Clin Exp Med 2024; 25:17. [PMID: 39708168 DOI: 10.1007/s10238-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
This review paper explores the realm of non-invasive methods for early cancer detection. Early identification is crucial for effective therapeutic intervention, and non-invasive techniques have emerged as promising tools to enhance diagnostic accuracy and improve patient outcomes. The paper thoroughly examines the advantages, limitations, and prospects of various non-invasive approaches, including blood tests, non-blood-based tests, and diverse imaging modalities. It discusses the biomarkers found in blood for early-stage cancer detection, specifying the types of cancer associated with each biomarker. The non-blood-based tests focus on components in saliva, urine, and breath for cancer detection, alongside current studies and future perspectives on various cancers. Optical imaging methods covered in this review include fluorescence imaging in the near-infrared (NIR) region, bioluminescence imaging, and Raman spectroscopy for early-stage cancer detection. The review also highlights the pros and cons of ultrasound imaging in early-stage cancer detection. Additionally, the clinical implications of using AI for cancer detection, both present and future, are explored. This paper provides valuable insights for researchers and clinicians working in the field of non-invasive early-stage cancer detection.
Collapse
Affiliation(s)
- Neelima Chacko
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel
| | - Rinat Ankri
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
2
|
Wan Y, Luo W, Song X, Zhao Y, Han Z, Shen J, Xie F, Li Y, He J. A Targeted Proteomics Approach Reveals a Serum Protein Signature as a Diagnostic Biomarker for Colorectal Cancer. J Inflamm Res 2024; 17:10755-10768. [PMID: 39677294 PMCID: PMC11645893 DOI: 10.2147/jir.s492356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Background Circulating proteins secreted by tumors are an important source of cancer biomarkers. This study aims to investigate the changes in the content of tumor immune-related circulating proteins in peripheral blood from patients with colorectal cancer (CRC). Methods Olink's proximity extension assay was used to detect the levels of 92 tumor immune-related circulating proteins in peripheral blood from CRC patients. An enzyme-linked immunosorbent assay was performed to detect the levels of six proteins. Elastic network regression was used to establish the model, and the performance of the model was verified by multiple iterations of cross-validation. Results The best serum protein signature that was composed of six proteins (IL7, CXCL12, IL10, IL15, CXCL1, and MCP-3) was selected. The area under the curve value of this signature was 0.9924 in the training set and 0.8992 in the total set. IL7 and IL15 levels were significantly higher in the ≥4 cm tumor volume group than in the <4 cm tumor volume group (P = 0.0113 and P = 0.004, respectively). MCP-3 levels were significantly higher in the distant metastasis group than in the non-distant metastasis group (P =0.0465). There was a significant difference in MCP-3 levels among different tumor, node, metastasis stages (P = 0.0496). CXCL1 levels were positively correlated with the absolute count of basophils (R = 0.3220, P = 0.0273), and IL10 levels were positively correlated with the absolute count of neutrophils (R = 0.38737, P = 0.0078). CXCL1, IL7, and IL15 were independent prognostic factors of CRC (hazard ratio [HR] = 0.62, P = 0.006; HR = 0.57, P = 0.006; and HR = 0.64, P = 0.011, respectively). Conclusion The best serum protein signature model (IL7, CXCL12, IL10, IL15, CXCL1, and MCP-3) was able to distinguish CRC patients from healthy controls. These proteins were also involved in the occurrence and development of CRC.
Collapse
Affiliation(s)
- Yu Wan
- Gastroenterology Department, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaoyu Song
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Ying Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Yuguang Li
- Panyu Maternal and Children Healthcare Hospital (Hexian Memorial Medical Hospital of Panyu District), Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
- Rehabilitation Medicine Institute, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511400, People’s Republic of China
| |
Collapse
|
3
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
4
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Almeida-Marques C, Rolfs F, Piersma SR, Bijnsdorp IV, Pham TV, Knol JC, Jimenez CR. Secretome processing for proteomics: A methods comparison. Proteomics 2024; 24:e2300262. [PMID: 38221716 DOI: 10.1002/pmic.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
The cancer cell secretome comprises a treasure-trove for biomarkers since it reflects cross-talk between tumor cells and their surrounding environment with high detectability in biofluids. In this study, we evaluated six secretome sample processing workflows coupled to single-shot mass spectrometry: (1) Protein concentration by ultrafiltration with a molecular weight cut-off (MWCO) filter and sample preparation through in-gel digestion (IGD); (2) Acetone protein precipitation coupled to IGD; (3) MWCO filter-based protein concentration followed by to in-solution digestion (ISD); (4) Acetone protein precipitation coupled to ISD; (5) Direct ISD; (6) Secretome lyophilization and ISD. To this end, we assessed workflow triplicates in terms of total number of protein identifications, unique identifications, reproducibility of protein identification and quantification and detectability of small proteins with important functions in cancer biology such as cytokines, chemokines, and growth factors. Our findings revealed that acetone protein precipitation coupled to ISD outperformed the other methods in terms of the number of identified proteins (2246) and method reproducibility (correlation coefficient between replicates (r = 0.94, CV = 19%). Overall, especially small proteins such as those from the classes mentioned above were better identified using ISD workflows. Concluding, herein we report that secretome protein precipitation coupled to ISD is the method of choice for high-throughput secretome proteomics via single shot nanoLC-MS/MS.
Collapse
Affiliation(s)
- Catarina Almeida-Marques
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Frank Rolfs
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Sander R Piersma
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
- Department Urology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Thang V Pham
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Jaco C Knol
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| |
Collapse
|
6
|
Källberg J, Harrison A, March V, Bērziņa S, Nemazanyy I, Kepp O, Kroemer G, Mouillet-Richard S, Laurent-Puig P, Taly V, Xiao W. Intratumor heterogeneity and cell secretome promote chemotherapy resistance and progression of colorectal cancer. Cell Death Dis 2023; 14:306. [PMID: 37142595 PMCID: PMC10160076 DOI: 10.1038/s41419-023-05806-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The major underlying cause for the high mortality rate in colorectal cancer (CRC) relies on its drug resistance, to which intratumor heterogeneity (ITH) contributes substantially. CRC tumors have been reported to comprise heterogeneous populations of cancer cells that can be grouped into 4 consensus molecular subtypes (CMS). However, the impact of inter-cellular interaction between these cellular states on the emergence of drug resistance and CRC progression remains elusive. Here, we explored the interaction between cell lines belonging to the CMS1 (HCT116 and LoVo) and the CMS4 (SW620 and MDST8) in a 3D coculture model, mimicking the ITH of CRC. The spatial distribution of each cell population showed that CMS1 cells had a preference to grow in the center of cocultured spheroids, while CMS4 cells localized at the periphery, in line with observations in tumors from CRC patients. Cocultures of CMS1 and CMS4 cells did not alter cell growth, but significantly sustained the survival of both CMS1 and CMS4 cells in response to the front-line chemotherapeutic agent 5-fluorouracil (5-FU). Mechanistically, the secretome of CMS1 cells exhibited a remarkable protective effect for CMS4 cells against 5-FU treatment, while promoting cellular invasion. Secreted metabolites may be responsible for these effects, as demonstrated by the existence of 5-FU induced metabolomic shifts, as well as by the experimental transfer of the metabolome between CMS1 and CMS4 cells. Overall, our results suggest that the interplay between CMS1 and CMS4 cells stimulates CRC progression and reduces the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Julia Källberg
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Alexandra Harrison
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Valerie March
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Santa Bērziņa
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Oliver Kepp
- Equipe labellisée par La Ligue contre le cancer, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par La Ligue contre le cancer, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
- Institut du Cancer Paris CARPEM, Department of Oncology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Valérie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| |
Collapse
|
7
|
Zhang L, Burns N, Ji Z, Sun S, Deutscher SL, Carson WE, Guo P. Nipple fluid for breast cancer diagnosis using the nanopore of Phi29 DNA-packaging motor. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102642. [PMID: 36581256 PMCID: PMC10035634 DOI: 10.1016/j.nano.2022.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
Detection of cancer in its early stage is a challenging task for oncologists. Inflammatory breast cancer has symptoms that are similar to mastitis and can be mistaken for microbial infection. Currently, the differential diagnosis between mastitis and Inflammatory breast cancer via nipple aspirate fluid (NAF) is difficult. Here, we report a label-free and amplification-free detection platform using an engineered nanopore of the phi29 DNA-packaging motor with biomarker Galectin3 (GAL3), Thomsen-Friedenreich (TF) binding peptide as the probe fused at its C-terminus. The binding of the biomarker in NAF samples from breast cancer patients to the probe results in the connector's conformational change with a current blockage of 32 %. Utilization of dwell time, blockage ratio, and peak signature enable us to detect basal levels of biomarkers from patient NAF samples at the single-molecule level. This platform will allow for breast cancers to be resolved at an early stage with accuracy and thoroughness.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Sun
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Susan L Deutscher
- Department of Biochemistry, University of Missouri, Harry S. Truman Memorial VA Hospital, Columbia, MO 65211, USA.
| | - William E Carson
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
9
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
10
|
Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin Proteomics 2022; 19:25. [PMID: 35818030 PMCID: PMC9275040 DOI: 10.1186/s12014-022-09362-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and among the leading causes of cancer death in women. It is a heterogeneous group of tumours with numerous morphological and molecular subtypes, making predictions of disease evolution and patient outcomes difficult. Therefore, biomarkers are needed to help clinicians choose the best treatment for each patient. For the last years, studies have increasingly focused on biomarkers obtainable by liquid biopsy. Circulating proteins (from serum or plasma) can be used for inexpensive and minimally invasive determination of disease risk, early diagnosis, treatment adjusting, prognostication and disease progression monitoring. We provide here a review of the main published studies on serum proteins in breast cancer and elaborate on the potential of circulating proteins to be predictive and/or prognostic biomarkers in breast cancer.
Collapse
|
11
|
Chen K, Li Y, Xu L, Qian Y, Liu N, Zhou C, Liu J, Zhou L, Xu Z, Jia R, Ge YZ. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res Ther 2022; 13:238. [PMID: 35672766 PMCID: PMC9172199 DOI: 10.1186/s13287-022-02921-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which are a type of stem cell, have been found to have strong angiogenic and tissue repair capabilities. Extracellular vesicles (EVs) contain many effective components, such as cellular proteins, microRNAs, messenger RNAs, and long noncoding RNAs, and can be secreted by different cell types. The functions of EVs depend mainly on their parent cells. Many researchers have conducted functional studies of EPC-derived EVs (EPC-EVs) and showed that they exhibit therapeutic effects on many diseases, such as cardiovascular disease, acute kidney injury, acute lung injury, and sepsis. In this review article, we comprehensively summarized the biogenesis and functions of EPCs and EVs and the potent role of EPC-EVs in the treatment of various diseases. Furthermore, the current problems and future prospects have been discussed, and further studies are needed to compare the therapeutic effects of EVs derived from various stem cells, which will contribute to the accelerated translation of these applications in a clinical setting.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Souche R, Tosato G, Rivière B, Valats JC, Debourdeau A, Flori N, Pourquier D, Fabre JM, Assenat E, Colinge J, Turtoi A. Detection of soluble biomarkers of pancreatic cancer in endoscopic ultrasound-guided fine-needle aspiration samples. Endoscopy 2022; 54:503-508. [PMID: 34448184 DOI: 10.1055/a-1550-2503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Biomarkers are urgently needed for pancreatic ductal adenocarcinoma (PDAC). Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is the cornerstone for diagnosing PDAC. We developed a method for discovery of PDAC biomarkers using the discarded EUS-FNA liquid. METHODS This retrospective study included 58 patients with suspected pancreatic lesions who underwent EUS-FNA. Protein extracts from EUS-FNA liquid were analyzed by mass spectrometry. Proteomic and clinical data were modeled by supervised statistical learning to identify protein markers and clinical variables that distinguish PDAC. RESULTS Statistical modeling revealed a protein signature for PDAC screening that achieved high sensitivity and specificity (0.92, 95 % confidence interval [CI] 0.79-0.98, and 0.85, 95 %CI 0.67-0.93, respectively). We also developed a protein signature score (PSS) to guide PDAC diagnosis. In combination with patient age, the PSS achieved 100 % certainty in correctly identifying PDAC patients > 54 years. In addition, 3 /4 inconclusive EUS-FNA biopsies were correctly identified using PSS. CONCLUSIONS EUS-FNA-derived fluid is a rich source of PDAC proteins with biomarker potential. The PSS requires further validation and verification of the feasibility of measuring these proteins in patient sera.
Collapse
Affiliation(s)
- Régis Souche
- Department of Digestive Surgery and Transplantation, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
- Tumor Microenvironment and Resistance-to-Treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Guillaume Tosato
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Université de Montpellier, Montpellier, France
- Cancer Bioinformatics and Systems Biology, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- Centre Hospitalier Universitaire Lapeyronie, Montpellier, France
| | - Benjamin Rivière
- Department of Pathology, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Valats
- Université de Montpellier, Montpellier, France
- Department of Hepatogastroenterology, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
| | - Antoine Debourdeau
- Université de Montpellier, Montpellier, France
- Department of Hepatogastroenterology, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
| | - Nicolas Flori
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Clinical Nutrition, Gastroenterology and Endoscopy, Univ Montpellier, Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Didier Pourquier
- Tumor Microenvironment and Resistance-to-Treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Department of Pathology, Institut Régional du Cancer Montpellier (ICM), Montpellier, France
| | - Jean-Michel Fabre
- Department of Digestive Surgery and Transplantation, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Eric Assenat
- Université de Montpellier, Montpellier, France
- Department of Medical Oncology, Hôpital Saint Eloi, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
| | - Jacques Colinge
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Université de Montpellier, Montpellier, France
- Cancer Bioinformatics and Systems Biology, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance-to-Treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Parc Euromédecine, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Poschmann G, Bahr J, Schrader J, Stejerean-Todoran I, Bogeski I, Stühler K. Secretomics—A Key to a Comprehensive Picture of Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:878027. [PMID: 35392176 PMCID: PMC8980719 DOI: 10.3389/fcell.2022.878027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
For a long time, leaderless secreted proteins (LLSP) were neglected as artifacts derived from dying cells. It is now generally accepted that secretion of LLSP–as a part of the collective term unconventional protein secretion (UPS) - is an evolutionarily conserved process and that these LLSP are actively and selectively secreted from living cells bypassing the classical endoplasmic reticulum-Golgi pathway. However, the mechanism of UPS pathways, as well as the number of LLSP and which part of a protein is involved in the selection of LLSPs for secretion, are still enigmatic and await clarification. Secretomics-a proteomics-based approach to identify and quantify all proteins secreted by a cell-is inherently unbiased toward a particular secretion pathway and offers the opportunity to shed light on the UPS. Here, we will evaluate and present recent results of proteomic workflows allowing to obtain high-confident secretome data. Additionally, we address that cell culture conditions largely affect the composition of the secretome. This has to be kept in mind to control cell culture induced artifacts and adaptation stress in serum free conditions. Evaluation of click chemistry for secretome analysis of cells under serum-containing conditions showed a significant change in the cellular proteome with longer incubation time upon treatment with non-canonical amino acid azidohomoalanine. Finally, we showed that the number of LLSP far exceeds the number of secreted proteins annotated in Uniprot and ProteinAtlas. Thus, secretomics in combination with sophisticated microbioanalytical and sample preparation methods is well suited to provide a comprehensive picture of UPS.
Collapse
Affiliation(s)
- Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jasmin Bahr
- Department of Molecular Cardiology, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute for Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute for Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Kai Stühler,
| |
Collapse
|
14
|
Patuleia SIS, Suijkerbuijk KPM, van der Wall E, van Diest PJ, Moelans CB. Nipple Aspirate Fluid at a Glance. Cancers (Basel) 2021; 14:cancers14010159. [PMID: 35008326 PMCID: PMC8750428 DOI: 10.3390/cancers14010159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Nipple aspirate fluid (NAF) is a promising source of markers for detection of breast cancer. NAF can be acquired via the nipple by aspiration using a suction device, which is well tolerated by women. Future possible applications of biomarkers for breast cancer derived from NAF could be (1) as a detection tool to identify the initiation of the cancer development process, (2) as an additional tool next to imaging (mammography and breast magnetic resonance imaging) or (3) as a replacement tool for when imaging is not advisable for women, such as during pregnancy and breastfeeding. With this paper, we present a narrative review and perspectives of NAF research at a glance. Abstract Nipple aspirate fluid (NAF) is an intraductal mammary fluid that, because of its close proximity to and origin from the tissue from which breast cancer originates, is a promising source of biomarkers for early breast cancer detection. NAF can be non-invasively acquired via the nipple by aspiration using a suction device; using oxytocin nasal spray helps increase yield and tolerability. The aspiration procedure is generally experienced as more tolerable than the currently used breast imaging techniques mammography and breast magnetic resonance imaging. Future applications of NAF-derived biomarkers include their use as a tool in the detection of breast carcinogenesis at its earliest stage (before a tumor mass can be seen by imaging), or as a supporting diagnostic tool for imaging, such as when imaging is less reliable (to rule out false positives from imaging) or when imaging is not advisable (such as during pregnancy and breastfeeding). Ongoing clinical studies using NAF samples will likely shed light on NAF’s content and clinical potential. Here, we present a narrative review and perspectives of NAF research at a glance.
Collapse
Affiliation(s)
- Susana I. S. Patuleia
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Karijn P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Correspondence:
| |
Collapse
|
15
|
MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO 2NP and MWCNT. NANOMATERIALS 2021; 11:nano11123458. [PMID: 34947804 PMCID: PMC8707110 DOI: 10.3390/nano11123458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023]
Abstract
The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs related to the cell transformation process in BEAS-2B cells transformed by TiO2NP and long-term MWCNT exposure. Our battery revealed a large impact on miRNA expression profiling in cells exposed to both NMs. From this analysis, a small set of five miRNAs (miR-23a, miR-25, miR-96, miR-210, and miR-502) were identified as informative biomarkers of the transforming effects induced by NM exposures. The usefulness of this reduced miRNA battery was further validated in other previously generated transformed cell systems by long-term exposure to other NMs (CoNP, ZnONP, MSiNP, and CeO2NP). Interestingly, the five selected miRNAs were consistently overexpressed in all cell lines and NMs tested. These results confirm the suitability of the proposed set of mRNAs to identify the potential transforming ability of NMs. Particular attention should be paid to the epigenome and especially to miRNAs for hazard assessment of NMs, as wells as for the study of the underlying mechanisms of action.
Collapse
|
16
|
Christoph S, Alexander Q, Fritz T, Walter SS, Steffi U, Ralf K, Joachim O. MiRNA-181d expression correlates in tumor versus plasma of glioblastoma patients - the base of a preoperative stratification tool for local carmustine wafer use. World Neurosurg 2021; 159:e324-e333. [PMID: 34942386 DOI: 10.1016/j.wneu.2021.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Patients with low micro-RNA-181d level in glioblastoma tissue benefit most of carmustine wafer use. The study compares preoperative miRNA-181d plasma and tumor expression. This may form the base to decide, from a preoperative blood test, if carmustine wafer implantation is recommendable. METHODS A total of 60 patients suffering from glioblastoma treated between 2018 and 2020 were enrolled prospectively. Preoperatively, blood was drawn; and the plasma was isolated. Tumor specimens were collected. Blood samples from 30 healthy individuals served as a reference. Micro-RNA-181d expression in plasma and tumor were acquired as fold change, using qRT-PCR. Results were correlated with relevant demographic, clinical and histopathologic aspects of the cohort. Further factors like tumour volume as well as blood panel results were considered. A TCGA analysis was performed to investigate specific miRNA-181d - protein interactions to elude how miRNA-181 impact therapy response to carmustine. RESULTS Patients with glioblastoma showed a significant overexpression of miRNA-181d compared to healthy individuals (p = 0.029). There was a significant correlation between miRNA-181d expression in tumor tissue and plasma (p = 0.001, R = 0.51). Sensitivity of low miRNA-181d expression in plasma predicting low miRNA-181d tumor expression was 76.6%. Tumor volume, preoperative medication as well as items of blood panel analysis did not influence the prognostic value of plasma miRNA-181d expression. TCGA analysis revealed eight potential protein targets to be regulated by miRNA-181d. CONCLUSION miRNA-181d seems to be a potential molecular marker which can reliably be detected in blood samples of glioblastoma patients. It should therefore prospectively be evaluated as a potential preoperative prognostic marker regarding carmustine wafer implantation.
Collapse
Affiliation(s)
- Sippl Christoph
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany.
| | - Quiring Alexander
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Teping Fritz
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Schulz-Schaeffer Walter
- Institute of Neuropathology, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Urbschat Steffi
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Ketter Ralf
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Oertel Joachim
- Department of Neurosurgery, Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| |
Collapse
|
17
|
De Morais JA, Zelanis A. Bioinformatic reanalysis of public proteomics data reveals that nuclear proteins are recurrent in cancer secretomes. Traffic 2021; 23:98-108. [PMID: 34806804 DOI: 10.1111/tra.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Proteins secreted by tumoral cells (cancer secretomes) have been continuously associated with cancer development and progression processes. In this context, secreted proteins contribute to the signaling mechanisms related to tumor growth and spreading and studies on tumor secretomes provide valuable clues on putative tumor biomarkers. Although the in vitro identification of intracellular proteins in cancer secretome studies has usually been associated with contamination derived from cell lysis or fetal bovine serum, accumulated evidence reports on intracellular proteins with moonlighting functions in the extracellular environment. In this study, we performed a systematic reanalysis of public proteomics data regarding different cancer secretomes, aiming to identify intracellular proteins potentially secreted by tumor cells via unconventional secretion pathways. We found a similar repertoire of unconventionally secreted proteins, including the recurrent identification of nuclear proteins secreted by different cancer cells. In addition, in some cancer types, immunohistochemical data were in line with proteomics identifications and suggested that nuclear proteins might relocate from the nucleus to the cytoplasm. Both the presence of nuclear proteins and the likely unconventional secretion of such proteins may comprise biological signatures of malignant transformation in distinct cancer types and may be targeted for further analysis aiming at the prognostic/therapeutic value of such features.
Collapse
Affiliation(s)
- Juliana A De Morais
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
18
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Zhang C, Li H, Huang Y, Tang Y, Wang J, Cheng Y, Wei Y, Zhu D, Cao Z, Zhou J. Integrative analysis of TNFRSF6B as a potential therapeutic target for pancreatic cancer. J Gastrointest Oncol 2021; 12:1673-1690. [PMID: 34532119 DOI: 10.21037/jgo-21-303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is one of the most lethal malignant tumors worldwide with poor outcomes. Previous studies have shown that tumor necrosis factor receptor superfamily member 6b (TNFRSF6B) plays an important role in cancer progression and immunosuppression. However, the mechanisms by which TNFRSF6B influence pancreatic cancer, and the regulatory networks involved remain to be further studied. Methods This study analyzed the mRNA information and clinical data of patients from The Cancer Genome Atlas (TCGA) and the ONCOMINE databases. The gene co-expression data regarding TNFRSF6B was obtained from the c-BioPortal and used to explore the functional network of TNFRSF6B in pancreatic cancer, as well as its function in tumor immunity. Short hairpin (sh) RNA knock-down experiments were performed to examine the functional roles of TNFRSF6B in pancreatic cancer cell lines. Results The expression of TNFRSF6B was elevated in pancreatic cancer tissues compared to normal pancreatic tissues, and its high expression was associated with poor prognosis of patients with pancreatic cancer. TNFRSF6B was found to be widely involved in cell cycle processes, apoptosis, apoptosis signaling pathways, immune responses, and responses to interferon. Knock-down of TNFRSF6B expression inhibited pancreatic cancer cell proliferation and invasion in vitro. Moreover, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was found to be co-expressed with TNFRSF6B, and there was a positive correlation between these molecules in pancreatic cancer cells. Conclusions This report suggested that TNFRSF6B has a critical role in the progression and metastasis of pancreatic cancer. These findings provide novel insights into the role of TNFRSF6B in the functional network of pancreatic cancer, and suggest that TNFRSF6B may be a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoran Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujie Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinxiang Cheng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, Keulers TG, de Wit M, Moonen L, Van der Meer JRM, van den Boezem E, Wolfs TGAM, Threadgill DW, Demmers J, Fijneman RJA, Jimenez CR, Vanden Berghe P, Smits KM, Rouschop KMA, Boesmans W, Hofstra RMW, Melotte V. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep 2021; 22:e51913. [PMID: 33890711 PMCID: PMC8183412 DOI: 10.15252/embr.202051913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.
Collapse
Affiliation(s)
- Nathalie Vaes
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Simone L Schonkeren
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Glenn Rademakers
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Amy M Holland
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marion J Gijbels
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Molecular GeneticsCardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - Tom G Keulers
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Meike de Wit
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Laura Moonen
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jaleesa R M Van der Meer
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edith van den Boezem
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim G A M Wolfs
- Department of PediatricsGROW‐School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - David W Threadgill
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterCollege StationTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Jeroen Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Connie R Jimenez
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS) and Translational Research Center for Gastrointestinal Disorders (TARGID)Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
| | - Kim M Smits
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Kasper M A Rouschop
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Werend Boesmans
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Biomedical Research Institute (BIOMED)Hasselt UniversityHasseltBelgium
| | - Robert M W Hofstra
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Veerle Melotte
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
21
|
Garcia de Durango CR, Monteiro MN, Bijnsdorp IV, Pham TV, De Wit M, Piersma SR, Knol JC, Pérez-Gordo M, Fijneman RJA, Vidal-Vanaclocha F, Jimenez CR. Lipopolysaccharide-regulated secretion of soluble and vesicle-based proteins from a panel of colorectal cancer cell lines. Proteomics Clin Appl 2021; 15:e1900119. [PMID: 33587312 DOI: 10.1002/prca.201900119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depth mass spectrometry-based proteomics. EXPERIMENTAL DESIGN Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. RESULTS We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPS-treated samples per cell line, revealed 564 significant differential proteins with fold-change >3. The LPS-induced release of RPS25 was validated by western blot. CONCLUSIONS AND CLINICAL RELEVANCE Bacterial endotoxin has minor impact on the global CRC cell line secretome, yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication.
Collapse
Affiliation(s)
- Cira R Garcia de Durango
- Instituto de Medicina Molecular Aplicada, Universidad CEU San Pablo, Pathology Institute Munich, DKTK Partner Site, Madrid, Munich, Spain, Germany
| | - Madalena N Monteiro
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Meike De Wit
- Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander Rogier Piersma
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marina Pérez-Gordo
- Instituto de Medicina Molecular Aplicada, Universidad CEU San Pablo, Pathology Institute Munich, DKTK Partner Site, Madrid, Munich, Spain, Germany
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Connie R Jimenez
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Wei D, Sun L, Feng W. hsa_circ_0058357 acts as a ceRNA to promote non‑small cell lung cancer progression via the hsa‑miR‑24‑3p/AVL9 axis. Mol Med Rep 2021; 23:470. [PMID: 33880595 PMCID: PMC8097761 DOI: 10.3892/mmr.2021.12109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormal circular RNAs (circRNAs) are associated with biological processes in cancer; however, the function of circRNAs remains largely unknown in non-small cell lung cancer (NSCLC). The present study aimed to investigate the role of hsa_circ_0058357 on the progression of NSCLC. Cell proliferation, migration and apoptosis were determined using Cell Counting Kit-8, Transwell and flow cytometry assays, respectively. Gene [circRNA and microRNA (miR)] and protein expression levels were determined via reverse transcription-quantitative PCR and immunoblotting. A luciferase assay was employed to detect the binding of miR-24-3p with AVL9 cell migration associated (AVL9), while a cancer xenograft model was established to evaluate cancer growth in vivo. The results demonstrated that hsa_circ_0058357 was highly expressed in human NSCLC tissues and NSCLC cells compared with para-cancerous tissues and human bronchial epithelial (HBE) cells, respectively. Knockdown of hsa_circ_0058357 significantly suppressed cell viability, migration and tumor growth, while it promoted apoptosis in NSCLC cells. As a competing endogenous RNA, hsa_circ_0058357 knockdown contributed to the increase of miR-24-3p expression in NSCLC cells. Of note, overexpression of miR-24-3p markedly abolished the exogenous hsa_circ_0058357-induced excessive proliferation, migration and apoptosis resistance of NSCLC cells. Mechanistically, as a signaling molecule in late secretory pathway, AVL9 was also expressed at a high level in NSCLC tissues and cells, which could be directly suppressed by miR-24-3p. In the tumor tissues, along with growth inhibition, hsa_circ_0058357 knockdown also mediated the elevation of miR-24-3p and the reduction of AVL9. Thus, it was suggested that hsa_circ_0058357 may be a crucial regulation factor in NSCLC by sponging hsa-miR-24-3p, leading to a decrease in miR-24-3p expression, and subsequent increase in AVL9 expression. Therefore, hsa_circ_0058357 may serve as a potential target for diagnosis and gene therapy for NSCLC.
Collapse
Affiliation(s)
- Dongshan Wei
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Feng
- Department of Cancer Diagnosis and Treatment, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
23
|
Muoio MG, Talia M, Lappano R, Sims AH, Vella V, Cirillo F, Manzella L, Giuliano M, Maggiolini M, Belfiore A, De Francesco EM. Activation of the S100A7/RAGE Pathway by IGF-1 Contributes to Angiogenesis in Breast Cancer. Cancers (Basel) 2021; 13:cancers13040621. [PMID: 33557316 PMCID: PMC7915817 DOI: 10.3390/cancers13040621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer mortality is increased in patients affected by metabolic disorders associated with dysregulation of the Insulin-like growth factor-1 (IGF-1) axis, like obesity and type-2 diabetes. Despite the oncogenic role of this complex signaling system is widely known, the clinical targeting of IGF-1 and its receptor (IGF-1R) has provided valuable benefit only on small sub-populations of cancer patients, thus suggesting that a further characterization of the biological effects of the IGF-1/IGF-1R pathway could pave the way for a better manipulation of this crucial signaling system at the clinical level. In this study, we have identified the protein S100A7 as novel molecular target of IGF-1 action in the breast tumor microenvironment, toward increased cancer-associated angiogenesis. Targeting the IGF-1/IGF-1R/S100A7 pathway may therefore represent a further useful approach for blocking disease progression in breast cancer patients with dysregulated IGF-1 signaling. Abstract Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.
Collapse
Affiliation(s)
- Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania,
Italy; (M.G.M.); (V.V.); (M.G.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.T.); (R.L.); (F.C.); (M.M.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.T.); (R.L.); (F.C.); (M.M.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.T.); (R.L.); (F.C.); (M.M.)
| | - Andrew H. Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh EH4 2XU, UK;
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania,
Italy; (M.G.M.); (V.V.); (M.G.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.T.); (R.L.); (F.C.); (M.M.)
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, 95122 Catania, Italy;
- Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy
| | - Marika Giuliano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania,
Italy; (M.G.M.); (V.V.); (M.G.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.T.); (R.L.); (F.C.); (M.M.)
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania,
Italy; (M.G.M.); (V.V.); (M.G.)
- Correspondence: (A.B.); (E.M.D.F.); Tel.: 39-095-7598-700 (A.B.); +39-095-7598-831 (E.M.D.F.)
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania,
Italy; (M.G.M.); (V.V.); (M.G.)
- Correspondence: (A.B.); (E.M.D.F.); Tel.: 39-095-7598-700 (A.B.); +39-095-7598-831 (E.M.D.F.)
| |
Collapse
|
24
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
25
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|
26
|
Rehman AU, Olof Olsson P, Khan N, Khan K. Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics. J Membr Biol 2020; 253:257-270. [PMID: 32415382 DOI: 10.1007/s00232-020-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022]
Abstract
Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Adeel Ur Rehman
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | | | - Naveed Khan
- Max Plank Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, Shanghai, 200032, China
| | - Khalid Khan
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Clinical Implications of Extracellular HMGA1 in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235950. [PMID: 31779212 PMCID: PMC6928815 DOI: 10.3390/ijms20235950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The unconventional secretion of proteins is generally caused by cellular stress. During the tumorigenesis, tumor cells experience high levels of stress, and the secretion of some theoretically intracellular proteins is activated. Once in the extracellular space, these proteins play different paracrine and autocrine roles and could represent a vulnerability of cancer. One of these proteins is the high mobility group A1 (HMGA1), which is frequently overexpressed in tumors and presents a low expression in normal adult tissues. We have recently described that HMGA1 establishes an autocrine loop in invasive triple-negative breast cancer (TNBC) cells. The secretion of HMGA1 and its binding to the receptor for advanced glycation end products (RAGE) mediates the migration, invasion, and metastasis of TNBC cells and predicts the onset of metastasis in these patients. In this review, we summarized different strategies to exploit the novel tumorigenic phenotype mediated by extracellular HMGA1. We envisioned future clinical applications where the association between its change in subcellular localization and breast cancer progression could be used to predict tumor aggressiveness and guide treatment decisions. Furthermore, we proposed that targeting extracellular HMGA1 as monotherapy using monoclonal antibodies, or in combination with chemotherapy and other targeted therapies, could bring new therapeutic options for TNBC patients.
Collapse
|
28
|
Chen G, Chen J, Liu H, Chen S, Zhang Y, Li P, Thierry-Mieg D, Thierry-Mieg J, Mattes W, Ning B, Shi T. Comprehensive Identification and Characterization of Human Secretome Based on Integrative Proteomic and Transcriptomic Data. Front Cell Dev Biol 2019; 7:299. [PMID: 31824949 PMCID: PMC6881247 DOI: 10.3389/fcell.2019.00299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Secreted proteins (SPs) play important roles in diverse important biological processes; however, a comprehensive and high-quality list of human SPs is still lacking. Here we identified 6,943 high-confidence human SPs (3,522 of them are novel) based on 330,427 human proteins derived from databases of UniProt, Ensembl, AceView, and RefSeq. Notably, 6,267 of 6,943 (90.3%) SPs have the supporting evidences from a large amount of mass spectrometry (MS) and RNA-seq data. We found that the SPs were broadly expressed in diverse tissues as well as human body fluid, and a significant portion of them exhibited tissue-specific expression. Moreover, 14 cancer-specific SPs that their expression levels were significantly associated with the patients’ survival of eight different tumors were identified, which could be potential prognostic biomarkers. Strikingly, 89.21% of 6,943 SPs (2,927 novel SPs) contain known protein domains. Those novel SPs we mainly enriched with the known domains regarding immunity, such as Immunoglobulin V-set and C1-set domain. Specifically, we constructed a user-friendly and freely accessible database, SPRomeDB (www.unimd.org/SPRomeDB), to catalog those SPs. Our comprehensive SP identification and characterization gain insights into human secretome and provide valuable resource for future researches.
Collapse
Affiliation(s)
- Geng Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwei Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huanlong Liu
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuangguan Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Zhang
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Li
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - William Mattes
- National Center for Toxicological Research, Food and Drug Administration, Jefferson City, AR, United States
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson City, AR, United States
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
29
|
Vandenbrouck Y, Christiany D, Combes F, Loux V, Brun V. Bioinformatics Tools and Workflow to Select Blood Biomarkers for Early Cancer Diagnosis: An Application to Pancreatic Cancer. Proteomics 2019; 19:e1800489. [DOI: 10.1002/pmic.201800489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/11/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yves Vandenbrouck
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| | - David Christiany
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
- MaIAGE, INRA, Université Paris‐Saclay Jouy‐en‐Josas 78350 France
| | - Florence Combes
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| | - Valentin Loux
- MaIAGE, INRA, Université Paris‐Saclay Jouy‐en‐Josas 78350 France
| | - Virginie Brun
- University of Grenoble Alpes, INSERM, CEA, IRIG‐BGE, U1038 Grenoble 38000 France
| |
Collapse
|
30
|
Cury SS, de Moraes D, Freire PP, de Oliveira G, Marques DVP, Fernandez GJ, Dal-Pai-Silva M, Hasimoto ÉN, Dos Reis PP, Rogatto SR, Carvalho RF. Tumor Transcriptome Reveals High Expression of IL-8 in Non-Small Cell Lung Cancer Patients with Low Pectoralis Muscle Area and Reduced Survival. Cancers (Basel) 2019; 11:E1251. [PMID: 31455042 PMCID: PMC6769884 DOI: 10.3390/cancers11091251] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Cachexia is a syndrome characterized by an ongoing loss of skeletal muscle mass associated with poor patient prognosis in non-small cell lung cancer (NSCLC). However, prognostic cachexia biomarkers in NSCLC are unknown. Here, we analyzed computed tomography (CT) images and tumor transcriptome data to identify potentially secreted cachexia biomarkers (PSCB) in NSCLC patients with low-muscularity. We integrated radiomics features (pectoralis muscle, sternum, and tenth thoracic (T10) vertebra) from CT of 89 NSCLC patients, which allowed us to identify an index for screening muscularity. Next, a tumor transcriptomic-based secretome analysis from these patients (discovery set) was evaluated to identify potential cachexia biomarkers in patients with low-muscularity. The prognostic value of these biomarkers for predicting recurrence and survival outcome was confirmed using expression data from eight lung cancer datasets (validation set). Finally, C2C12 myoblasts differentiated into myotubes were used to evaluate the ability of the selected biomarker, interleukin (IL)-8, in inducing muscle cell atrophy. We identified 75 over-expressed transcripts in patients with low-muscularity, which included IL-6, CSF3, and IL-8. Also, we identified NCAM1, CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD as PSCB in the tumor secretome. These PSCB were capable of distinguishing worse and better prognosis (recurrence and survival) in NSCLC patients. IL-8 was confirmed as a predictor of worse prognosis in all validation sets. In vitro assays revealed that IL-8 promoted C2C12 myotube atrophy. Tumors from low-muscularity patients presented a set of upregulated genes encoding for secreted proteins, including pro-inflammatory cytokines that predict worse overall survival in NSCLC. Among these upregulated genes, IL-8 expression in NSCLC tissues was associated with worse prognosis, and the recombinant IL-8 was capable of triggering atrophy in C2C12 myotubes.
Collapse
Affiliation(s)
- Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | | | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Érica Nishida Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
| | - Patricia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
- Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618687, São Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle 7100, Denmark
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| |
Collapse
|
31
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|
32
|
Canto LMD, Cury SS, Barros-Filho MC, Kupper BEC, Begnami MDFDS, Scapulatempo-Neto C, Carvalho RF, Marchi FA, Olsen DA, Madsen JS, Havelund BM, Aguiar S, Rogatto SR. Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. Sci Rep 2019; 9:8702. [PMID: 31213644 PMCID: PMC6582145 DOI: 10.1038/s41598-019-45151-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Most patients with locally advanced rectal cancer (LARC) present incomplete pathological response (pIR) to neoadjuvant chemoradiotherapy (nCRT). Despite the efforts to predict treatment response using tumor-molecular features, as differentially expressed genes, no molecule has proved to be a strong biomarker. The tumor secretome analysis is a promising strategy for biomarkers identification, which can be assessed using transcriptomic data. We performed transcriptomic-based secretome analysis to select potentially secreted proteins using an in silico approach. The tumor expression profile of 28 LARC biopsies collected before nCRT was compared with normal rectal tissues (NT). The expression profile showed no significant differences between complete (pCR) and incomplete responders to nCRT. Genes with increased expression (pCR = 106 and pIR = 357) were used for secretome analysis based on public databases (Vesiclepedia, Human Cancer Secretome, and Plasma Proteome). Seventeen potentially secreted candidates (pCR = 1, pIR = 13 and 3 in both groups) were further investigated in two independent datasets (TCGA and GSE68204) confirming their over-expression in LARC and association with nCRT response (GSE68204). The expression of circulating amphiregulin and cMET proteins was confirmed in serum from 14 LARC patients. Future studies in liquid biopsies could confirm the utility of these proteins for personalized treatment in LARC patients.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- International Research Center - CIPE, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil.,Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Sarah Santiloni Cury
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | | | | | | | - Robson Francisco Carvalho
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark
| | - Birgitte Mayland Havelund
- Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Department of Oncology, University Hospital of Southern Denmark, 7100, Vejle, Denmark
| | - Samuel Aguiar
- Department of Pelvic Surgery, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark. .,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark. .,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark.
| |
Collapse
|
33
|
Chen Z, Chen JJ, Fan R. Single-Cell Protein Secretion Detection and Profiling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:431-449. [PMID: 30978293 DOI: 10.1146/annurev-anchem-061318-115055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secreted proteins play important roles in mediating various biological processes such as cell-cell communication, differentiation, migration, and homeostasis at the population or tissue level. Here, we review bioanalytical technologies and devices for detecting protein secretions from single cells. We begin by discussing conventional approaches followed by detailing the latest advances in microengineered systems for detecting single-cell protein secretions with an emphasis on multiplex measurement. These platforms include droplet microfluidics, micro-/nanowell-based assays, and microchamber-based assays, among which the advantages and limitations are compared. Microscale systems also enable the tracking of protein secretion dynamics in single cells, further empowering the study of the cell-cell communication network. Looking forward, we discuss the remaining challenges and future opportunities that will transform basic research of cellular secretion functions at the systems level and the clinical applications for immune monitoring and cancer treatment.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Jonathan J Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Yale Cancer Center, Yale Stem Cell Center, Human and Translational Immunology Program, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Dhieb D, Belguith I, Capelli L, Chiadini E, Canale M, Bravaccini S, Yangui I, Boudawara O, Jlidi R, Boudawara T, Calistri D, Keskes LA, Ulivi P. Analysis of Genetic Alterations in Tunisian Patients with Lung Adenocarcinoma. Cells 2019; 8:E514. [PMID: 31141932 PMCID: PMC6627075 DOI: 10.3390/cells8060514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022] Open
Abstract
The identification of the mutations that drive lung cancer have furnished new targets for the treatment of non-small cell lung cancer (NSCLC) and led to the development of targeted therapies such as tyrosine kinase inhibitors that are used to combat the molecular changes promoting cancer progression. Furthermore, biomarkers identified from gene analysis can be used to detect early lung cancer, determine patient prognosis, and monitor response to therapy. In the present study we analyzed the molecular profile of seventy-three Tunisian patients with lung adenocarcinoma (LAD). Mutational analyses for EGFR and KRAS were performed using direct sequencing, immunohistochemistry or MassARRAY. Anaplastic lymphoma kinase (ALK) rearrangement was evaluated by immunohistochemistry using the D5F3 clone, and p53 expression was also assessed. The median age of patients at diagnosis was 61 years (range 23-82 years). Using different methodologies, EGFR mutations were found in 5.47% of patients and only exon 19 deletions "E746-A750 del" were detected. KRAS mutations were present in 9.58% of cases, while only one patient was ALK-positive. Moreover, abnormal immunostaining of p53 was detected in 56.16% of patients. In conclusion, the detected rates of EGFR and KRAS mutation and ALK rearrangement were lower than those found in European and Asian countries, whereas, abnormal p53 expression was slightly more frequent. Furthermore, given the small sample size of this study, a more comprehensive analysis of this patient set is warranted.
Collapse
Affiliation(s)
- Dhoha Dhieb
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia.
| | - Imen Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia.
| | - Laura Capelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Elisa Chiadini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Ilhem Yangui
- Department of Respiratory and Sleep Diseases, CHU Hedi Chaker, Sfax 3029, Tunisia.
| | - Ons Boudawara
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia.
| | - Rachid Jlidi
- Laboratory of Anatomic Pathology, Sfax 3000, Tunisia.
| | - Tahya Boudawara
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia.
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Leila Ammar Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia.
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| |
Collapse
|
35
|
Robinson JL, Feizi A, Uhlén M, Nielsen J. A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Rep 2019; 26:2622-2635.e5. [PMID: 30840886 PMCID: PMC6441842 DOI: 10.1016/j.celrep.2019.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The collection of proteins secreted from a cell-the secretome-is of particular interest in cancer pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction without exploring the associated functions. We therefore conducted a pan-cancer analysis of secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating the secretion of proteins promoting invasion and proliferation. These results provide a more systematic understanding of the cancer secretome, facilitating its use in diagnostics and its targeting for therapeutic development.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
36
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Tiedemann K, Sadvakassova G, Mikolajewicz N, Juhas M, Sabirova Z, Tabariès S, Gettemans J, Siegel PM, Komarova SV. Exosomal Release of L-Plastin by Breast Cancer Cells Facilitates Metastatic Bone Osteolysis. Transl Oncol 2018; 12:462-474. [PMID: 30583289 PMCID: PMC6305809 DOI: 10.1016/j.tranon.2018.11.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Bone metastasis from breast and prostate carcinomas is facilitated by activation of bone-resorbing osteoclasts. Using proteomics approaches, we have identified peroxiredoxin-4 (PRDX4) as a cancer-secreted mediator of osteoclastogenesis. We now report characterization of L-plastin in the conditioned media (CM) of MDA-MB-231 human breast cancer cells using immunoblotting and mass spectrometry. The osteoclastogenic potential of MDA-MB-231 CM with siRNA-silenced L-plastin was significantly reduced. L-plastin was detected in cancer-derived exosomes, and inhibition of exosomal release significantly decreased the osteoclastogenic capacity of MDA-MB-231 CM. When added to osteoclast precursors primed with RANKL for 2 days, recombinant L-plastin induced calcium/NFATc1-mediated osteoclastogenesis to the levels similar to continuous treatment with RANKL. Using shRNA, we generated MDA-MB-231 cells lacking L-plastin, PRDX4, or both and injected these cell populations intratibially in CD-1 immunodeficient mice. Micro-CT and histomorphometric analysis demonstrated a complete loss of osteolysis when MDA-MB-231 cells lacking both L-plastin and PRDX4 were injected. A meta-analysis established an increase in L-plastin and PRDX4 mRNA expression in numerous human cancers, including breast and prostate carcinomas. This study demonstrates that secreted L-plastin and PRDX4 mediate osteoclast activation by human breast cancer cells.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec, Canada, H3A 0C7; Shriner's Hospital for Children - Canada, 1003 Decarie Boulevard, Montreal, Quebec H4A 0A9
| | - Gulzhakhan Sadvakassova
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec, Canada, H3A 0C7; Shriner's Hospital for Children - Canada, 1003 Decarie Boulevard, Montreal, Quebec H4A 0A9
| | - Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec, Canada, H3A 0C7; Shriner's Hospital for Children - Canada, 1003 Decarie Boulevard, Montreal, Quebec H4A 0A9
| | - Michal Juhas
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec, Canada, H3A 0C7
| | - Zarina Sabirova
- Shriner's Hospital for Children - Canada, 1003 Decarie Boulevard, Montreal, Quebec H4A 0A9
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3A 1A3; Department of Medicine, McGill University, Montreal, Quebec, Canada, H3A 1A3
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Rommelaere Campus, Ghent University, Ghent, Belgium
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3A 1A3; Department of Medicine, McGill University, Montreal, Quebec, Canada, H3A 1A3; Department of Biochemistry, McGill University, Montreal, Quebec, Canada, H3A 1A3
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec, Canada, H3A 0C7; Shriner's Hospital for Children - Canada, 1003 Decarie Boulevard, Montreal, Quebec H4A 0A9.
| |
Collapse
|
38
|
Phosphorylation of NHERF1 S279 and S301 differentially regulates breast cancer cell phenotype and metastatic organotropism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:26-37. [PMID: 30326259 DOI: 10.1016/j.bbadis.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
Collapse
|
39
|
Méndez O, Peg V, Salvans C, Pujals M, Fernández Y, Abasolo I, Pérez J, Matres A, Valeri M, Gregori J, Villarreal L, Schwartz S, Ramon Y Cajal S, Tabernero J, Cortés J, Arribas J, Villanueva J. Extracellular HMGA1 Promotes Tumor Invasion and Metastasis in Triple-Negative Breast Cancer. Clin Cancer Res 2018; 24:6367-6382. [PMID: 30135148 DOI: 10.1158/1078-0432.ccr-18-0517] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The study of the cancer secretome suggests that a fraction of the intracellular proteome could play unanticipated roles in the extracellular space during tumorigenesis. A project aimed at investigating the invasive secretome led us to study the alternative extracellular function of the nuclear protein high mobility group A1 (HMGA1) in breast cancer invasion and metastasis. EXPERIMENTAL DESIGN Antibodies against HMGA1 were tested in signaling, adhesion, migration, invasion, and metastasis assays using breast cancer cell lines and xenograft models. Fluorescence microscopy was used to determine the subcellular localization of HMGA1 in cell lines, xenograft, and patient-derived xenograft models. A cohort of triple-negative breast cancer (TNBC) patients was used to study the correlation between subcellular localization of HMGA1 and the incidence of metastasis. RESULTS Our data show that treatment of invasive cells with HMGA1-blocking antibodies in the extracellular space impairs their migration and invasion abilities. We also prove that extracellular HMGA1 (eHMGA1) becomes a ligand for the Advanced glycosylation end product-specific receptor (RAGE), inducing pERK signaling and increasing migration and invasion. Using the cytoplasmic localization of HMGA1 as a surrogate marker of secretion, we showed that eHMGA1 correlates with the incidence of metastasis in a cohort of TNBC patients. Furthermore, we show that HMGA1 is enriched in the cytoplasm of tumor cells at the invasive front of primary tumors and in metastatic lesions in xenograft models. CONCLUSIONS Our results strongly suggest that eHMGA1 could become a novel drug target in metastatic TNBC and a biomarker predicting the onset of distant metastasis.
Collapse
Affiliation(s)
- Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Cándida Salvans
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yolanda Fernández
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ibane Abasolo
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José Pérez
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Matres
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Valeri
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Josep Gregori
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | | | - Simó Schwartz
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,CIBERONC, Madrid, Spain
| | - Javier Cortés
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
40
|
Nierenberg D, Khaled AR, Flores O. Formation of a protein corona influences the biological identity of nanomaterials. Rep Pract Oncol Radiother 2018; 23:300-308. [PMID: 30100819 PMCID: PMC6084521 DOI: 10.1016/j.rpor.2018.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/05/2018] [Indexed: 12/17/2022] Open
Abstract
The development and testing of nanomaterials is an area of interest due to promising diagnostic and therapeutic applications in the treatment of diseases like cancer or cardiovascular disease. While extensive studies of the physicochemical properties of nanoparticles (NPs) are available, the investigation of the protein corona (PC) that is formed on NPs in biofluids is a relatively new area of research. The fact that few NPs are in clinical use indicates that the biological identity of NPs, which is in large part due to the PC formed in blood or other bodily fluids, may be altered in ways yet to be fully understood. Herein, we review the recent advances in PC research with the intent to highlight the current state of the field. We discuss the dynamic processes that control the formation of the PC on NPs, which involve the transient soft corona and more stable hard corona. Critical factors, like the environment and disease-state that affect the composition and stability of the PC are presented, with the intent of showcasing promising applications for utilizing the PC for disease diagnosis and the identification of disease-related biomarkers. This review summarizes the unique challenges presented by the nanoparticle corona and indicates future directions for investigation.
Collapse
Affiliation(s)
| | | | - Orielyz Flores
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| |
Collapse
|
41
|
Warmoes M, Lam SW, van der Groep P, Jaspers JE, Smolders YHCM, de Boer L, Pham TV, Piersma SR, Rottenberg S, Boven E, Jonkers J, van Diest PJ, Jimenez CR. Secretome proteomics reveals candidate non-invasive biomarkers of BRCA1 deficiency in breast cancer. Oncotarget 2018; 7:63537-63548. [PMID: 27566577 PMCID: PMC5325383 DOI: 10.18632/oncotarget.11535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Breast cancer arising in female BRCA1 mutation carriers is characterized by an aggressive phenotype and early age of onset. We performed tandem mass spectrometry-based proteomics of secretomes and exosome-like extracellular vesicles from BRCA1-deficient and BRCA1-proficient murine breast tumor models to identify extracellular protein biomarkers, which can be used as an adjunct to current diagnostic modalities in patients with BRCA1-deficient breast cancer. We identified 2,107 proteins, of which 215 were highly enriched in the BRCA1-deficient secretome. We demonstrated that BRCA1-deficient secretome proteins could cluster most human BRCA1- and BRCA2-related breast carcinomas at the transcriptome level. Topoisomerase I (TOP1) and P-cadherin (CDH3) expression was investigated by immunohistochemistry on tissue microarrays of a large panel of 253 human breast carcinomas with and without BRCA1/2 mutations. We showed that expression of TOP1 and CDH3 was significantly increased in human BRCA1-related breast carcinomas relative to sporadic cases (p = 0.002 and p < 0.001, respectively). Multiple logistic regression showed that TOP1 (adjusted odds ratio [OR] 3.75; 95% confidence interval [95% CI], 1.85 - 7.71, p < 0.001) as well as CDH3 positivity (adjusted OR 2.45; 95% CI, 1.08 - 5.49, p = 0.032) were associated with BRCA1/2-related breast carcinomas after adjustment for triple-negative phenotype and age. In conclusion, proteome profiling of secretome using murine breast tumor models is a powerful strategy to identify non-invasive candidate biomarkers of BRCA1-deficient breast cancer. We demonstrate that TOP1 and CDH3 are closely associated to BRCA1-deficient breast cancer. These data merit further investigation for early detection of tumors arising in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Marc Warmoes
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Siu W Lam
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke E Jaspers
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yvonne H C M Smolders
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leon de Boer
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Thang V Pham
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Epie Boven
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Connie R Jimenez
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Signatures of protein expression revealed by secretome analyses of cancer associated fibroblasts and melanoma cell lines. J Proteomics 2018; 174:1-8. [DOI: 10.1016/j.jprot.2017.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
|
43
|
Angi M, Kalirai H, Prendergast S, Simpson D, Hammond DE, Madigan MC, Beynon RJ, Coupland SE. In-depth proteomic profiling of the uveal melanoma secretome. Oncotarget 2018; 7:49623-49635. [PMID: 27391064 PMCID: PMC5226534 DOI: 10.18632/oncotarget.10418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/09/2016] [Indexed: 12/23/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular tumour in adults, is characterised by a high frequency of metastases to the liver, typically with a fatal outcome. Proteins secreted from cancer cells (‘secretome’) are biologically important molecules thought to contribute to tumour progression. We examined the UM secretome by applying a label-free nanoLCMS/MS proteomic approach to profile proteins secreted into culture media by primary UM tumours with a high− (HR; n = 11) or low− (LR; n = 4) metastatic risk, compared to normal choroidal melanocytes (NCM) from unaffected post-mortem eyes. Across the three groups, 1843 proteins were identified at a 1% false discovery rate; 758 of these by at least 3 unique peptides, and quantified. The majority (539/758, 71%) of proteins were classified as secreted either by classical (144, 19%), non-classical (43, 6%) or exosomal (352, 46%) mechanisms. Bioinformatic analyzes showed that the secretome composition reflects biological differences and similarities of the samples. Ingenuity® pathway analysis of the secreted protein dataset identified abundant proteins involved in cell proliferation-, growth- and movement. Hepatic fibrosis/hepatic stellate cell activation and the mTORC1-S6K signalling axis were among the most differentially regulated biological processes in UM as compared with NCM. Further analysis of proteins upregulated ≥ 2 in HR-UM only, identified exosomal proteins involved in extracellular matrix remodelling and cancer cell migration/invasion; as well as classically secreted proteins, possibly representing novel biomarkers of metastatic disease. In conclusion, UM secretome analysis identifies novel proteins and pathways that may contribute to metastatic development at distant sites, particularly in the liver.
Collapse
Affiliation(s)
- Martina Angi
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Samuel Prendergast
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dean E Hammond
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michele C Madigan
- School of Optometry, University of New South Wales, New South Wales, Australia.,Save Sight Institute, Ophthalmology, University of Sydney, New South Wales, Australia
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
44
|
Costanza B, Turtoi A, Bellahcène A, Hirano T, Peulen O, Blomme A, Hennequière V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V. Innovative methodology for the identification of soluble biomarkers in fresh tissues. Oncotarget 2018. [PMID: 29535834 PMCID: PMC5828218 DOI: 10.18632/oncotarget.24366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Hennequière
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Eugene Mutijima
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Jacques Boniver
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Claire Josse
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Karin Segers
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Karim Fahmy
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium.,GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Vincent Bours
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
45
|
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses bodily tumorigenic tissues and cells, and can accumulate by-products of tumors and stromal cells in a relatively local space. Interstitial fluid offers several important advantages for biomarker and therapeutic target discovery, especially for cancer. Here, we describe the most currently accepted method for recovering TIF from tumor and nonmalignant tissues that was initially performed using breast cancer tissue. TIF recovery is achieved by passive extraction of fluid from small, surgically dissected tissue specimens in phosphate-buffered saline. We also present protocols for hematoxylin and eosin (H&E) staining of snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tumor sections and for proteomic profiling of TIF and matched tumor samples by high-resolution two-dimensional gel electrophoresis (2D-PAGE) to enable comparative analysis of tumor secretome and paired tumor tissue.
Collapse
|
46
|
Mezni F, Mlika M, Boussen H, Ghedira H, Fenniche S, Faten T, Loriot MA. About molecular profile of lung cancer in Tunisian patients. J Immunoassay Immunochem 2018; 39:99-107. [PMID: 29308976 DOI: 10.1080/15321819.2017.1407339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Molecular profile of lung cancer is well known in developed countries. These countries reached the era of liquid biopsies, immunotherapy, and urine circulating tumor DNA. The discrepancies between developed countries and developing ones are becoming deeper. Because of a lack of data in Tunisia, we tried to analyze the molecular profile of non-small-cell carcinomas and to assess the morphologic subtype of adenocarcinomas according to their mutational profile. METHODS We performed molecular analyses in Tunisia and in France of 84 patients who were able to afford the cost of the diagnostic techniques carcinomas diagnosed between 2012 and 2015. The diagnosis was established in our Department of Pathology and the percentage of the tumor cells was estimated by the pathologists. The paraffin-embedded blocks were sent to France, in 41 cases and were analyzed in Tunisia in 43 cases. A next-generation sequencing was performed in France and a real-time polymerase chain reaction (PCR) was performed in our country. RESULTS During the period of study, 1122 lung cancers were diagnosed and 87 patients were able to afford the molecular analyses cost. The mean age of these patients was 53 years. The sex ratio reached 1.9. The molecular analyses were not performed in three cases because of a low tumor cell rate. EGFR mutations were present in 16 cases: 3 men and 13 women. The adenocarcinomas were classified as acinar in 11 cases and solid in 5 cases. ALK-EML4 translocation was present in six cases. Mutations of BRAF, KRAS, P53, and ERBB4 genes were, respectively, detected in two cases, five cases (3 codon 12), three cases, and one case. CONCLUSION This study made us wonder about the possibility of implementing molecular techniques in low-income countries and about the necessity of optimizing the financial resources.
Collapse
Affiliation(s)
- Faouzi Mezni
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Mona Mlika
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Hamouda Boussen
- c Department of Medical Oncology , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Habib Ghedira
- d Department of Pulmonology, Pav III , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Soraya Fenniche
- e Department of Pulmonology, Pav D , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia
| | - Talmoudi Faten
- b Research Unit Department of Pathology , Tunis , Tunisia
| | - Marie-Anne Loriot
- f Inserm UMR_S1147, Centre Universitaire des Saints-Pères , Paris , France.,g Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,h Service de Biochimie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Biology , Paris , France
| |
Collapse
|
47
|
Bhardwaj M, Erben V, Schrotz-King P, Brenner H. Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2017; 9:cancers9110156. [PMID: 29144439 PMCID: PMC5704174 DOI: 10.3390/cancers9110156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Objective: In order to find low abundant proteins secretome and tumor tissue proteome data have been explored in the last few years for the diagnosis of colorectal cancer (CRC). In this review we aim to summarize the results of studies evaluating markers derived from the secretome and tumor proteome for blood based detection of colorectal cancer. Methods: Observing the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines PubMed and Web of Science databases were searched systematically for relevant studies published up to 18 July 2017. After screening for predefined eligibility criteria a total of 47 studies were identified. Information on diagnostic performance indicators, methodological procedures and validation was extracted. Functions of proteins were identified from the UniProt database and the the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess study quality. Results: Forty seven studies meeting inclusion criteria were identified. Overall, 83 different proteins were identified, with carcinoembryonic Antigen (CEA) being by far the most commonly reported (reported in 24 studies). Evaluation of the markers or marker combinations in blood samples from CRC cases and controls yielded apparently very promising diagnostic performances, with area under the curve >0.9 in several cases, but lack of internal or external validation, overoptimism due to overfitting and spectrum bias due to evaluation in clinical setting rather than screening settings are major concerns. Conclusions: Secretome and tumor proteome-based biomarkers when validated in blood yield promising candidates. However, for discovered protein markers to be clinically applicable as screening tool they have to be specific for early stages and need to be validated externally in larger studies with participants recruited in true screening setting.
Collapse
Affiliation(s)
- Megha Bhardwaj
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Vanessa Erben
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
48
|
Papaleo E, Gromova I, Gromov P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev Proteomics 2017; 14:1021-1035. [PMID: 28967788 DOI: 10.1080/14789450.2017.1387053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Papaleo
- a Danish Cancer Society Research Center, Computational Biology Laboratory , Copenhagen , Denmark
| | - Irina Gromova
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| | - Pavel Gromov
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| |
Collapse
|
49
|
Hsiao YC, Chu LJ, Chen JT, Yeh TS, Yu JS. Proteomic profiling of the cancer cell secretome: informing clinical research. Expert Rev Proteomics 2017; 14:737-756. [PMID: 28695748 DOI: 10.1080/14789450.2017.1353913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets. Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials. Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Yung-Chin Hsiao
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Lichieh Julie Chu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jeng-Ting Chen
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ta-Sen Yeh
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jau-Song Yu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
50
|
Jin K, Pandey NB, Popel AS. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget 2017; 8:60210-60222. [PMID: 28947965 PMCID: PMC5601133 DOI: 10.18632/oncotarget.19417] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) as a metastatic disease is currently incurable. Reliable and reproducible methods for testing drugs against metastasis are not available. Stromal cells may play a critical role in tumor progression and metastasis. In this study, we determined that fibroblasts and macrophages secreted IL-8 upon induction by tumor cell-conditioned media (TCM) from MDA-MB-231 cancer cells. Our data showed that the proliferation of MDA-MB-231 cells co-cultured with fibroblasts or macrophages was enhanced compared to the monoculture. Furthermore, TNBC cell migration, a key step in tumor metastasis, was promoted by conditioned media (CM) from TCM-induced fibroblasts or macrophages. Knockdown of the IL-8 receptor CXCR2 by CRISPR-Cas9 reduces MDA-MB-231 cell proliferation and migration compared to wild type. In a mouse xenograft tumor model, the growth of MDA-MB-231-CXCR2−/− tumor was significantly decreased compared to the growth of tumors from wild-type cells. In addition, the incidence of thoracic metastasis of MDA-MB-231-CXCR2−/− tumors was reduced compared to wild type. We found that the auto- and paracrine loop exists between TNBC cells and stroma, which results in enhanced IL-8 secretion from the stromal components. Significantly, inhibition of the IL-8 signaling pathway by reparixin, an inhibitor of the IL-8 receptor, CXCR1/2, reduced MDA-MB-231 tumor growth and metastasis. Taken together, these findings implicate IL-8 signaling as a critical event in TNBC tumor growth and metastasis via crosstalk with stromal components.
Collapse
Affiliation(s)
- Kideok Jin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|