1
|
Heidinger L, Fix I, Friedrich T, Layer G. Trapping the substrate radical of heme synthase AhbD. Front Chem 2024; 12:1430796. [PMID: 39119521 PMCID: PMC11306076 DOI: 10.3389/fchem.2024.1430796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
The heme synthase AhbD catalyzes the last step of the siroheme-dependent heme biosynthesis pathway, which is operative in archaea and sulfate-reducing bacteria. The AhbD-catalyzed reaction consists of the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme b. AhbD is a Radical SAM enzyme employing radical chemistry to achieve the decarboxylation reaction. Previously, it was proposed that the central iron ion of the substrate iron-coproporphyrin III participates in the reaction by enabling electron transfer from the initially formed substrate radical to an iron-sulfur cluster in AhbD. In this study, we investigated the substrate radical that is formed during AhbD catalysis. While the iron-coproporphyrinyl radical was not detected by electron paramagnetic resonance (EPR) spectroscopy, trapping and visualization of the substrate radical was successful by employing substrate analogs such as coproporphyrin III and zinc-coproporphyrin III. The radical signals detected by EPR were analyzed by simulations based on density functional theory (DFT) calculations. The observed radical species on the substrate analogs indicate that hydrogen atom abstraction takes place at the β-position of the propionate side chain and that an electron donating ligand is located in proximity to the central metal ion of the porphyrin.
Collapse
Affiliation(s)
- Lorenz Heidinger
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Isabelle Fix
- Institut für Pharmazeutische Wissenschaften, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Fix I, Heidinger L, Friedrich T, Layer G. The Radical SAM Heme Synthase AhbD from Methanosarcina barkeri Contains Two Auxiliary [4Fe-4S] Clusters. Biomolecules 2023; 13:1268. [PMID: 37627333 PMCID: PMC10452713 DOI: 10.3390/biom13081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.
Collapse
Affiliation(s)
- Isabelle Fix
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| | - Lorenz Heidinger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (L.H.); (T.F.)
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (L.H.); (T.F.)
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Su H, Chen X, Chen S, Guo M, Liu H. Applications of the Whole-Cell System in the Efficient Biosynthesis of Heme. Int J Mol Sci 2023; 24:ijms24098384. [PMID: 37176091 PMCID: PMC10179345 DOI: 10.3390/ijms24098384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Heme has a variety of functions, from electronic reactions to binding gases, which makes it useful in medical treatments, dietary supplements, and food processing. In recent years, whole-cell system-based heme biosynthesis methods have been continuously explored and optimized as an alternative to the low-yield, lasting, and adverse ecological environment of chemical synthesis methods. This method relies on two biosynthetic pathways of microbial precursor 5-aminolevulinic acid (C4, C5) and three known downstream biosynthetic pathways of heme. This paper reviews the genetic and metabolic engineering strategies for heme production in recent years by optimizing culture conditions and techniques from different microorganisms. Specifically, we summarized and analyzed the possibility of using biosensors to explore new strategies for the biosynthesis of heme from the perspective of synthetic biology, providing a new direction for future exploration.
Collapse
Affiliation(s)
- Hongfei Su
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shijing Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Boswinkle K, McKinney J, Allen KD. Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol 2022; 204:e0019722. [PMID: 35880875 PMCID: PMC9380564 DOI: 10.1128/jb.00197-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
Collapse
Affiliation(s)
- Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Justin McKinney
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Layer G, Jahn M, Moser J, Jahn D. Radical SAM Enzymes Involved in Tetrapyrrole Biosynthesis and Insertion. ACS BIO & MED CHEM AU 2022; 2:196-204. [PMID: 37101575 PMCID: PMC10114771 DOI: 10.1021/acsbiomedchemau.1c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The anaerobic biosyntheses of heme, heme d 1, and bacteriochlorophyll all require the action of radical SAM enzymes. During heme biosynthesis in some bacteria, coproporphyrinogen III dehydrogenase (CgdH) catalyzes the decarboxylation of two propionate side chains of coproporphyrinogen III to the corresponding vinyl groups of protoporphyrinogen IX. Its solved crystal structure was the first published structure for a radical SAM enzyme. In bacteria, heme is inserted into enzymes by the cytoplasmic heme chaperone HemW, a radical SAM enzyme structurally highly related to CgdH. In an alternative heme biosynthesis route found in archaea and sulfate-reducing bacteria, the two radical SAM enzymes AhbC and AhbD catalyze the removal of two acetate groups (AhbC) or the decarboxylation of two propionate side chains (AhbD). NirJ, a close homologue of AhbC, is required for propionate side chain removal during the formation of heme d 1 in some denitrifying bacteria. Biosynthesis of the fifth ring (ring E) of all chlorophylls is based on an unusual six-electron oxidative cyclization step. The sophisticated conversion of Mg-protoporphyrin IX monomethylester to protochlorophyllide is facilitated by an oxygen-independent cyclase termed BchE, which is a cobalamin-dependent radical SAM enzyme. Most of the radical SAM enzymes involved in tetrapyrrole biosynthesis were recognized as such by Sofia et al. in 2001 (Nucleic Acids Res.2001, 29, 1097-1106) and were biochemically characterized thereafter. Although much has been achieved, the challenging tetrapyrrole substrates represent a limiting factor for enzyme/substrate cocrystallization and the ultimate elucidation of the corresponding enzyme mechanisms.
Collapse
Affiliation(s)
- Gunhild Layer
- Institut
für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg im Breisgau, Germany
- . Phone: ++49
0761 203 8373
| | - Martina Jahn
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jürgen Moser
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig
Integrated Center of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Lee YH, Hou X, Chen R, Feng J, Liu X, Ruszczycky MW, Gao JM, Wang B, Zhou J, Liu HW. Radical S-Adenosyl Methionine Enzyme BlsE Catalyzes a Radical-Mediated 1,2-Diol Dehydration during the Biosynthesis of Blasticidin S. J Am Chem Soc 2022; 144:4478-4486. [PMID: 35238201 DOI: 10.1021/jacs.1c12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biosynthesis of blasticidin S has drawn attention due to the participation of the radical S-adenosyl methionine (SAM) enzyme BlsE. The original assignment of BlsE as a radical-mediated, redox-neutral decarboxylase is unusual because this reaction appears to serve no biosynthetic purpose and would need to be reversed by a subsequent carboxylation step. Furthermore, with the exception of BlsE, all other radical SAM decarboxylases reported to date are oxidative in nature. Careful analysis of the BlsE reaction, however, demonstrates that BlsE is not a decarboxylase but instead a lyase that catalyzes the dehydration of cytosylglucuronic acid (CGA) to form cytosyl-4'-keto-3'-deoxy-d-glucuronic acid, which can rapidly decarboxylate nonenzymatically in vitro. Analysis of substrate isotopologs, fluorinated analogues, as well as computational models based on X-ray crystal structures of the BlsE·SAM (2.09 Å) and BlsE·SAM·CGA (2.62 Å) complexes suggests that BlsE catalysis likely proceeds via direct elimination of water from the CGA C4' α-hydroxyalkyl radical as opposed to 1,2-migration of the C3'-hydroxyl prior to dehydration. Biosynthetic and mechanistic implications of the revised assignment of BlsE are discussed.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xueli Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ridao Chen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
|
8
|
Besandre RA, Chen Z, Davis I, Zhang J, Ruszczycky MW, Liu A, Liu HW. HygY Is a Twitch Radical SAM Epimerase with Latent Dehydrogenase Activity Revealed upon Mutation of a Single Cysteine Residue. J Am Chem Soc 2021; 143:15152-15158. [PMID: 34491039 DOI: 10.1021/jacs.1c05727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
HygY is a SPASM/twitch radical SAM enzyme hypothesized to catalyze the C2'-epimerization of galacamine during the biosynthesis of hygromycin B. This activity is confirmed via biochemical and structural analysis of the derivatized reaction products using chemically synthesized deuterated substrate, high-resolution mass spectrometry and 1H NMR. Electron paramagnetic resonance spectroscopy of the reduced enzyme is consistent with ligation of two [Fe4S4] clusters characteristic of the twitch radical SAM subgroup. HygY catalyzed epimerization proceeds with incorporation of a single solvent Hydron into the talamine product facilitated by the catalytic cysteine-183 residue. Mutation of this cysteine to alanine converts HygY from a C2'-epimerase to an C2'-dehydrogenase with comparable activity. The SPASM/twitch radical SAM enzymes often serve as anaerobic oxidases making the redox-neutral epimerases in this class rather interesting. The discovery of latent dehydrogenase activity in a twitch epimerase may therefore offer new insights into the mechanistic features that distinguish oxidative versus redox-neutral SPASM/twitch enzymes and lead to the evolution of new enzyme activities.
Collapse
Affiliation(s)
- Ronald A Besandre
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Zhang Chen
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Mark Walter Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
9
|
Layer G. Heme biosynthesis in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118861. [PMID: 32976912 DOI: 10.1016/j.bbamcr.2020.118861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
The cyclic tetrapyrrole heme is used as a prosthetic group in a broad variety of different proteins in almost all organisms. Often, it is essential for vital biochemical processes such as aerobic and anaerobic respiration as well as photosynthesis. In Nature, heme is made from the common tetrapyrrole precursor 5-aminolevulinic acid, and for a long time it was assumed that heme is biosynthesized by a single, common pathway in all organisms. However, although this is indeed the case in eukaryotes, heme biosynthesis is more diverse in the prokaryotic world, where two additional pathways exist. The final elucidation of the two 'alternative' heme biosynthesis routes operating in some bacteria and archaea was achieved within the last decade. This review summarizes the three different heme biosynthesis pathways with a special emphasis on the two 'new' prokaryotic routes.
Collapse
Affiliation(s)
- Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Wissenschaften, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
The uroS and yifB Genes Conserved among Tetrapyrrole Synthesizing-Deficient Bacteroidales Are Involved in Bacteroides fragilis Heme Assimilation and Survival in Experimental Intra-abdominal Infection and Intestinal Colonization. Infect Immun 2020; 88:IAI.00103-20. [PMID: 32457103 DOI: 10.1128/iai.00103-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
The human intestinal anaerobic commensal and opportunistic pathogen Bacteroides fragilis does not synthesize the tetrapyrrole protoporphyrin IX in order to form heme that is required for growth stimulation and survival in vivo Consequently, B. fragilis acquires essential heme from host tissues during extraintestinal infection. The absence of several genes necessary for de novo heme biosynthesis is a common characteristic of many anaerobic bacteria; however, the uroS gene, encoding a uroporphyrinogen III synthase for an early step of heme biosynthesis, is conserved among the heme-requiring Bacteroidales that inhabit the mammalian gastrointestinal tract. In this study, we show that the ability of B. fragilis to utilize heme or protoporphyrin IX for growth was greatly reduced in a ΔuroS mutant. This growth defect appears to be linked to the suppression of reverse chelatase and ferrochelatase activities in the absence of uroS In addition, this ΔuroS suppressive effect was enhanced by the deletion of the yifB gene, which encodes an Mg2+-chelatase protein belonging to the ATPases associated with various cellular activities (AAA+) superfamily of proteins. Furthermore, the ΔuroS mutant and the ΔuroS ΔyifB double mutant had a severe survival defect compared to the parent strain in competitive infection assays using animal models of intra-abdominal infection and intestinal colonization. This shows that the presence of the uroS and yifB genes in B. fragilis seems to be linked to pathophysiological and nutritional competitive fitness for survival in host tissues. Genetic complementation studies and enzyme kinetics assays indicate that B. fragilis UroS is functionally different from canonical bacterial UroS proteins. Taken together, these findings show that heme assimilation and metabolism in the anaerobe B. fragilis have diverged from those of aerobic and facultative anaerobic pathogenic bacteria.
Collapse
|
11
|
Videira MAM, Lobo SAL, Sousa FL, Saraiva LM. Identification of the sirohaem biosynthesis pathway in Staphylococcus aureus. FEBS J 2019; 287:1537-1553. [PMID: 31605669 DOI: 10.1111/febs.15091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 11/27/2022]
Abstract
Sirohaem is a modified tetrapyrrole and a key prosthetic group of several enzymes involved in nitrogen and sulfur metabolisms. This work shows that Staphylococcus aureus produces sirohaem through a pathway formed by three independent enzymes. Of the two putative sirohaem synthases encoded in the S. aureus genome and annotated as cysG, one is herein shown to be a uroporphyrinogen III methyltransferase that converts uroporphyrinogen III to precorrin-2, and was renamed as UroM. The second cysG gene encodes a precorrin-2 dehydrogenase that converts precorrin-2 to sirohydrochlorin, and was designated as P2D. The last step was found to be performed by the gene nirR that, in fact, codes for a protein with sirohydrochlorin ferrochelatase activity, labelled as ShfC. Additionally, site-directed mutagenesis studies of S. aureus ShfC revealed that residues H22 and H87, which are predicted by homology modelling to be located at the active site, control the ferrochelatase activity. Within bacteria, sirohaem synthesis may occur via one, two or three enzymes, and we propose to name the correspondent pathways as Types 1, 2 and 3, respectively. A phylogenetic analysis revealed that Type 1 is the most used pathway in Gammaproteobacteria and Streptomycetales, Type 2 predominates in Fibrobacteres and Vibrionales, and Type 3 predominates in Firmicutes of the Bacillales order. Altogether, we concluded that the current distribution of sirohaem pathways within bacteria, which changes at the genus or species level and within taxa, seems to be the result of evolutionary multiple fusion/fission events.
Collapse
Affiliation(s)
- Marco A M Videira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana A L Lobo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Filipa L Sousa
- Department of Ecogenomics and Systems Biology, University of Vienna, Austria
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
12
|
Boss L, Oehme R, Billig S, Birkemeyer C, Layer G. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during hemed1biosynthesis. FEBS J 2017; 284:4314-4327. [DOI: 10.1111/febs.14307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Boss
- Institute of Biochemistry; Leipzig University; Germany
| | - Ramona Oehme
- Institute of Analytical Chemistry; Leipzig University; Germany
| | - Susan Billig
- Institute of Analytical Chemistry; Leipzig University; Germany
| | | | - Gunhild Layer
- Institute of Biochemistry; Leipzig University; Germany
| |
Collapse
|
13
|
Radical new paradigm for heme degradation in Escherichia coli O157:H7. Proc Natl Acad Sci U S A 2016; 113:12138-12143. [PMID: 27791000 DOI: 10.1073/pnas.1603209113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All of the heme-degrading enzymes that have been characterized to date require molecular oxygen as a cosubstrate. Escherichia coli O157:H7 has been shown to express heme uptake and transport proteins, as well as use heme as an iron source. This enteric pathogen colonizes the anaerobic space of the lower intestine in mammals, yet no mechanism for anaerobic heme degradation has been reported. Herein we provide evidence for an oxygen-independent heme-degradation pathway. Specifically, we demonstrate that ChuW is a radical S-adenosylmethionine methyltransferase that catalyzes a radical-mediated mechanism facilitating iron liberation and the production of the tetrapyrrole product we termed "anaerobilin." We further demonstrate that anaerobilin can be used as a substrate by ChuY, an enzyme that is coexpressed with ChuW in vivo along with the heme uptake machinery. Our findings are discussed in terms of the competitive advantage this system provides for enteric bacteria, particularly those that inhabit an anaerobic niche in the intestines.
Collapse
|
14
|
The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis. Biochem J 2016; 473:3997-4009. [PMID: 27597779 PMCID: PMC5095920 DOI: 10.1042/bcj20160696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureus has an ancient haem biosynthetic pathway that proceeds via the formation of coproporphyrin III, a less reactive porphyrin. Here, we demonstrate, for the first time, that HemY of S. aureus is able to generate both protoporphyrin IX and coproporphyrin III, and that the terminal enzyme of this pathway, HemQ, can stimulate the generation of protoporphyrin IX (but not coproporphyrin III). Assays with hydrogen peroxide, horseradish peroxidase, superoxide dismutase, and catalase confirm that this stimulatory effect is mediated by superoxide. Structural modelling reveals that HemQ enzymes do not possess the structural attributes that are common to peroxidases that form compound I [FeIV==O]+, which taken together with the superoxide data leaves Fenton chemistry as a likely route for the superoxide-mediated stimulation of protoporphyrinogen IX oxidase activity of HemY. This generation of toxic free radicals could explain why HemQ enzymes have not been identified in organisms that synthesise haem via the classical protoporphyrin IX pathway. This work has implications for the divergent evolution of haem biosynthesis in ancestral microorganisms, and provides new structural and mechanistic insights into a recently discovered oxidative decarboxylase reaction.
Collapse
|
15
|
Bruender NA, Bandarian V. The Radical S-Adenosyl-l-methionine Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the MftA Peptide. Biochemistry 2016; 55:2813-6. [PMID: 27158836 DOI: 10.1021/acs.biochem.6b00355] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are encoded in the genomes of a wide variety of microorganisms, in the proximity of open reading frames that encode enzymes that conduct extensive modifications, many of which are novel. Recently, members of the radical S-adenosyl-l-methionine (SAM) superfamily have been identified in these biosynthetic clusters. Herein, we demonstrate the putative radical SAM enzyme, MftC, oxidatively decarboxylates the C-terminus of the MftA peptide in the presence of the accessory protein MftB. The reaction catalyzed by MftC expands the repertoire of peptide-based radical SAM chemistry beyond the intramolecular cross-links.
Collapse
Affiliation(s)
- Nathan A Bruender
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Kühner M, Schweyen P, Hoffmann M, Ramos JV, Reijerse EJ, Lubitz W, Bröring M, Layer G. The auxiliary [4Fe-4S] cluster of the Radical SAM heme synthase from Methanosarcina barkeri is involved in electron transfer. Chem Sci 2016; 7:4633-4643. [PMID: 30155111 PMCID: PMC6013774 DOI: 10.1039/c6sc01140c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/24/2022] Open
Abstract
The heme synthase AhbD catalyzes the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme during the alternative heme biosynthesis pathway.
The heme synthase AhbD catalyzes the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme during the alternative heme biosynthesis pathway occurring in sulfate-reducing bacteria and archaea. AhbD belongs to the family of Radical SAM enzymes and contains two [4Fe–4S] clusters. Whereas one of these clusters is required for substrate radical formation, the role of the second iron–sulfur cluster is not known. In this study, the function of the auxiliary cluster during AhbD catalysis was investigated. Two single cluster variants of AhbD from M. barkeri carrying either one of the two clusters were created. Using these enzyme variants it was shown that the auxiliary cluster is not required for substrate binding and formation of the substrate radical. Instead, the auxiliary cluster is involved in a late step of AhbD catalysis most likely in electron transfer from the reaction intermediate to a final electron acceptor. Moreover, by using alternative substrates such as coproporphyrin III, Cu-coproporphyrin III and Zn-coproporphyrin III for the AhbD activity assay it was observed that the central iron ion of the porphyrin substrate also participates in the electron transfer from the reaction intermediate to the auxiliary [4Fe–4S] cluster. Altogether, new insights concerning the completely uncharacterized late steps of AhbD catalysis were obtained.
Collapse
Affiliation(s)
- Melanie Kühner
- Institute of Microbiology , Technische Universität Braunschweig , Spielmannstr. 7 , 38106 Braunschweig , Germany
| | - Peter Schweyen
- Institute of Inorganic and Analytical Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Martin Hoffmann
- Institute of Inorganic and Analytical Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - José Vazquez Ramos
- Institute of Biochemistry , Leipzig University , Brüderstraße 34 , 04103 Leipzig , Germany .
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Martin Bröring
- Institute of Inorganic and Analytical Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Gunhild Layer
- Institute of Microbiology , Technische Universität Braunschweig , Spielmannstr. 7 , 38106 Braunschweig , Germany.,Institute of Biochemistry , Leipzig University , Brüderstraße 34 , 04103 Leipzig , Germany .
| |
Collapse
|
17
|
Shibata N, Toraya T. Molecular architectures and functions of radical enzymes and their (re)activating proteins. J Biochem 2015; 158:271-92. [PMID: 26261050 DOI: 10.1093/jb/mvv078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan and
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Lobo SAL, Scott A, Videira MAM, Winpenny D, Gardner M, Palmer MJ, Schroeder S, Lawrence AD, Parkinson T, Warren MJ, Saraiva LM. Staphylococcus aureushaem biosynthesis: characterisation of the enzymes involved in final steps of the pathway. Mol Microbiol 2015; 97:472-87. [DOI: 10.1111/mmi.13041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Susana A. L. Lobo
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - Alan Scott
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| | - David Winpenny
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mark Gardner
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Mike J. Palmer
- Pfizer Global Research and Development; Sandwich Kent UK
| | - Susanne Schroeder
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Andrew D. Lawrence
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | | | - Martin J. Warren
- School of Biosciences; University of Kent; Giles Lane Canterbury Kent CT2 7NJ UK
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa, Avenida da República (EAN); 2780-157 Oeiras Portugal
| |
Collapse
|
19
|
Lanz ND, Booker SJ. Auxiliary iron-sulfur cofactors in radical SAM enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1316-34. [PMID: 25597998 DOI: 10.1016/j.bbamcr.2015.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
Abstract
A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|