1
|
Lenarcic EM, Moorman NJ. The Host DHX29 RNA Helicase Regulates HCMV Immediate Early Protein Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635168. [PMID: 39975304 PMCID: PMC11838274 DOI: 10.1101/2025.01.27.635168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The dead box helicase DHX29 plays a critical role in the translation of mRNAs containing complex RNA secondary structure in their 5' untranslated regions. The human cytomegalovirus (HCMV) genome has a high GC content, suggesting the 5'UTRs of viral mRNAs may contain significant secondary structure and require DHX29 for their efficient translation initiation. We found that depleting DHX29 from primary human fibroblasts prior to infection reduced viral mRNA and protein levels and decreased HCMV replication. The defect in HCMV replication correlated with decreased expression of the HCMV immediate early proteins IE1 and IE2, which are necessary for the establishment of lytic infection. Analysis of polysome associated mRNAs revealed that the defect in IE1 and IE2 expression is due to decreased mRNA translation efficiency. We found that DHX29 depletion led to reduced levels of the eIF4F translation initiation complex, resulting from decreased translation of the eIF4G mRNA. However, in line with our previous results showing a minimal role for the eIF4F complex in HCMV mRNA translation, we found that depleting eIF4G prior to infection did not impact IE1 and IE2 translation. Together our results define a new role for DHX29 in regulating eIF4F-dependent translation and identify a critical role for DHX29 in the translation of HCMV mRNAs. Significance Expression of the HCMV immediate early proteins IE1 and IE2 is critical for the establishment of lytic replication and the reactivation of latent HCMV infections. Defining the mechanisms controlling HCMV IE1 and IE2 protein expression has the potential to identify new strategies for therapeutic interventions that can limit HCMV disease in immune naïve and immune compromised individuals. Our finding that the cellular DHX29 helicase is necessary for the efficient translation of mRNAs encoding IE1 and IE2 suggests that therapies that inhibit DHX29 could potentially be useful in treating HCMV disease and adds to the growing body of literature suggesting DHX29 activity is a disease driver in multiple indications including viral disease, inflammation and cancer.
Collapse
|
2
|
Ochkasova A, Arbuzov G, Malygin A, Graifer D. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int J Mol Sci 2023; 24:11458. [PMID: 37511213 PMCID: PMC10380927 DOI: 10.3390/ijms241411458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune Response Suppression and Protein Expression Inhibition. Front Microbiol 2021; 12:752214. [PMID: 34659188 PMCID: PMC8512706 DOI: 10.3389/fmicb.2021.752214] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Coronaviruses have brought severe challenges to public health all over the world in the past 20years. SARS-CoV-2, the causative agent of the COVID-19 pandemic that has led to millions of deaths, belongs to the genus beta-coronavirus. Alpha- and beta-coronaviruses encode a unique protein, nonstructural protein 1 (Nsp1) that both suppresses host immune responses and reduces global gene expression levels in the host cells. As a key pathogenicity factor of coronaviruses, Nsp1 redirects the host translation machinery to increase synthesis of viral proteins. Through multiple mechanisms, coronaviruses impede host protein expression through Nsp1, while escaping inhibition to allow the translation of viral RNA. In this review, we discuss current data about suppression of the immune responses and inhibition of protein synthesis induced by coronavirus Nsp1, as well as the prospect of live-attenuated vaccine development with virulence-attenuated viruses with mutations in Nsp1.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Shravani Balaji
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Ochkasova AS, Meschaninova MI, Venyaminova AG, Graifer DM, Karpova GG. AP sites in various mRNA positions cross-link to the protein uS3 in the translating mammalian ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140698. [PMID: 34273599 DOI: 10.1016/j.bbapap.2021.140698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023]
Abstract
Abasic (AP) sites in mRNAs are lesions whose accumulation in cells is linked to various neurodegenerative diseases arising from the appearance of truncated peptides due to the premature cessation of translation of these mRNAs. It is believed that the translation of AP site-containing mRNAs is stopped when the damaged codon arrives to the A site, where it is not decoded. We propose an alternative translation arrest mechanism mediated by the 40S ribosomal subunit protein uS3. Recently, it has been shown that in human 80S ribosomal complexes assembled without translation factors, uS3 cross-links to the AP site at the 3'-terminus of the mRNA, whose undamaged part is bound at the 40S subunit channel, via its peptide 55-64 exposed near the mRNA entry pore. In this study, we examined whether such cross-linking occurs during the translation of mRNA with the AP site. To this end, we used a set of synthetic mRNAs bearing the AP site inserted in the desired location in their sequences. An analysis of 80S ribosomal complexes formed with these mRNAs in a mammalian cell-free protein-synthesizing system demonstrates that AP sites do indeed cross-link to uS3 in the course of the translation. We also show that the cross-linking occurs as soon as the AP site arrives to a common favorable position relative to uS3, which is independent on its location in the mRNA. Our findings suggest that the mechanism of stopping translation of damaged mRNAs involving uS3, along with the one mentioned above, could underlie ribosome-associated mRNA quality control.
Collapse
Affiliation(s)
- Anastasia S Ochkasova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Eukaryotic protein uS19: a component of the decoding site of ribosomes and a player in human diseases. Biochem J 2021; 478:997-1008. [PMID: 33661277 DOI: 10.1042/bcj20200950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Proteins belonging to the universal ribosomal protein (rp) uS19 family are constituents of small ribosomal subunits, and their conserved globular parts are involved in the formation of the head of these subunits. The eukaryotic rp uS19 (previously known as S15) comprises a C-terminal extension that has no homology in the bacterial counterparts. This extension is directly implicated in the formation of the ribosomal decoding site and thereby affects translational fidelity in a manner that has no analogy in bacterial ribosomes. Another eukaryote-specific feature of rp uS19 is its essential participance in the 40S subunit maturation due to the interactions with the subunit assembly factors required for the nuclear exit of pre-40S particles. Beyond properties related to the translation machinery, eukaryotic rp uS19 has an extra-ribosomal function concerned with its direct involvement in the regulation of the activity of an important tumor suppressor p53 in the Mdm2/Mdmx-p53 pathway. Mutations in the RPS15 gene encoding rp uS19 are linked to diseases (Diamond Blackfan anemia, chronic lymphocytic leukemia and Parkinson's disease) caused either by defects in the ribosome biogenesis or disturbances in the functioning of ribosomes containing mutant rp uS19, likely due to the changed translational fidelity. Here, we review currently available data on the involvement of rp uS19 in the operation of the translational machinery and in the maturation of 40S subunits, on its extra-ribosomal function, and on relationships between mutations in the RPS15 gene and certain human diseases.
Collapse
|
6
|
Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Chen S, Lomakin IB, Xiong Y. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Mol Cell 2020. [PMID: 33188728 DOI: 10.1101/2020.08.09.243451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The causative virus of the COVID-19 pandemic, SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to suppress cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the cellular transcriptome. Our cryo-EM structure of the Nsp1-40S ribosome complex shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the structure of the 48S preinitiation complex formed by Nsp1, 40S, and the cricket paralysis virus internal ribosome entry site (IRES) RNA, which shows that it is nonfunctional because of the incorrect position of the mRNA 3' region. Our results elucidate the mechanism of host translation inhibition by SARS-CoV-2 and advance understanding of the impacts from a major pathogenicity factor of SARS-CoV-2.
Collapse
MESH Headings
- Animals
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/pathology
- Chlorocebus aethiops
- Cryoelectron Microscopy
- Humans
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/virology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- SARS-CoV-2/pathogenicity
- SARS-CoV-2/ultrastructure
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Graifer D, Karpova G. Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects. Bioessays 2020; 42:e2000124. [PMID: 33179285 DOI: 10.1002/bies.202000124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF-kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding the roles of uS3 in such processes as the assembly and maturation of 40S subunits, ensuring proper structure of 48S pre-initiation complexes, regulation of initiation and ribosome-based RNA quality control pathways. Besides, we summarize novel results on the participation of the protein in processes beyond translation and consider biomedical implications of previously known and recently found extra-ribosomal functions of uS3, primarily, in oncogenesis.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
8
|
Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Chen S, Lomakin IB, Xiong Y. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Mol Cell 2020; 80:1055-1066.e6. [PMID: 33188728 PMCID: PMC7833686 DOI: 10.1016/j.molcel.2020.10.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
The causative virus of the COVID-19 pandemic, SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to suppress cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the cellular transcriptome. Our cryo-EM structure of the Nsp1-40S ribosome complex shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the structure of the 48S preinitiation complex formed by Nsp1, 40S, and the cricket paralysis virus internal ribosome entry site (IRES) RNA, which shows that it is nonfunctional because of the incorrect position of the mRNA 3′ region. Our results elucidate the mechanism of host translation inhibition by SARS-CoV-2 and advance understanding of the impacts from a major pathogenicity factor of SARS-CoV-2.
Collapse
MESH Headings
- Animals
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/pathology
- Chlorocebus aethiops
- Cryoelectron Microscopy
- Humans
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/virology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- SARS-CoV-2/pathogenicity
- SARS-CoV-2/ultrastructure
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Malygin AA, Krumkacheva OA, Graifer DM, Timofeev IO, Ochkasova AS, Meschaninova MI, Venyaminova AG, Fedin MV, Bowman M, Karpova GG, Bagryanskaya EG. Exploring the interactions of short RNAs with the human 40S ribosomal subunit near the mRNA entry site by EPR spectroscopy. Nucleic Acids Res 2020; 47:11850-11860. [PMID: 31724718 PMCID: PMC7145563 DOI: 10.1093/nar/gkz1039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
The features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55–64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55–64. This is consistent with our finding that the 3′-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide. To detect labile complexes of 40S subunits with RNA by DEER/PELDOR spectroscopy, an undecaribonucleotide derivative with nitroxide spin labels at terminal nucleotides was utilized. We demonstrated that the 40S subunit channel occupancy with mRNA does not affect the RNA derivative binding and that uS3 peptide 55–64 is not involved in binding interactions. Replacing the RNA derivative with a DNA one revealed the importance of ribose 2′-OH groups for the complex formation. Using the single-label RNA derivatives, the distance between the mRNA entry site and the loosely bound RNA site on the 40S subunit was estimated.
Collapse
Affiliation(s)
- Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Anastasia S Ochkasova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Michael Bowman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk 630090, Russia.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
The functional role of the C-terminal tail of the human ribosomal protein uS19. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194490. [DOI: 10.1016/j.bbagrm.2020.194490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
|
11
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
12
|
Tetrapeptide 60-63 of human ribosomal protein uS3 is crucial for translation initiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194411. [PMID: 31356988 DOI: 10.1016/j.bbagrm.2019.194411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Conserved ribosomal protein uS3 contains a decapeptide fragment in positions 55-64 (human numbering), which has a very specific ability to cross-link to various RNA derivatives bearing aldehyde groups, likely provided by K62. It has been shown that during translation in the cell-free protein-synthesizing system, uS3 becomes accessible for such cross-linking only after eIF3j leaves the mRNA binding channel of the 40S ribosomal subunit. We studied the functional role of K62 and its nearest neighbors in the ribosomal assembly and translation with the use of HEK293T-derived cell cultures capable of producing FLAG-tagged uS3 (uS3FLAG) or its mutant form with amino acid residues at positions 60-63 replaced with alanines. Analysis of polysome profiles from the respective cells and cytosol lysates showed that the mutation significantly affected the uS3 ability to participate in the assembly of 40S subunits, but it was not essential for their maturation and did not prevent the binding of mRNAs to 40S subunits during translation initiation. The most striking effect of the replacement of amino acid residues in the above uS3 positions was that it almost completely deprived the 40S subunits of their ability to form 80S ribosomes, suggesting that the 48S pre-initiation complexes assembled on these subunits were defective in the binding of 60S subunits. Thus, our results revealed the previously unknown crucial role of the uS3 tetrapeptide 60GEKG63 in translation initiation related to maintaining the proper structure of the 48S complex, most likely via the prevention of premature mRNA loading into the ribosomal channel.
Collapse
|
13
|
Johnson AG, Petrov AN, Fuchs G, Majzoub K, Grosely R, Choi J, Puglisi JD. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res 2019; 46:e8. [PMID: 29136179 PMCID: PMC5778468 DOI: 10.1093/nar/gkx1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, NY 12222, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
15
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
16
|
Ochkasova AS, Meschaninova MI, Venyaminova AG, Ivanov AV, Graifer DM, Karpova GG. The human ribosome can interact with the abasic site in mRNA via a specific peptide of the uS3 protein located near the mRNA entry channel. Biochimie 2018; 158:117-125. [PMID: 30594661 DOI: 10.1016/j.biochi.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
The small subunit ribosomal protein uS3 is a critically important player in the ribosome-mRNA interactions during translation and has numerous functions not directly related to protein synthesis in eukaryotes. A peculiar feature of the human uS3 protein is the ability of its fragment 55-64 exposed on the 40S subunit surface near the mRNA entry channel to form cross-links with 3'-terminal dialdehyde derivatives of various unstructured RNAs and with abasic sites in single-stranded DNAs. Here we showed that the ability of the above uS3 fragment to cross-link to abasic sites in DNAs is inherent only in mature cytoplasmic 40S subunits, but not nuclear pre-40S particles, which implies that it may be relevant to the ribosome-mRNA interplay. To clarify this issue, we investigated interactions of human ribosomes with synthetic mRNA analogues bearing an abasic site protected by a photocleavable group at the 3'-termini. We found that these mRNA analogues can form specific complexes with 80S ribosomes and 40S subunits, where the undamaged upstream part of the analogue is fixed in the mRNA binding channel by interaction with the P-site tRNA, and the downstream part located outside the ribosome is cross-linked to the uS3 fragment 55-64. The yield of cross-links of the mRNA analogues was rather high when their undamaged parts were bound to the mRNA channel prior to deprotection of the abasic site enabling its covalent attachment to the 40S subunit via the uS3 protein, but not vice versa. Based on our findings, one can assume that abasic sites, which can occur in mRNAs due to oxidative stress and ageing, are able to interact directly with the uS3 fragment exposed on the 40S subunit surface near the mRNA entry channel during translation. Consequently, the 40S subunit can be considered as a potential mRNA quality controller.
Collapse
Affiliation(s)
- Anastasia S Ochkasova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Anton V Ivanov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
17
|
Arrangements of nucleotides flanking the start codon in the IRES of the hepatitis C virus in the IRES binary complex with the human 40S ribosomal subunit. Biochimie 2018; 148:72-79. [PMID: 29501734 DOI: 10.1016/j.biochi.2018.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Genomic RNA of hepatitis C virus (HCV) has an internal ribosome entry site (IRES), a specific highly structured fragment responsible for its non-canonical translation initiation. The HCV IRES contains a major part of the 5'-untranslated region of the viral RNA and a small portion of the open reading frame (ORF). At the first step of initiation, IRES directly binds to 40S ribosomal subunits so that the AUG start codon appears at the P site region without scanning and without involving initiation factors. However, it is still not entirely clear whether the IRES ORF is correctly loaded into the 40S ribosomal mRNA binding channel in the resulting binary complex. To address this issue, we applied site-directed cross-linking using HCV IRES derivatives bearing a perfluorophenyl azide cross-linker at nucleotides in definite positions relative to the adenine of the AUG start codon. We found that the modifier at the IRES position -3 cross-links to ribosomal proteins uS11 and eS26. These proteins have been identified together with uS7 as those interacting with the mRNA nucleotide in position -3 relative to the first nucleotide of the codon directed to the P site by a cognate tRNA. Thus, our results indicate a certain difference in the locations of the above parts of HCV IRES and canonical mRNAs on 40S subunits. The modifier at the IRES positions +4/5 was attached to uS19, which is specific for ribosomal complexes with the P site tRNA and similar derivatives of model canonical mRNAs when the modifier is in the same positions. However, the cross-linking efficiency of the IRES derivative was drastically lower than that previously observed with derivatives of model mRNAs. This implies that the IRES ORF portion is correctly loaded into the mRNA binding channel only in a tiny fraction of the binary complexes.
Collapse
|
18
|
A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome. Proc Natl Acad Sci U S A 2017; 114:6304-6309. [PMID: 28559306 DOI: 10.1073/pnas.1620426114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the scanning model of translation initiation, the decoding site and latch of the 40S subunit must open to allow the recruitment and migration of messenger RNA (mRNA); however, the precise molecular details for how initiation factors regulate mRNA accommodation into the decoding site have not yet been elucidated. Eukaryotic initiation factor (eIF) 3j is a subunit of eIF3 that binds to the mRNA entry channel and A-site of the 40S subunit. Previous studies have shown that a reduced affinity of eIF3j for the 43S preinitiation complex (PIC) occurs on eIF4F-dependent mRNA recruitment. Because eIF3j and mRNA bind anticooperatively to the 43S PIC, reduced eIF3j affinity likely reflects a state of full accommodation of mRNA into the decoding site. Here, we have used a fluorescence-based anisotropy assay to quantitatively determine how initiation components coordinate their activities to reduce the affinity of eIF3j during the recruitment of mRNA to the 43S PIC. Unexpectedly, we show that a full reduction in eIF3j affinity for the 43S PIC requires an ATP-dependent, but unwinding-independent, activity of eIF4A. This result suggests that in addition to its helicase activity, eIF4A uses the free energy of ATP binding and hydrolysis as a regulatory switch to control the conformation of the 43S PIC during mRNA recruitment. Therefore, our results define eIF4A as a universal initiation factor in cap-dependent translation initiation that functions beyond its role in RNA unwinding.
Collapse
|