1
|
Liang Q, Zhang Y, Zhang H, Wu S, Gong W, Perrett S. Reversible Redox-Dependent Conformational Switch of the C-Terminal α-Helical Lid of Human Hsp70 Observed by In-Cell NMR. ACS Chem Biol 2023; 18:176-183. [PMID: 36524733 DOI: 10.1021/acschembio.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathionylation of human stress-inducible Hsp70 (hHsp70) under oxidative stress conditions has been suggested to act as an on/off switch of hHsp70 chaperone activity and thus transfer redox signals to hHsp70 clients through a change in conformation. The mechanism of this switch involves unfolding of the C-terminal α-helical lid, SBDα, upon glutathionylation, which then binds to and blocks the hHsp70 substrate-binding site. This process is reversible and redox-regulated and has been demonstrated for purified protein in solution. Here, we found that this redox-regulated reversible process also occurs in the cellular environment. Using Escherichia coli as a model system, in-cell NMR data clearly indicate that hHsp70 SBDα undergoes a conformational transition from ordered to disordered after diamide stimulation. The disordered SBDα could spontaneously recover back to the helix bundle conformation over time. This oxidative-stress induced process also occurred in cell lysate, with a similar unfolding rate as in cells, but the refolding rate was significantly slower in cell lysate. Increased temperature accelerates this process. Under heat stress alone, unfolding of the SBDα could not be detected in cells. Our in-cell NMR results provide direct support for the molecular switch model of hHsp70 redox regulation and also demonstrate the power of in-cell NMR for real-time study of protein structures during biological processes in living cells.
Collapse
Affiliation(s)
- Qihui Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
2
|
Studying protein folding in health and disease using biophysical approaches. Emerg Top Life Sci 2021; 5:29-38. [PMID: 33660767 PMCID: PMC8138949 DOI: 10.1042/etls20200317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Protein folding is crucial for normal physiology including development and healthy aging, and failure of this process is related to the pathology of diseases including neurodegeneration and cancer. Early thermodynamic and kinetic studies based on the unfolding and refolding equilibrium of individual proteins in the test tube have provided insight into the fundamental principles of protein folding, although the problem of predicting how any given protein will fold remains unsolved. Protein folding within cells is a more complex issue than folding of purified protein in isolation, due to the complex interactions within the cellular environment, including post-translational modifications of proteins, the presence of macromolecular crowding in cells, and variations in the cellular environment, for example in cancer versus normal cells. Development of biophysical approaches including fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) techniques and cellular manipulations including microinjection and insertion of noncanonical amino acids has allowed the study of protein folding in living cells. Furthermore, biophysical techniques such as single-molecule fluorescence spectroscopy and optical tweezers allows studies of simplified systems at the single molecular level. Combining in-cell techniques with the powerful detail that can be achieved from single-molecule studies allows the effects of different cellular components including molecular chaperones to be monitored, providing us with comprehensive understanding of the protein folding process. The application of biophysical techniques to the study of protein folding is arming us with knowledge that is fundamental to the battle against cancer and other diseases related to protein conformation or protein–protein interactions.
Collapse
|
3
|
Umerani MJ, Pratakshya P, Chatterjee A, Cerna Sanchez JA, Kim HS, Ilc G, Kovačič M, Magnan C, Marmiroli B, Sartori B, Kwansa AL, Orins H, Bartlett AW, Leung EM, Feng Z, Naughton KL, Norton-Baker B, Phan L, Long J, Allevato A, Leal-Cruz JE, Lin Q, Baldi P, Bernstorff S, Plavec J, Yingling YG, Gorodetsky AA. Structure, self-assembly, and properties of a truncated reflectin variant. Proc Natl Acad Sci U S A 2020; 117:32891-32901. [PMID: 33323484 PMCID: PMC7780002 DOI: 10.1073/pnas.2009044117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.
Collapse
Affiliation(s)
- Mehran J. Umerani
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | | | - Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Juana A. Cerna Sanchez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Ho Shin Kim
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, CA 92697
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Albert L. Kwansa
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Helen Orins
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Andrew W. Bartlett
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Erica M. Leung
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Zhijing Feng
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Kyle L. Naughton
- Department of Physics and Astronomy, University of California, Irvine, CA 92697
| | | | - Long Phan
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - James Long
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Alex Allevato
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Jessica E. Leal-Cruz
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Qiyin Lin
- Irvine Materials Research Institute, University of California, Irvine, CA 92697
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA 92697
| | | | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Alon A. Gorodetsky
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| |
Collapse
|
4
|
Gadolinium Complexes as Contrast Agent for Cellular NMR Spectroscopy. Int J Mol Sci 2020; 21:ijms21114042. [PMID: 32516957 PMCID: PMC7312942 DOI: 10.3390/ijms21114042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Aqua Gd3+ and Gd-DOTA (gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacete) complexes were studied as a contrast agent in cellular NMR (nuclear magnetic resonance) spectroscopy for distinguishing between intracellular and extracellular spaces. The contrast agents for this purpose should provide strong paramagnetic relaxation enhancement and localize in the extracellular space without disturbing biological functions. Cell membrane permeability to Gd complexes was evaluated from the concentrations of gadolinium complexes in the inside and outside of E. coli cells measured by the 1H-NMR relaxation. The site-specific binding of the complexes to E. coli cells was also analyzed by high-resolution solid-state 13C-NMR. The aqua Gd3+ complex did not enhance T1 relaxation in proportion to the amount of added Gd3+. This Gd3+ concentration dependence and the 13C-NMR indicated that its strong cytotoxicity should be due to the binding of the paramagnetic ions to cellular components especially at the lipid membranes. In contrast, Gd-DOTA stayed in the solution states and enhanced relaxation in proportion to the added amount. This agent exhibited strong T1 contrast between the intra- and extracellular spaces by a factor of ten at high concentrations under which the cells were viable over a long experimental time of days. These properties make Gd-DOTA suitable for selectively contrasting the living cellular space in NMR spectroscopy primarily owing to its weak interaction with cellular components.
Collapse
|
5
|
Dalaloyan A, Martorana A, Barak Y, Gataulin D, Reuveny E, Howe A, Elbaum M, Albeck S, Unger T, Frydman V, Abdelkader EH, Otting G, Goldfarb D. Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. Chemphyschem 2019; 20:1860-1868. [PMID: 31054266 DOI: 10.1002/cphc.201900341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Indexed: 12/12/2022]
Abstract
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Howe
- Department of Chemical and Biological Physics
| | | | - Shira Albeck
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Elwy H Abdelkader
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | |
Collapse
|
6
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
7
|
Zhang S, Wang C, Lu J, Ma X, Liu Z, Li D, Liu Z, Liu C. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Int J Mol Sci 2018; 20:ijms20010090. [PMID: 30587819 PMCID: PMC6337406 DOI: 10.3390/ijms20010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/19/2023] Open
Abstract
The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated the conformations of two different isoforms of Tau, Tau40 and k19, in mammalian cells. Combined with immunofluorescence imaging and western blot analyses, we found that the isotope-enriched Tau, which was delivered into the cultured mammalian cells by electroporation, is partially colocalized with MT and actin filaments (F-actin). We acquired the NMR spectrum of Tau in human embryonic kidney 293 (HEK-293T) cells, and compared it with the NMR spectra of Tau added with MT, F-actin, and a variety of crowding agents, respectively. We found that the NMR spectrum of Tau in complex with MT best recapitulates the in-cell NMR spectrum of Tau, suggesting that Tau predominantly binds to MT at its MT-binding repeats in HEK-293T cells. Moreover, we found that disease-associated phosphorylation of Tau was immediately eliminated once phosphorylated Tau was delivered into HEK-293T cells, implying a potential cellular protection mechanism under stressful conditions. Collectively, the results of our study reveal that Tau utilizes its MT-binding repeats to bind MT in mammalian cells and highlight the potential of using in-cell NMR to study protein structures at the residue level in mammalian cells.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Jinxia Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201210, China.
| |
Collapse
|
8
|
Carvalho J, Alves S, Castro MMCA, Geraldes CFGC, Queiroz JA, Fonseca CP, Cruz C. Development of a bioreactor system for cytotoxic evaluation of pharmacological compounds in living cells using NMR spectroscopy. J Pharmacol Toxicol Methods 2018; 95:70-78. [PMID: 30502390 DOI: 10.1016/j.vascn.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The evaluation of drug's cytotoxicity is a crucial step in the development of new pharmacological compounds. 31P NMR can be a tool for toxicological screening, as it enables the study of drugs' cytotoxicity and their effect on cell energy metabolism in a real-time, in a non- invasive and non-destructive way. This paper details a step-by-step protocol to implement a bioreactor system able to maintain cell viability during NMR acquisitions, at high cell densities and for several hours, enabling toxicological evaluation of pharmacological compounds in living cells. METHOD HeLa cells were immobilized in agarose gel threads and continuously perfused with oxygenated medium inside a 5 mm NMR tube. Signals corresponding to intracellular high-energy phosphorous compounds were continuously monitored by 31P NMR to assess cell energy levels, intracellular pH and intracellular free Mg2+ concentrations ([Mg2+]f) under control and in the presence of two different cytotoxic drugs, calix-NH2 or 5-fluorouracil (5-FU). RESULTS The bioreactor system was effective in maintaining cell energy levels as well as intracellular pH and [Mg2+]f along time, with a good 31P NMR signal to noise ratio. Calix-NH2 and 5-FU decreased cell energy levels by 35% and 39%, respectively, with a negligible increase in intracellular [Mg2+]f, and without affecting intracellular pH. DISCUSSION The immobilization and perfusion system here detailed, along with 31P NMR, is useful in toxicological evaluation of new pharmacological compounds, enabling the continuous assessment of drugs' effect on energy levels, intracellular pH and [Mg2+]f in intact cells, for several hours without compromising cell viability.
Collapse
Affiliation(s)
- Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Sara Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Carla P Fonseca
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
9
|
Davis CM, Gruebele M. Labeling for Quantitative Comparison of Imaging Measurements in Vitro and in Cells. Biochemistry 2018; 57:1929-1938. [PMID: 29546761 DOI: 10.1021/acs.biochem.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Qualitative imaging of biomolecular localization and distribution inside cells has revolutionized cell biology. Most of these powerful techniques require modifications to the target biomolecule. Over the past 10 years, these techniques have been extended to quantitative measurements, from in-cell protein folding rates to complex dissociation constants to RNA lifetimes. Such measurements can be affected even when a target molecule is just mildly perturbed by its labels. Here, the impact of labeling on protein (and RNA) structure, stability, and function in cells is discussed via practical examples from the recent literature. General guidelines for selecting and validating modification sites are provided to bring the best from cell biology and imaging to quantitative biophysical experiments inside cells.
Collapse
|
10
|
Yamaoki Y, Kiyoishi A, Miyake M, Kano F, Murata M, Nagata T, Katahira M. The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 2018; 20:2982-2985. [PMID: 29022027 DOI: 10.1039/c7cp05188c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to understand intracellular biological events, information on the structure, dynamics and interaction of proteins and nucleic acids in living cells is of crucial importance. In-cell NMR is a promising method to obtain this information. Although NMR signals of proteins in human cells have been reported, those of nucleic acids were reported only in Xenopus laevis oocytes, i.e., not in human cells. Here, DNA and RNA were introduced into human cells by means of pore formation by bacterial toxin streptolysin O and subsequent resealing. Then, NMR signals of DNA and RNA were successfully observed for the first time in living human cells. The observed signals directly suggested the formation of DNA and RNA hairpin structures in living human cells.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
12
|
Lippens G, Cahoreau E, Millard P, Charlier C, Lopez J, Hanoulle X, Portais JC. In-cell NMR: from metabolites to macromolecules. Analyst 2018; 143:620-629. [PMID: 29333554 DOI: 10.1039/c7an01635b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell NMR of macromolecules has gained momentum over the last ten years as an approach that might bridge the branches of cell biology and structural biology. In this review, we put it in the context of earlier efforts that aimed to characterize by NMR the cellular environment of live cells and their intracellular metabolites. Although technical aspects distinguish these earlier in vivo NMR studies and the more recent in cell NMR efforts to characterize macromolecules in a cellular environment, we believe that both share major concerns ranging from sensitivity and line broadening to cell viability. Approaches to overcome the limitations in one subfield thereby can serve the other one and vice versa. The relevance in biomedical sciences might stretch from the direct following of drug metabolism in the cell to the observation of target binding, and thereby encompasses in-cell NMR both of metabolites and macromolecules. We underline the efforts of the field to move to novel biological insights by some selected examples.
Collapse
Affiliation(s)
- G Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - E Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - P Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - C Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - J Lopez
- CERMN, Seccion Quimica, Departemento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru
| | - X Hanoulle
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, CNRS UMR8576, Lille, France
| | - J C Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
13
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
14
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
15
|
Kumar V, Rahman S, Choudhry H, Zamzami MA, Sarwar Jamal M, Islam A, Ahmad F, Hassan MI. Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations. Sci Rep 2017; 7:4678. [PMID: 28680046 PMCID: PMC5498623 DOI: 10.1038/s41598-017-04950-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient's data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|