1
|
Xue WF. Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 2024:S0969-2126(24)00497-0. [PMID: 39642871 DOI: 10.1016/j.str.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
2
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04543-4. [PMID: 39446217 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
3
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
4
|
Chitty C, Kuliga K, Xue WF. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies. Biochem Soc Trans 2024; 52:761-771. [PMID: 38600027 DOI: 10.1042/bst20230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
Collapse
Affiliation(s)
- Claudia Chitty
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Kinga Kuliga
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Wei-Feng Xue
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| |
Collapse
|
5
|
Pálmadóttir T, Waudby CA, Bernfur K, Christodoulou J, Linse S, Malmendal A. Morphology-Dependent Interactions between α-Synuclein Monomers and Fibrils. Int J Mol Sci 2023; 24:5191. [PMID: 36982264 PMCID: PMC10049171 DOI: 10.3390/ijms24065191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Amyloid fibrils may adopt different morphologies depending on the solution conditions and the protein sequence. Here, we show that two chemically identical but morphologically distinct α-synuclein fibrils can form under identical conditions. This was observed by nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence spectroscopy, as well as by cryo-transmission electron microscopy (cryo-TEM). The results show different surface properties of the two morphologies, A and B. NMR measurements show that monomers interact differently with the different fibril surfaces. Only a small part of the N-terminus of the monomer interacts with the fibril surface of morphology A, compared to a larger part of the monomer for morphology B. Differences in ThT binding seen by fluorescence titrations, and mesoscopic structures seen by cryo-TEM, support the conclusion of the two morphologies having different surface properties. Fibrils of morphology B were found to have lower solubility than A. This indicates that fibrils of morphology B are thermodynamically more stable, implying a chemical potential of fibrils of morphology B that is lower than that of morphology A. Consequently, at prolonged incubation time, fibrils of morphology B remained B, while an initially monomorphic sample of morphology A gradually transformed to B.
Collapse
Affiliation(s)
- Tinna Pálmadóttir
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Anders Malmendal
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
- Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
6
|
Cai W, Wu T, Chen N. The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. Biomolecules 2023; 13:313. [PMID: 36830682 PMCID: PMC9953441 DOI: 10.3390/biom13020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The deposition of amyloid-beta (Aβ) plaques in the brain is one of the primary pathological characteristics of Alzheimer's disease (AD). It can take place 20-30 years before the onset of clinical symptoms. The imbalance between the production and the clearance of Aβ is one of the major causes of AD. Enhancing Aβ clearance at an early stage is an attractive preventive and therapeutic strategy of AD. Direct inhibition of Aβ production and aggregation using small molecules, peptides, and monoclonal antibody drugs has not yielded satisfactory efficacy in clinical trials for decades. Novel approaches are required to understand and combat Aβ deposition. Neurological dysfunction is a complex process that integrates the functions of different types of cells in the brain. The role of non-neurons in AD has not been fully elucidated. An in-depth understanding of the interactions between neurons and non-neurons can contribute to the elucidation of Aβ formation and the identification of effective drug targets. AD patient-derived pluripotent stem cells (PSCs) contain complete disease background information and have the potential to differentiate into various types of neurons and non-neurons in vitro, which may bring new insight into the treatment of AD. Here, we systematically review the latest studies on Aβ clearance and clarify the roles of cell interactions among microglia, astroglia and neurons in response to Aβ plaques, which will be beneficial to explore methods for reconstructing AD disease models using inducible PSCs (iPSCs) through cell differentiation techniques and validating the applications of models in understanding the formation of Aβ plaques. This review may provide the most promising directions of finding the clues for preventing and delaying the development of AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
7
|
Konstantoulea K, Guerreiro P, Ramakers M, Louros N, Aubrey LD, Houben B, Michiels E, De Vleeschouwer M, Lampi Y, Ribeiro LF, de Wit J, Xue W, Schymkowitz J, Rousseau F. Heterotypic Amyloid β interactions facilitate amyloid assembly and modify amyloid structure. EMBO J 2022; 41:e108591. [PMID: 34842295 PMCID: PMC8762568 DOI: 10.15252/embj.2021108591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023] Open
Abstract
It is still unclear why pathological amyloid deposition initiates in specific brain regions or why some cells or tissues are more susceptible than others. Amyloid deposition is determined by the self-assembly of short protein segments called aggregation-prone regions (APRs) that favour cross-β structure. Here, we investigated whether Aβ amyloid assembly can be modified by heterotypic interactions between Aβ APRs and short homologous segments in otherwise unrelated human proteins. Mining existing proteomics data of Aβ plaques from AD patients revealed an enrichment in proteins that harbour such homologous sequences to the Aβ APRs, suggesting heterotypic amyloid interactions may occur in patients. We identified homologous APRs from such proteins and show that they can modify Aβ assembly kinetics, fibril morphology and deposition pattern in vitro. Moreover, we found three of these proteins upon transient expression in an Aβ reporter cell line promote Aβ amyloid aggregation. Strikingly, we did not find a bias towards heterotypic interactions in plaques from AD mouse models where Aβ self-aggregation is observed. Based on these data, we propose that heterotypic APR interactions may play a hitherto unrealized role in amyloid-deposition diseases.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Patricia Guerreiro
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Meine Ramakers
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Nikolaos Louros
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | | | - Bert Houben
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Emiel Michiels
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Matthias De Vleeschouwer
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Yulia Lampi
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Joris de Wit
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Wei‐Feng Xue
- School of BiosciencesUniversity of KentCanterburyUK
| | - Joost Schymkowitz
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Frederic Rousseau
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Wu K, Sun W, Li D, Diao J, Xiu P. Inhibition of Amyloid Nucleation by Steric Hindrance. J Phys Chem B 2022; 126:10045-10054. [PMID: 36417323 DOI: 10.1021/acs.jpcb.2c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a β-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius RS, which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of RS. As RS increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large RS were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.
Collapse
Affiliation(s)
- Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
9
|
Local Insulin-Derived Amyloidosis Model Confronted with Silymarin: Histological Insights and Gene Expression of MMP, TNF-α, and IL-6. Int J Mol Sci 2022; 23:ijms23094952. [PMID: 35563343 PMCID: PMC9101448 DOI: 10.3390/ijms23094952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Amyloidosis is a heterogeneous group of protein deposition diseases associated with the presence of amyloid fibrils in tissues. Analogs of insulin that are used for treating diabetic patients (including regular insulin) can form amyloid fibrils, both in vitro and in vivo as reported in patients. The main purpose of this study was the induction of localized insulin-generated amyloidosis and the observation of silymarin effects on this process. In order to obtain amyloid structures, regular insulin was incubated at 37 °C for 24 h. Congo red absorbance and transmission electron microscopy images validated the formation of amyloid fibrils. Those fibrils were then injected subcutaneously into rats once per day for 6, 12 or 18 consecutive days in the presence or absence of silymarin, and caused development of firm waxy masses. These masses were excised and stained with Hematoxylin and Eosin, Congo red and Thioflavin S. Histological examination showed adipose cells and connective tissue in which amyloid deposition was visible. Amyloids decreased in the presence of silymarin, and the same effect was observed when silymarin was added to normal insulin and injected subsequently. Furthermore, plasma concentrations of MMP2, TNF-α, and IL-6 inflammatory factors were measured, and their gene expression was locally assessed in the masses by immunohistochemistry. All three factors increased in the amyloidosis state, while silymarin had an attenuating effect on their plasma levels and gene expression. In conclusion, we believe that silymarin could be effective in counteracting insulin-generated local amyloidosis.
Collapse
|
10
|
Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat Commun 2022; 13:1351. [PMID: 35292653 PMCID: PMC8924238 DOI: 10.1038/s41467-022-28955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression. In this work, Louros et al. uncover a rule book for interactions of amyloids with other proteins. This grammar was shown to promote cellular spreading of tau aggregates in cells, but can also be harvested to develop structure-based aggregation blockers.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Moonen
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium.,Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Near-Wall Aggregation of Amyloidogenic Aβ 1-40 Peptide: Direct Observation by the FRET. Molecules 2021; 26:molecules26247590. [PMID: 34946672 PMCID: PMC8706126 DOI: 10.3390/molecules26247590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The formation of amyloid fibrils is one of the variants of the self-organization of polypeptide chains. For the amyloid aggregation, the solution must be oversaturated with proteins. The interface of the liquid (solution) and solid (vessel walls) phases can trigger the adsorption of protein molecules, and the resulting oversaturation can initiate conformational transitions in them. In any laboratory experiment, we cannot exclude the presence of surfaces such as the walls of vessels, cuvettes, etc. However, in many works devoted to the study of amyloid formation, this feature is not considered. In our work, we investigated the behavior of the Aβ 1-40 peptide at the water–glass, water–quartz, and water–plastic interface. We carried out a series of simple experiments and showed that the Aβ 1-40 peptide is actively adsorbed on these surfaces, which leads to a significant interaction and aggregation of peptides. This means that the interface can be the place where the first amyloid nucleus appears. We suggest that this effect may also be one of the reasons for the difficulty of reproducing kinetic data when studying the aggregation of the amyloid of the Aβ 1-40 peptide and other amyloidogenic proteins
Collapse
|
12
|
Lattanzi V, André I, Gasser U, Dubackic M, Olsson U, Linse S. Amyloid β 42 fibril structure based on small-angle scattering. Proc Natl Acad Sci U S A 2021; 118:e2112783118. [PMID: 34815346 PMCID: PMC8640717 DOI: 10.1073/pnas.2112783118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
Amyloid fibrils are associated with a number of neurodegenerative diseases, including fibrils of amyloid β42 peptide (Aβ42) in Alzheimer's disease. These fibrils are a source of toxicity to neuronal cells through surface-catalyzed generation of toxic oligomers. Detailed knowledge of the fibril structure may thus facilitate therapeutic development. We use small-angle scattering to provide information on the fibril cross-section dimension and shape for Aβ42 fibrils prepared in aqueous phosphate buffer at pH = 7.4 and pH 8.0 under quiescent conditions at 37 °C from pure recombinant Aβ42 peptide. Fitting the data using a continuum model reveals an elliptical cross-section and a peptide mass-per-unit length compatible with two filaments of two monomers, four monomers per plane. To provide a more detailed atomistic model, the data were fitted using as a starting state a high-resolution structure of the two-monomer arrangement in filaments from solid-state NMR (Protein Data Bank ID 5kk3). First, a twofold symmetric model including residues 11 to 42 of two monomers in the filament was optimized in terms of twist angle and local packing using Rosetta. A two-filament model was then built and optimized through fitting to the scattering data allowing the two N-termini in each filament to take different conformations, with the same conformation in each of the two filaments. This provides an atomistic model of the fibril with twofold rotation symmetry around the fibril axis. Intriguingly, no polydispersity as regards the number of filaments was observed in our system over separate samples, suggesting that the two-filament arrangement represents a free energy minimum for the Aβ42 fibril.
Collapse
Affiliation(s)
- Veronica Lattanzi
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden;
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marija Dubackic
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2104148118. [PMID: 34462352 PMCID: PMC8433567 DOI: 10.1073/pnas.2104148118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyloid seeds are nanometer-sized protein particles that accelerate amyloid assembly as well as propagate and transmit the amyloid protein conformation associated with a wide range of protein misfolding diseases. However, seeded amyloid growth through templated elongation at fibril ends cannot explain the full range of molecular behaviors observed during cross-seeded formation of amyloid by heterologous seeds. Here, we demonstrate that amyloid seeds can accelerate amyloid formation via a surface catalysis mechanism without propagating the specific amyloid conformation associated with the seeds. This type of seeding mechanism is demonstrated through quantitative characterization of the cross-seeded assembly reactions involving two nonhomologous and unrelated proteins: the human Aβ42 peptide and the yeast prion-forming protein Sup35NM. Our results demonstrate experimental approaches to differentiate seeding by templated elongation from nontemplated amyloid seeding and rationalize the molecular mechanism of the cross-seeding phenomenon as a manifestation of the aberrant surface activities presented by amyloid seeds as nanoparticles.
Collapse
|
14
|
Tournus M, Escobedo M, Xue WF, Doumic M. Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation. PLoS Comput Biol 2021; 17:e1008964. [PMID: 34478445 PMCID: PMC8462728 DOI: 10.1371/journal.pcbi.1008964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/24/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time-dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times. Amyloid fibrils are fibrillar protein structures involved in many neurodegenerative illnesses, such as Parkinson’s disease or Alzheimer’s disease. To propagate in disease, these misfolded protein aggregates must grow and divide to proliferate. Therefore, the intrinsic characteristics of their division, including the division rate and the pattern of division in terms of whether the fibrils are likely to break in the middle or at the edges, impact the disease aetiology. Here, we discovered mathematical formulae that can be used to directly extract the fibril division characteristics from recent experiments data obtained from time-dependent fibril length distribution measurements. We explain how these formulae can be used, and prove the robustness of the division rate formula where small errors in the measurement leads to small errors in the division rate. We also demonstrate that the mathematical formula is not robust enough to precisely decipher the pattern of division in the data, and suggest instead new future experimental design with short time measurements in experiments starting with fibril suspensions where all fibrils have similar size, which would be suitable to provide improved estimates.
Collapse
Affiliation(s)
- Magali Tournus
- Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille université, Marseille, France
- * E-mail:
| | - Miguel Escobedo
- Universidad del País Vasco, Departamento de Matemat́icas, Bilbao, Spain
| | - Wei-Feng Xue
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- INRIA Rocquencourt, équipe-projet BANG, domaine de Voluceau, Rocquencourt, France
| | - Marie Doumic
- INRIA Rocquencourt, équipe-projet BANG, domaine de Voluceau, Rocquencourt, France
| |
Collapse
|
15
|
Abstract
AbstractChaperones protect other proteins against misfolding and aggregation, a key requirement for maintaining biological function. Experimental observations of changes in solubility of amyloid proteins in the presence of certain chaperones are discussed here in terms of thermodynamic driving forces. We outline how chaperones can enhance amyloid solubility through the formation of heteromolecular aggregates (co-aggregates) based on the second law of thermodynamics and the flux towards equal chemical potential of each compound in all phases of the system. Higher effective solubility of an amyloid peptide in the presence of chaperone implies that the chemical potential of the peptide is higher in the aggregates formed under these conditions compared to peptide-only aggregates. This must be compensated by a larger reduction in chemical potential of the chaperone in the presence of peptide compared to chaperone alone. The driving force thus relies on the chaperone being very unhappy on its own (high chemical potential), thus gaining more free energy than the amyloid peptide loses upon forming the co-aggregate. The formation of heteromolecular aggregates also involves the kinetic suppression of the formation of homomolecular aggregates. The unhappiness of the chaperone can explain the ability of chaperones to favour an increased population of monomeric client protein even in the absence of external energy input, and with broad client specificity. This perspective opens for a new direction of chaperone research and outlines a set of outstanding questions that aim to provide additional cues for therapeutic development in this area.
Collapse
|
16
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
17
|
Khodaparast L, Wu G, Khodaparast L, Schmidt BZ, Rousseau F, Schymkowitz J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front Mol Biosci 2021; 8:681855. [PMID: 34150852 PMCID: PMC8206779 DOI: 10.3389/fmolb.2021.681855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network. This is especially true for bacteria; it can be argued that the need to adapt to their changing environments and their high protein turnover rates render bacteria particularly vulnerable to the disruption of protein homeostasis in general, as well as protein misfolding and aggregation. Targeting bacterial proteostasis could therefore be an attractive strategy for the development of novel antibacterial therapeutics. This review highlights advances with an antibacterial strategy that is based on deliberately inducing aggregation of target proteins in bacterial cells aiming to induce a lethal collapse of protein homeostasis. The approach exploits the intrinsic aggregation propensity of regions residing in the hydrophobic core regions of the polypeptide sequence of proteins, which are genetically conserved because of their essential role in protein folding and stability. Moreover, the molecules were designed to target multiple proteins, to slow down the build-up of resistance. Although more research is required, results thus far allow the hope that this strategy may one day contribute to the arsenal to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
18
|
Szefczyk M, Szulc N, Gąsior-Głogowska M, Modrak-Wójcik A, Bzowska A, Majstrzyk W, Taube M, Kozak M, Gotszalk T, Rudzińska-Szostak E, Berlicki Ł. Hierarchical approach for the rational construction of helix-containing nanofibrils using α,β-peptides. NANOSCALE 2021; 13:4000-4015. [PMID: 33471005 DOI: 10.1039/d0nr04313c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of novel self-assembled nanomaterials based on peptides remains a great challenge in modern chemistry. A hierarchical approach for the construction of nanofibrils based on α,β-peptide foldamers is proposed. The incorporation of a helix-promoting trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue in the outer positions of the model coiled-coil peptide led to its increased conformational stability, which was established consistently by the results of CD, NMR and FT-IR spectroscopy. The designed oligomerization state in the solution of the studied peptides was confirmed using analytical ultracentrifugation. Moreover, the cyclopentane side chain allowed additional interactions between coiled-coil-like structures to direct the self-assembly process towards the formation of well-defined nanofibrils, as observed using AFM and TEM techniques.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Majstrzyk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Teodor Gotszalk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
19
|
Aubrey LD, Blakeman BJF, Lutter L, Serpell CJ, Tuite MF, Serpell LC, Xue WF. Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Commun Chem 2020; 3:125. [PMID: 36703355 PMCID: PMC9814634 DOI: 10.1038/s42004-020-00372-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
Amyloid fibrils are highly polymorphic structures formed by many different proteins. They provide biological function but also abnormally accumulate in numerous human diseases. The physicochemical principles of amyloid polymorphism are not understood due to lack of structural insights at the single-fibril level. To identify and classify different fibril polymorphs and to quantify the level of heterogeneity is essential to decipher the precise links between amyloid structures and their functional and disease associated properties such as toxicity, strains, propagation and spreading. Employing gentle, force-distance curve-based AFM, we produce detailed images, from which the 3D reconstruction of individual filaments in heterogeneous amyloid samples is achieved. Distinctive fibril polymorphs are then classified by hierarchical clustering, and sample heterogeneity is objectively quantified. These data demonstrate the polymorphic nature of fibril populations, provide important information regarding the energy landscape of amyloid self-assembly, and offer quantitative insights into the structural basis of polymorphism in amyloid populations.
Collapse
Affiliation(s)
- Liam D. Aubrey
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Ben J. F. Blakeman
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Liisa Lutter
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Christopher J. Serpell
- grid.9759.20000 0001 2232 2818School of Physical Sciences, University of Kent, Canterbury, CT2 7NH UK
| | - Mick F. Tuite
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Louise C. Serpell
- grid.12082.390000 0004 1936 7590Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG UK
| | - Wei-Feng Xue
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
20
|
Lutter L, Serpell CJ, Tuite MF, Serpell LC, Xue WF. Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs. Biomol Concepts 2020; 11:102-115. [PMID: 32374275 DOI: 10.1515/bmc-2020-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/30/2020] [Indexed: 08/19/2023] Open
Abstract
Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes 'magnification' of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact-deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies.
Collapse
Affiliation(s)
- Liisa Lutter
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | | | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG, Falmer, Brighton, UK
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| |
Collapse
|
21
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Liu B, Pappas CG, Ottelé J, Schaeffer G, Jurissek C, Pieters PF, Altay M, Marić I, Stuart MCA, Otto S. Spontaneous Emergence of Self-Replicating Molecules Containing Nucleobases and Amino Acids. J Am Chem Soc 2020; 142:4184-4192. [PMID: 32023041 PMCID: PMC7059183 DOI: 10.1021/jacs.9b10796] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The conditions that led to the formation
of the first organisms
and the ways that life originates from a lifeless chemical soup are
poorly understood. The recent hypothesis of “RNA-peptide coevolution”
suggests that the current close relationship between amino acids and
nucleobases may well have extended to the origin of life. We now show
how the interplay between these compound classes can give rise to
new self-replicating molecules using a dynamic combinatorial approach.
We report two strategies for the fabrication of chimeric amino acid/nucleobase
self-replicating macrocycles capable of exponential growth. The first
one relies on mixing nucleobase- and peptide-based building blocks,
where the ligation of these two gives rise to highly specific chimeric
ring structures. The second one starts from peptide nucleic acid (PNA)
building blocks in which nucleobases are already linked to amino acids
from the start. While previously reported nucleic acid-based self-replicating
systems rely on presynthesis of (short) oligonucleotide sequences,
self-replication in the present systems start from units containing
only a single nucleobase. Self-replication is accompanied by self-assembly,
spontaneously giving rise to an ordered one-dimensional arrangement
of nucleobase nanostructures.
Collapse
Affiliation(s)
- Bin Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Charalampos G Pappas
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jim Ottelé
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christoph Jurissek
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Priscilla F Pieters
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Meniz Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivana Marić
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C A Stuart
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Balobanov V, Chertkova R, Egorova A, Dolgikh D, Bychkova V, Kirpichnikov M. The Kinetics of Amyloid Fibril Formation by de Novo Protein Albebetin and Its Mutant Variants. Biomolecules 2020; 10:E241. [PMID: 32033353 PMCID: PMC7072675 DOI: 10.3390/biom10020241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
Engineering of amyloid structures is one of the new perspective areas of protein engineering. Studying the process of amyloid formation can help find ways to manage it in the interests of medicine and biotechnology. One of the promising candidates for the structural basis of artificial functional amyloid fibrils is albebetin (ABB), an artificial protein engineered under the leadership of O.B. Ptitsyn. Various aspects of the amyloid formation of this protein and some methods for controlling this process are investigated in this paper. Four stages of amyloid fibrils formation by this protein from the first non-fibrillar aggregates to mature fibrils and large micron-sized complexes have been described in detail. Dependence of albebetin amyloids formation on external conditions and some mutations also have been described. The introduction of similar point mutations in the two structurally identical α-β-β motifs of ABB lead to different amiloidogenesis kinetics. The inhibitory effect of a disulfide bond and high pH on amyloid fibrils formation, that can be used to control this process, was shown. The results of this work are a good basis for the further design and use of ABB-based amyloid constructs.
Collapse
Affiliation(s)
- Vitalii Balobanov
- Institute of Protein Research, Pushchino, Moscow 142290, Russia (V.B.)
| | - Rita Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow 117312, Russia
| | - Anna Egorova
- Institute of Protein Research, Pushchino, Moscow 142290, Russia (V.B.)
| | - Dmitry Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie gory, 1/12, Moscow 119899, Russia
| | | | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie gory, 1/12, Moscow 119899, Russia
| |
Collapse
|