1
|
Neira JL, Rizzuti B, Palomino-Schätzlein M, Rejas V, Abian O, Velazquez-Campoy A. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme. Protein Sci 2025; 34:e70033. [PMID: 39840810 DOI: 10.1002/pro.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98. Here, by using a "divide-and-conquer" approach, we have designed and synthesized peptides comprising these two polypeptide stretches (residues Ala21-Lys36, and Lys94-Val108), either in the wild-type species or in their citrullinated versions. Some of the citrullinated peptides were aggregation-prone, as suggested by DOSY-NMR experiments, but the wild-type versions of both fragments were monomeric in solution. We found out that wild-type and modified peptides were disordered in all cases, as also tested by far-UV circular dichroism (CD), and citrullination mainly affected the NMR chemical shifts of adjacent residues. Isothermal titration calorimetry (ITC) in the absence and presence of GSK484, an enzymatic PADI4 inhibitor, indicated that this compound blocked binding of the peptides to the enzyme. Binding to the active site of the N-MDM2 fragments was also confirmed by in silico experiments. The affinities of PADI4 for the wild-type peptides were more favorable than those of the corresponding citrullinated ones, but all measured values were within the micromolar range, indicating that there were no major variations in the thermodynamics of binding due to sequence effects. The kinetic dissociation rates, koff, measured by biolayer interferometry (BLI), were always one-order of magnitude faster for the citrullinated peptides than for the wild-type ones. Taken together, all these findings indicate that MDM2 is a substrate for PADI4 and is prone to citrullination in the identified (and specific) positions of its N-terminal region.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Rende, Italy
| | | | - Virginia Rejas
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yufera 3, Valencia, Spain
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Marhaendra LIA, Rosandi Y, Gazzali AM, Novitasari D, Muchtaridi M. Comparison Between Molecular Dynamics Potentials for Simulation of Graphene-Based Nanomaterials for Biomedical Applications. Drug Dev Ind Pharm 2025:1-31. [PMID: 39835740 DOI: 10.1080/03639045.2025.2457387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs). SIGNIFICANCE GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood. The molecular interaction through molecular dynamic simulation offers the benefits for simulating inorganic molecules like GBNs, with necessary adjustments to account for physical and chemical interactions, or thermodynamic conditions. METHOD In this review, we explore various molecular dynamics potentials (force fields) used to simulate interactions and phenomena in graphene-based nanomaterials. Additionally, we offer a brief overview of the benefits and drawbacks of each force fields that available for analysis to assess which one is suitable to study the molecular interaction of graphene-based nanomaterials. RESULT We identify and compare various molecular dynamics potentials that available for analysing GBNs, providing insights into their suitability for simulating specific phenomena in graphene-based nanomaterials. The specification of each force fields and its purpose can be used for further application of molecular dynamics simulation on GBNs. CONCLUSION GBNs hold significant promise for applications like nanomedicine, but their physical and chemical properties must be thoroughly studied for safe clinical use. Molecular dynamics simulations, using either reactive or non-reactive MD potentials depending on the expected chemical changes, are essential for accurately modeling these properties, requiring careful selection based on the specific application.
Collapse
Affiliation(s)
- Laurentius Ivan Ageng Marhaendra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Geophysics Department, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Lee D, Choi JI. Predicting the polyspecificity of aminoacyl-tRNA synthetase for non-canonical amino acids using molecular dynamics simulation and MM/PBSA. PLoS One 2025; 20:e0316907. [PMID: 39792834 PMCID: PMC11723616 DOI: 10.1371/journal.pone.0316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial. In this study, we expressed sfGFP using an orthogonal aaRS/tRNA pair with 4-Azido-L-phenylalanine (AzF) and another four different ncAAs. The experimental results showed specificity with O-Methyl-L-tyrosine as well as AzF, and these results were compared with computational predictions. We constructed a mutant aaRS structure specific for AzF through homology modelling and conducted docking studies with tyrosine and five ncAAs, followed by molecular dynamics simulations. The binding affinity was calculated using the molecular mechanics/Poisson-Boltzmann surface area, focusing on nonpolar solvation terms. While the analysis is based on the incorporation of limited number of ncAAs, the cavity and dispersion term method showed consistency with experimental data, highlighting its potential utility compared to the surface area term method. These findings enhance understanding of the ncAA specificity of aaRS in relation to computer simulations and energy calculations, which can be utilized to rationally design or predict the specificity of aaRS.
Collapse
Affiliation(s)
- Dongheon Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Reda D, Elfiky AA, Elnagdy M, Khalil MM. Molecular docking and molecular dynamics of hypoxia-inducible factor (HIF-1alpha): towards potential inhibitors. J Biomol Struct Dyn 2024:1-20. [PMID: 39520676 DOI: 10.1080/07391102.2024.2425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/18/2024] [Indexed: 11/16/2024]
Abstract
HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.
Collapse
Affiliation(s)
- Dina Reda
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - M Elnagdy
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Magdy M Khalil
- School of Allied Health Sciences, Badr University in Cairo (BUC), Badr City and Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Jahandoost A, Dashti R, Houshmand M, Hosseini SA. Utilizing machine learning and molecular dynamics for enhanced drug delivery in nanoparticle systems. Sci Rep 2024; 14:26677. [PMID: 39496651 PMCID: PMC11535187 DOI: 10.1038/s41598-024-73268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024] Open
Abstract
Materials data science and machine learning (ML) are pivotal in advancing cancer treatment strategies beyond traditional methods like chemotherapy. Nanotherapeutics, which merge nanotechnology with targeted drug delivery, exemplify this advancement by offering improved precision and reduced side effects in cancer therapy. The development of these nanotherapeutic agents depends critically on understanding nanoparticle (NP) properties and their biological interactions, often analyzed through molecular dynamics (MD) simulations. This study enhances these analyses by integrating ML with MD simulations, significantly improving both prediction accuracy and computational efficiency. We introduce a comprehensive three-stage methodology for predicting the solvent-accessible surface area (SASA) of NPs, which is crucial for their therapeutic efficacy. The process involves training an ML model to forecast the many-body tensor representation (MBTR) for future time steps, applying data augmentation to increase dataset realism, and refining the SASA predictor with both augmented and original data. Results demonstrate that our methodology can predict SASA values 299 time steps ahead with a 40-fold speed improvement and a 25% accuracy increase over existing methods. Importantly, it provides a 300-fold increase in computational speed compared to traditional simulation techniques, offering substantial cost and time savings for nanotherapeutic research and development.
Collapse
Affiliation(s)
- Alireza Jahandoost
- Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Razieh Dashti
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahboobeh Houshmand
- Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Seyyed Abed Hosseini
- Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Pasenkiewicz-Gierula M, Hryc J, Markiewicz M. Dynamic and Energetic Aspects of Carotenoids In-and-Around Model Lipid Membranes Revealed in Molecular Modelling. Int J Mol Sci 2024; 25:8217. [PMID: 39125791 PMCID: PMC11312187 DOI: 10.3390/ijms25158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (J.H.); (M.M.)
| | | | | |
Collapse
|
8
|
Kolaříková A, Perera A. Concentration Fluctuation/Microheterogeneity Duality Illustrated with Aqueous 1,4-Dioxane Mixtures. J Chem Theory Comput 2024; 20:3473-3483. [PMID: 38687823 DOI: 10.1021/acs.jctc.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The structural properties of aqueous 1-4 dioxane mixtures are studied by computer simulations of different water and dioxane force field models, from the perspective of illustrating the link between structural properties at the molecular level and measurable properties such as radiation scattering intensities and Kirkwood-Buff integrals (KBIs). A strategy to consistently correct the KBI obtained from simulations is proposed, which allows us to obtain the genuine KBI corresponding to a given pair of molecular species, in the entire concentration range, and without necessitating excessively large system sizes. The application of this method to the aqueous dioxane mixtures, with an all-atom CHARMM dioxane model and 2 water models, namely, SPC/E and TIP3P, allows one to understand the differences in the structure of the corresponding mixtures at the molecular level, particularly concerning the role of the water aggregates and its model dependence. This study allows us to characterize the dual role played by the concentration fluctuations and the domain segregation, particularly in what concerns the calculated X-ray spectra.
Collapse
Affiliation(s)
- Alena Kolaříková
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
- Faculty of Technology, Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
| |
Collapse
|
9
|
Srivastava M, Singh K, Kumar S, Hasan SM, Mujeeb S, Kushwaha SP, Husen A. In silico Approaches for Exploring the Pharmacological Activities of Benzimidazole Derivatives: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1481-1495. [PMID: 38288816 DOI: 10.2174/0113895575287322240115115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative's pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement. OBJECTIVES This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research. METHODS Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed. RESULT The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them. CONCLUSION In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.
Collapse
Affiliation(s)
- Manisha Srivastava
- Reseach scholar, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Samar Mujeeb
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | | | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Hosseni A, Ashbaugh HS. Osmotic Force Balance Evaluation of Aqueous Electrolyte Osmotic Pressures and Chemical Potentials. J Chem Theory Comput 2023; 19:8826-8838. [PMID: 37978934 PMCID: PMC10720338 DOI: 10.1021/acs.jctc.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Concentrated aqueous salt solutions are ubiquitous in problems of biological and environmental relevance. The development of accurate force fields that capture the interactions between dissolved species in solution is crucial to simulating these systems to gain molecular insights into the underlying processes under saline conditions. The osmotic pressure is a relatively simple thermodynamic property connecting the experimental and simulation measurements of the associative properties of the ions in solution. Milner [C. Gillespie and S. T. Milner, Soft Matter, 16, 9816 (2020)] proposed a simulation approach to evaluate the osmotic pressures of salts in solution by applying a restraint potential to the ions alone in solution and determining the resulting pressure required to balance that potential, referred to here as the osmotic force balance. Here, we expand Milner's approach, demonstrating that the chemical potentials of the salts in solution as a function of concentration can be fitted to the concentration profiles determined from simulation, additionally providing an analytical expression for the osmotic pressure. This approach is used to determine the osmotic pressures of 15 alkali halide salts in water from simulations. The cross interactions between cations and anions in solution are subsequently optimized to capture their experimental osmotic pressures.
Collapse
Affiliation(s)
- Alireza Hosseni
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S. Ashbaugh
- Department of Chemical and
Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
11
|
Rizzuti B, Abian O, Velazquez-Campoy A, Neira JL. Conformational Stability of the N-Terminal Region of MDM2. Molecules 2023; 28:7578. [PMID: 38005300 PMCID: PMC10673428 DOI: 10.3390/molecules28227578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
12
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
13
|
Araujo-Abad S, Fuentes-Baile M, Rizzuti B, Bazán JF, Villamarin-Ortiz A, Saceda M, Fernández E, Vidal M, Abian O, Velazquez-Campoy A, de Juan Romero C, Neira JL. The intrinsically disordered, epigenetic factor RYBP binds to the citrullinating enzyme PADI4 in cancer cells. Int J Biol Macromol 2023; 246:125632. [PMID: 37399862 DOI: 10.1016/j.ijbiomac.2023.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 μM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, 110111 Loja, Ecuador
| | - María Fuentes-Baile
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - J Fernando Bazán
- ħ Bioconsulting, LLC, Stillwater, MN, USA; Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | | | - Miguel Saceda
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Eduardo Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Investigación Biomédica en Red CIBER-BBN, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
14
|
Construction of an MLR-QSAR Model Based on Dietary Flavonoids and Screening of Natural α-Glucosidase Inhibitors. Foods 2022; 11:foods11244046. [PMID: 36553788 PMCID: PMC9778400 DOI: 10.3390/foods11244046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Postprandial hyperglycemia can be reduced by inhibiting α-glucosidase activity. Common α-glucosidase inhibitors such as acarbose may have various side effects. Therefore, it is important to find natural products that are non-toxic and have high α-glucosidase-inhibitory activity. In the present study, a comprehensive computational analysis of 27 dietary flavonoid compounds with α-glucosidase-inhibitory activity was performed. These included flavonoids, flavanones, isoflavonoids, dihydrochalcone, flavan-3-ols, and anthocyanins. Firstly, molecular fingerprint similarity clustering analysis was performed on the target molecules. Secondly, multiple linear regression quantitative structure-activity relationship (MLR-QSAR) models of dietary flavonoids (2D descriptors and 3D descriptors optimized), with R2 of 0.927 and 0.934, respectively, were constructed using genetic algorithms. Finally, the MolNatSim tool based on the COCONUT database was used to match the similarity of each flavonoid in this study, and to sequentially perform molecular enrichment, similarity screening, and QSAR prediction. After screening, five kinds of natural product molecule (2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, norartocarpetin, 2-(2,5-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one, and morelosin) were finally obtained. Their IC50pre values were 8.977, 31.949, 78.566, 87.87, and 94.136 µM, respectively. Pharmacokinetic predictions evaluated the properties of the new natural products, such as bioavailability and toxicity. Molecular docking analysis revealed the interaction of candidate novel natural flavonoid compounds with the amino acid residues of α-glucosidase. Molecular dynamics (MD) simulations and molecular mechanics/generalized Born surface area (MMGBSA) further validated the stability of these novel natural compounds bound to α-glucosidase. The present findings may provide new directions in the search for novel natural α-glucosidase inhibitors.
Collapse
|
15
|
Miszta P, Pasznik P, Niewieczerzał S, Młynarczyk K, Filipek S. COGRIMEN: Coarse-Grained Method for Modeling of Membrane Proteins in Implicit Environments. J Chem Theory Comput 2022; 18:5145-5156. [PMID: 35998323 PMCID: PMC9476660 DOI: 10.1021/acs.jctc.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The presented methodology is based on coarse-grained
representation
of biomolecules in implicit environments and is designed for the molecular
dynamics simulations of membrane proteins and their complexes. The
membrane proteins are not only found in the cell membrane but also
in all membranous compartments of the cell: Golgi apparatus, mitochondria,
endosomes and lysosomes, and they usually form large complexes. To
investigate such systems the methodology is proposed based on two
independent approaches combining the coarse-grained MARTINI model
for proteins and the effective energy function to mimic the water/membrane
environments. The latter is based on the implicit environment developed
for all-atom simulations in the IMM1 method. The force field solvation
parameters for COGRIMEN were initially calculated from IMM1 all-atom
parameters and then optimized using Genetic Algorithms. The new methodology
was tested on membrane proteins, their complexes and oligomers. COGRIMEN
method is implemented as a patch for NAMD program and can be useful
for fast and brief studies of large membrane protein complexes.
Collapse
Affiliation(s)
- Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Krzysztof Młynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| |
Collapse
|