1
|
Kaur J, Bhardwaj A, Wuest F. Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123722. [PMID: 35744851 PMCID: PMC9227202 DOI: 10.3390/molecules27123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012–2021).
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Correspondence: (J.K.); (F.W.)
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Correspondence: (J.K.); (F.W.)
| |
Collapse
|
2
|
Buddeberg BS, Seeberger MD. Anesthesia and Oncology: Friend or Foe? Front Oncol 2022; 12:802210. [PMID: 35359377 PMCID: PMC8963958 DOI: 10.3389/fonc.2022.802210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death, and surgery is an important treatment modality. Laboratory research and retrospective studies have raised the suspicion that the choice of anesthetics for cancer surgery might affect the course of cancerous disease. The aim of this review is to provide a critical overview of the current state of knowledge. Inhalational anesthesia with volatiles or total intravenous anesthesia (TIVA) with propofol are the two most commonly used anesthetic techniques. Most data comparing volatile anesthetics with TIVA is from either in vitro or retrospective studies. Although conflicting, data shows a trend towards favoring propofol. Opioids are commonly used in anesthesia. Data on potential effects of opioids on growth and recurrence of cancer are scarce and conflicting. Preclinical studies have shown that opioids stimulate cancer growth through the µ-opioid receptor. Opioids also act as immunosuppressants and, therefore, have the potential to facilitate metastatic spread. However, the finding of an adverse effect of opioids on tumor growth and cancer recurrence by some retrospective studies has not been confirmed by prospective studies. Regional anesthesia has not been found to have a beneficial effect on the outcome of surgically treated cancer patients, but prospective studies are scarce. Local anesthetics might have a beneficial effect, as observed in animal and in vitro studies. However, prospective clinical studies strongly question such an effect. Blood products, which may be needed during extensive cancer surgery suppress the immune system, and data strongly suggest a negative impact on cancer recurrence. The potential effects of other commonly used anesthetic agents on the outcome of cancer patients have not been sufficiently studied for drawing valid conclusions. In conclusion, laboratory data and most retrospective studies suggest a potential advantage of TIVA over inhalational anesthesia on the outcome of surgical cancer patients, but prospective, randomized studies are missing. Given the state of weak scientific evidence, TIVA may be used as the preferred type of anesthesia unless there is an individual contraindication against it. Studies on the effects of other drugs frequently used in anesthesia are limited in number and quality, and have found conflicting results.
Collapse
Affiliation(s)
- Bigna S. Buddeberg
- Clinic for Anesthesia, Intermediate Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland
- Medical School, University of Basel, Basel, Switzerland
| | - Manfred D. Seeberger
- Medical School, University of Basel, Basel, Switzerland
- *Correspondence: Manfred D. Seeberger,
| |
Collapse
|
3
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
4
|
Cimbalo A, Alonso-Garrido M, Font G, Frangiamone M, Manyes L. Transcriptional Changes after Enniatins A, A1, B and B1 Ingestion in Rat Stomach, Liver, Kidney and Lower Intestine. Foods 2021; 10:foods10071630. [PMID: 34359500 PMCID: PMC8303686 DOI: 10.3390/foods10071630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Enniatins (ENs) are depsipeptide mycotoxins produced by Fusarium fungi. They are known for their capacity to modulate cell membrane permeability and disruption of ionic gradients, affecting cell homeostasis and initiating oxidative stress mechanisms. The effect of the acute toxicity of ENs A, A1, B and B1 at two different concentrations after 8 h of exposure was analysed in Wistar rats by a transcriptional approach. The following key mitochondrial and nuclear codified genes related to the electron transport chain were considered for gene expression analysis in stomach, liver, kidney and lower intestine by quantitative Real-Time PCR: mitochondrially encoded NADH dehydrogenase 1 (MT-ND1), mitochondrially encoded cytochrome c oxidase 1 (MT-COX1), succinate dehydrogenase flavoprotein subunit A and ATP synthase F1 subunit alpha, respectively. Moreover, the expression of markers involved in oxidative stresssuperoxide dismutase 1 (SOD1), glutathione peroxidase 1 (Gpx1), heme oxygenase 1, apoptosis B-cell lymphoma 2, Bcl2 Associated protein X (Bax), tumor suppressor protein (p53), inhibition of apoptosis nuclear factor kappa of activated B cells, immune system interleukin 1β and intestinal tight junction Occludin merely in lower intestine tissues have been investigated. For mitochondrial genes, the main differences were observed for MT-ND1 and MT-COX1, showing its deficiency in all selected organs. With regard to the intestinal barrier’s cellular response to oxidative stress, the activity of the antioxidant gene SOD1 was decreased in a dose-dependent manner. Similarly, the catalytic enzyme GPx1 was also downregulated though merely at medium dose employed. On the contrary, the pro-apoptotic Bax and p53 regulators were activated after ENs exposure, reporting a significant increase in their expression. Furthermore, the alteration of intestinal permeability was assessed by the abnormal activity of the tight junction protein occludin. In summary, ENs may generate mitochondrial disorders and induce oxidative stress in intestinal barrier function.
Collapse
|
5
|
Cyclooxygenase-2 induces neoplastic transformation by inhibiting p53-dependent oncogene-induced senescence. Sci Rep 2021; 11:9853. [PMID: 33972599 PMCID: PMC8110573 DOI: 10.1038/s41598-021-89220-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.
Collapse
|
6
|
Luo Y, Liu JY. Pleiotropic Functions of Cytochrome P450 Monooxygenase-Derived Eicosanoids in Cancer. Front Pharmacol 2020; 11:580897. [PMID: 33192522 PMCID: PMC7658919 DOI: 10.3389/fphar.2020.580897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eicosanoids are a class of functionally bioactive lipid mediators derived from the metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by COXs and LOXs pathways in the control of physiological and pathological processes associated with cancer has been well documented. However, the role of CYPs-mediated eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids (EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids (EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer progression have not been fully elucidated yet. Here we summarized the association of polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable insights into cancer therapeutics. We believe that manipulation of CYPs with or without supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent and/or treat cancers.
Collapse
Affiliation(s)
- Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jun-Yan Liu
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLoS One 2020; 15:e0238379. [PMID: 32915799 PMCID: PMC7485896 DOI: 10.1371/journal.pone.0238379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The correlation between the infection of H. pylori and the occurrence of gastric MALT lymphoma (GML) has been well documented. However, the mechanism of how GML is caused by this bacterium is not well understood, although some immunologic mechanisms are thought to be involved. MATERIALS AND METHODS In this study, we performed both transcriptomic and proteomic analyses on gastric cancer cells infected by H. pylori isolates from GML patients and the gastric ulcer strain 26695 to investigate the differentially expressed molecular signatures that were induced by GML isolates. RESULTS Transcriptomic analyses revealed that the differentially expressed genes (DEGs) were mainly related to binding, catalytic activity, signal transducer activity, molecular transducer activity, nucleic acid binding transcription factor activity, and molecular function regulator. Fifteen pathways, including the Wnt signaling pathway, the mTOR signaling pathway, the NOD-like receptor signaling pathway and the Hippo signaling pathway, were revealed to be related to GML isolates. Proteomic analyses results showed that there were 116 differentially expressed proteins (DEPs). Most of these DEPs were associated with cancer, and 29 have been used as biomarkers for cancer diagnosis. We also found 63 upstream regulators that can inhibit or activate the expression of the DEPs. Combining the proteomic and transcriptomic analyses revealed 12 common pathways. This study provides novel insights into H. pylori-associated GML. The DEPs we found may be good candidates for GML diagnosis and treatment. CONCLUSIONS This study revealed specific pathways related to GML and potential biomarkers for GML diagnosis.
Collapse
|
8
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
9
|
Abstract
The tumor microenvironment (TME) is a complex ecosystem, including blood vessels,
immune cells, fibroblasts, extracellular matrix, cytokines, hormones, and so on.
The TME differs from the normal tissue environment (NTE) in many aspects, such
as tissue architecture, chronic inflammation, level of oxygen and pH,
nutritional state of the cells, as well as tissue firmness. The NTE can inhibit
the growth of cancer at the early tumorigenesis phase, whereas the TME promotes
the growth of cancer in general, although it may have some anticancer effects.
In particular, the TME plays a crucial role in the generation and maintenance of
cancer stem cells, which lie at the root of cancer growth. Therefore,
normalization of the TME to the NTE may inhibit cancer growth or improve cancer
therapeutic efficiency. This review focuses on the recent emerging approaches
for this normalization and the action mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- 1 Southeast University, Nanjing, China
| | - Peng Gao
- 2 Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
11
|
Adachi H, Nakae K, Sakamoto S, Nosaka C, Atsumi S, Shibuya M, Higashi N, Nakajima M, Irimura T, Nishimura Y. Microbial metabolites and derivatives targeted at inflammation and bone diseases therapy: chemistry, biological activity and pharmacology. J Antibiot (Tokyo) 2017; 71:ja2017138. [PMID: 29089599 DOI: 10.1038/ja.2017.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Microbial metabolites have attracted increasing interest as a source of therapeutics and as probes for biological mechanisms. New microbial metabolites and derivatives targeted at inflammation and bone disease therapy have been identified by focusing on prostaglandin release, osteoblast differentiation and immune cell functions. These modulators of inflammatory processes and bone disease contribute to our understanding of biological mechanisms and support identification of the therapeutic potential of drug lead candidates. The present review describes recent advances in the chemistry and analysis of inhibitors of prostaglandin release or other functional molecules of immune cells, as well as inducers of osteoblast differentiation, including biological and pharmacological activities.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.138.
Collapse
Affiliation(s)
- Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Koichi Nakae
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Shuichi Sakamoto
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Chisato Nosaka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Sonoko Atsumi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Han ZQ, Liao H, Shi F, Chen XP, Hu HC, Tian MQ, Wang LH, Ying S. Inhibition of cyclooxygenase-2 sensitizes lung cancer cells to radiation-induced apoptosis. Oncol Lett 2017; 14:5959-5965. [PMID: 29113232 PMCID: PMC5661612 DOI: 10.3892/ol.2017.6940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/15/2017] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy resistance is an enduring major setback in lung cancer therapy, and is responsible for a large proportion of treatment failures. In previous years, cyclooxygenase-2 (COX-2) has frequently been reported to promote tumor occurrence and development, suggesting a potential role in radiotherapy resistance. To investigate whether COX-2 inhibitors can be applied in radiosensitization, an MTT assay was performed to examine cell viability after X-ray radiation in the presence or absence of the specific COX-2 inhibitor Celecoxib. Cell apoptosis and cell cycle changes were also detected through laser confocal scanning microcopy and flow cytometry. X-ray treatment only caused mild cell death in lung cancer A549 cells. However, combination treatment using celecoxib and X-ray radiation exhibited improved inhibitory effects and significantly suppressed cell proliferation. Therefore, COX-2 inhibitors combined with radiotherapy can counteract radiation-induced high COX-2 expression, demonstrating that celecoxib can function as a radiosensitizer of lung cancer cells. It is therefore reasonable to predict COX-2 inhibitors to be potential clinical radiotherapy synergists.
Collapse
Affiliation(s)
- Zhi-Qiang Han
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Hongwei Liao
- Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Feng Shi
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Xiao-Ping Chen
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Hua-Cheng Hu
- Department of Respiratory Internal Medicine, The Second Affiliated Hospital, Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| | - Ming-Qing Tian
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Li-Hua Wang
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Songmin Ying
- Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
13
|
Fan Y, Wang K. Nicotine induces EP4 receptor expression in lung carcinoma cells by acting on AP-2α: The intersection between cholinergic and prostanoid signaling. Oncotarget 2017; 8:75854-75863. [PMID: 29100274 PMCID: PMC5652668 DOI: 10.18632/oncotarget.18023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
It was demonstrated that nicotine increased non-small cell lung cancer cell proliferation through nicotinic acetylcholine receptor -mediated signals. However, the detailed mechanism remains incompletely understood. We evaluated whether nicotine increased EP4 receptor expression in lung carcinoma cells by activating on AP-2α. Methods: The non-small cell lung cancer cells of A549 and H1838 were cultured and treated with EP4 inhibitor AH23848, also with EP4 and control siRNAs. The extracellular signal-regulated kinases inhibitor PD98059, the p38 mitogen-activated protein kinase inhibitor SB239063, the α7 nicotinic acetylcholine receptor inhibitor α-bungarotoxin, the α4 nicotinic acetylcholine receptor inhibitor dihydro-β-erythroidine, the PI3K inhibitor wortmannin, the PKC inhibitor calphostin C, and the PKA inhibitor H89 have been used to evaluate the effects on proliferations. It indicates that nicotine increases EP4 expression through α7 nicotinic acetylcholine receptor-dependent activations of PI3-K, JNK and PKC pathways that leads to reduction of AP-2α-DNA binding. This, together with the elevated secretion of PGE2, further enhances the tumor promoting effects of nicotine. These studies suggest a novel molecular mechanism by which nicotine increases non-small cell lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yu Fan
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China 610041
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041.,Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041
| |
Collapse
|
14
|
Kao CH, Bishop KS, Xu Y, Han DY, Murray PM, Marlow GJ, Ferguson LR. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis. GENOMICS INSIGHTS 2016; 9:1-16. [PMID: 27006591 PMCID: PMC4778854 DOI: 10.4137/gei.s32477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023]
Abstract
Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.
Collapse
Affiliation(s)
- Chi H.J. Kao
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen S. Bishop
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dug Yeo Han
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Pamela M. Murray
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gareth J. Marlow
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lynnette R. Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Barton MH, Darden JE, Clifton S, Vandenplas M. Effect of firocoxib on cyclooxygenase 2, microsomal prostaglandin E2 synthase 1, and cytosolic phospholipase A2 gene expression in equine mononuclear cells. Am J Vet Res 2015; 76:1051-7. [PMID: 26618729 DOI: 10.2460/ajvr.76.12.1051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To validate primer sets for use in reverse transcription quantitative PCR assays to measure gene expression of cytosolic phospholipase A2 (cPLA2) and microsomal prostaglandin E2 synthase 1 (mPGES1) in equine mononuclear cells and determine the effects of firocoxib, a selective cyclooxygenase 2 (COX-2) inhibitor, on COX-2, cPLA2, and mPGES1 gene expression following incubation of mononuclear cells with lipopolysaccharide (LPS). ANIMALS 8 healthy adult horses. PROCEDURES Peripheral blood mononuclear cells were isolated by density gradient centrifugation and incubated at 37°C with medium alone, firocoxib (100 ng/mL), LPS (1 ng/mL or 1 μg/mL), or combinations of firocoxib and both LPS concentrations. After 4 hours, supernatants were collected and tested for prostaglandin E2 (PGE2) concentration with an enzyme inhibition assay, and gene expression in cell lysates was measured with PCR assays. RESULTS Primer pairs for cPLA2 and mPGES1 yielded single products on dissociation curve analyses, with mean assay efficiencies of 102% and 100%, respectively. Incubation with firocoxib and LPS significantly decreased PGE2 supernatant concentrations and significantly reduced COX-2 and mPGES1 gene expression, compared with values following incubation with LPS alone. CONCLUSIONS AND CLINICAL RELEVANCE Primer sets for mPGES1 and cPLA2 gene expression in equine mononuclear cells were successfully validated. Firocoxib significantly decreased LPS-induced COX-2 and mPGES1 expression, suggesting that it may be useful in the control of diseases in which expression of these genes is upregulated.
Collapse
|
16
|
Stamatakis K, Jimenez-Martinez M, Jimenez-Segovia A, Chico-Calero I, Conde E, Galán-Martínez J, Ruiz J, Pascual A, Barrocal B, López-Pérez R, García-Bermejo ML, Fresno M. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget 2015; 6:39941-59. [PMID: 26498686 PMCID: PMC4741871 DOI: 10.18632/oncotarget.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized.We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandin E synthase) are co-expressed in human colorectal tumors. Moreover, we detected that COX2 and microsomal Prostaglandin E2 synthase 1 (mPGES1) proteins are both up-regulated in colorectal human tumor biopsies.Using colon carcinoma cell cultures we found that COX2 overexpression significantly increased mPGES1 mRNA and protein. This up-regulation was due to an increase in early growth response 1 (EGR1) levels and its transcriptional activity. EGR1 was induced by COX2-generated PGF2α. A PGF2α receptor antagonist, or EGR1 silencing, inhibited the mPGES1 induction by COX2 overexpression. Moreover, using immunodeficient mice, we also demonstrated that both COX2- and mPGES1-overexpressing carcinoma cells were more efficient forming tumors.Our results describe for the first time the molecular pathway correlating PTGS2 and PTGES in colon cancer progression. We demonstrated that in this pathway mPGES1 is induced by COX2 overexpression, via autocrine PGs release, likely PGF2α, through an EGR1-dependent mechanism. This signaling provides a molecular explanation to PTGS2 and PTGES association and contribute to colon cancer advance, pointing out novel potential therapeutic targets in this oncological context.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| | - Marta Jimenez-Martinez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Jimenez-Segovia
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Chico-Calero
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Conde
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Javier Galán-Martínez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Ruiz
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Pascual
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, Madrid, Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular ‘‘Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa de Investigacion Sanitaria (IIS-P), Madrid, Spain
| |
Collapse
|
17
|
Liu H, Chen Y, Xu S, Du B, Tang HL, Qiu J, Yang CM. Effect of positive acceleration adaptive training on PGI 2 and TXA 2 contents and TXA 2/PGI 2 ratio in the gastric mucosa of rats. Shijie Huaren Xiaohua Zazhi 2015; 23:4680-4686. [DOI: 10.11569/wcjd.v23.i29.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effect of positive acceleration adaptive training on prostacyclin (PGI2) and thromboxane A2 (TXA2) contents and TXA2/PGI2 ratio in the gastric mucosa of rats.
METHODS: Forty male SD rats were randomly divided into five groups: A, B, C, D and E. Group A did not undergo any treatment. Group B was exposed to +5 Gz for 5 min per day over 5 consecutive days. Group C was exposed to +10 Gz for 5 min per day over 5 consecutive days. Group D was exposed to +4 Gz for 3 min per day over 5 consecutive days and +5 Gz for 5 min per day over another 5 consecutive days. Group E was exposed to +4 Gz for 3 min per day over 5 consecutive days and +10 Gz for 5 min per day over another 5 consecutive days. The damage to the gastric mucosa was then observed grossly and under a microscope to calculate the damage index. The TXB2 and 6-keto-prostaglandin F1α (6-K-PGF1α) contents in the gastric mucosa were detected by ELISA, and the TXB2/6-K-PGF1α ratio was calculated.
RESULTS: On unaided visual and microscopic observations, all groups developed mucosa damage, with the exception of group A. The damage to the gastric mucosa was less in group D than in group B, and in group E than in group C. The harm index was significantly lower in group D than in group B (0.875 ± 0.641 vs 1.750 ± 0.707, P < 0.05), and in group E than in group C (2.250 ± 1.035 vs 5.625 ± 1.767, P < 0.05). The content of TXB2 was significantly lower in group D than in group B (159.588 pg/mL ± 36.216 pg/mL vs 251.018 pg/mL ± 50.845 pg/mL, P < 0.01), and in group E than in group C (150.476 pg/mL ± 48.589 pg/mL vs 331.538 pg/mL ± 79.102 pg/mL, P < 0.01). The content of 6-K-PGF1α was significantly higher in group D than in group B (72.242 pg/mL ± 12.413 pg/mL vs 52.015 pg/mL ± 11.827 pg/mL, P < 0.01), and in group E than in group C (87.426 pg/mL ± 15.833 pg/mL vs 44.726 pg/mL ± 18.867 pg/mL, P < 0.01). The ratio of TXB2/6-K-PGF1α was significantly lower in group D than in group B (2.283 ± 0.705 vs 5.128 ± 1.788, P < 0.01), and in group E than in group C (2.250 ± 1.035 vs 8.599 ± 4.157, P < 0.01).
CONCLUSION: Adaptive training can significantly reduce the gastric mucosal damage caused by high +Gz via mechanisms possibly related to the increase in PGI2 content, decrease in TXA2 content and reduction of the TXA2/PGI2 ratio.
Collapse
|
18
|
Fedirko V, Bradshaw PT, Figueiredo JC, Sandler RS, Barry EL, Ahnen DJ, Milne GL, Bresalier RS, Baron JA. Urinary metabolites of prostanoids and risk of recurrent colorectal adenomas in the Aspirin/Folate Polyp Prevention Study (AFPPS). Cancer Prev Res (Phila) 2015; 8:1061-8. [PMID: 26304466 DOI: 10.1158/1940-6207.capr-15-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022]
Abstract
Aspirin has been shown to protect against colorectal neoplasms; however, the optimal chemopreventive dose and underlying mechanisms are unclear. We aimed to study the relationship between prostanoid metabolites and aspirin's effect on adenoma occurrence. We used data from the Aspirin/Folate Polyp Prevention Study, in which 1,121 participants with a recent adenoma were randomized to placebo or two doses of aspirin (81 or 325 mg/d) to be taken until the next surveillance colonoscopy, anticipated about 3 years later. Urinary metabolites of prostanoids (PGE-M, PGI-M, and dTxB2) were measured using liquid chromatography/mass spectrometry or GC/NICI-MS in 876 participants near the end of treatment follow-up. Poisson regression with a robust error variance was used to calculate relative risks and 95% confidence intervals. PGE-M, PGI-M, and dTxB2 levels were 28%, 37%, and 60% proportionately lower, respectively, in individuals who took 325 mg of aspirin compared with individuals who took placebo (all P < 0.001). Similarly, among individuals who took 81 mg of aspirin, PGE-M, PGI-M, and dTxB2 were, respectively, 18%, 30%, and 57% proportionally lower compared with placebo (all P < 0.005). None of the metabolites or their ratios were statistically significantly associated with the risk of adenoma occurrence. The effect of aspirin in reducing adenoma risk was independent of prostanoid levels. Aspirin use is associated with lower levels of urinary prostanoid metabolites. However, our findings do not support the hypothesis that these metabolites are associated with adenoma occurrence, suggesting that COX-dependent mechanisms may not completely explain the chemopreventive effect of aspirin on colorectal neoplasms.
Collapse
Affiliation(s)
- Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| | - Patrick T Bradshaw
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert S Sandler
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Dennis J Ahnen
- Department of Veterans Affairs Medical Center, Denver, Colorado
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Robert S Bresalier
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
19
|
A New Ligustrazine Derivative-Selective Cytotoxicity by Suppression of NF-κB/p65 and COX-2 Expression on Human Hepatoma Cells. Part 3. Int J Mol Sci 2015; 16:16401-13. [PMID: 26193270 PMCID: PMC4519956 DOI: 10.3390/ijms160716401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023] Open
Abstract
A new anticancer ligustrazine derivative, 3β-hydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methylester (T-OA, C38H58O3N2), was previously reported. It was synthesized via conjugating hepatoprotective and anticancer ingredients of traditional Chinese medicine. We found that T-OA exerted its anticancer activity by preventing the expression of nuclear transcription factor NF-κB/p65 and COX-2 in S180 mice. However, the selective cytotoxicity of T-OA on various kinds of cell lines has not been studied sufficiently. In the present study, compared with Cisplatin, T-OA was more toxic to human hepatoma cell line Bel-7402 (IC50 = 6.36 ± 1.56 µM) than other three cancer cell lines (HeLa, HT-29, BGC-823), and no toxicity was observed toward Madin–Darby canine kidney cell line MDCK (IC50 > 150 µM). The morphological changes of Bel-7402 cells demonstrated that T-OA had an apoptosis-inducing effect which had been substantiated using 4ʹ,6-diamidino-2-phenylindole (DAPI) staining, acridine orange (AO)/ethidium bromide (EB) staining, flow cytometry and mitochondrial membrane potential assay. Combining the immumohistochemical staining, we found T-OA could prevent the expression of NF-κB/p65 and COX-2 in Bel-7402 cells. Both of the proteins have been known to play roles in apoptosis and are mainly located in the nuclei. Moreover subcellular localization was performed to reveal that T-OA exerts in nuclei of Bel-7402 cells. The result was in accordance with the effects of down-regulating the expression of NF-κB/p65 and COX-2.
Collapse
|
20
|
TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience 2015; 2:555-66. [PMID: 26097888 PMCID: PMC4468341 DOI: 10.18632/oncoscience.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/17/2015] [Indexed: 02/06/2023] Open
Abstract
Truncating mutations in the tumor suppressor gene adenomatous polyposis coli (APC) are the initiating step in the vast majority of sporadic colorectal cancers, and they underlie familial adenomatous polyposis (FAP) syndromes. Modeling of APC- driven tumor formation in the mouse has contributed substantially to our mechanistic understanding of the associated disease, but additional models are needed to explore therapeutic opportunities and overcome current limitations of mouse models. We report on a novel and penetrant genetic cancer model in Xenopus tropicalis, an aquatic tetrapod vertebrate with external development, diploid genome and short life cycle. Tadpoles and froglets derived from embryos injected with TAL effector nucleases targeting the apc gene rapidly developed intestinal hyperplasia and other neoplasms observed in FAP patients, including desmoid tumors and medulloblastomas. Bi-allelic apc mutations causing frame shifts were detected in the tumors, which displayed activation of the Wnt/β-catenin pathway and showed increased cellular proliferation. We further demonstrate that simultaneous double bi-allelic mutation of apc and a non-relevant gene is possible in the neoplasias, opening the door for identification and characterization of effector or modifier genes in tumors expressing truncated apc. Our results demonstrate the power of modeling human cancer in Xenopus tropicalis using mosaic TALEN-mediated bi-allelic gene disruption.
Collapse
|
21
|
Canolol inhibits gastric tumors initiation and progression through COX-2/PGE2 pathway in K19-C2mE transgenic mice. PLoS One 2015; 10:e0120938. [PMID: 25781635 PMCID: PMC4363315 DOI: 10.1371/journal.pone.0120938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
4-vinyl-2, 6-dimethoxyphenol (canolol) is an antioxidant phenolic compound extracted from crude canola oil. In current research, K19-C2mE transgenic mice, developing hyperplastic tumors spontaneously in the glandular stomach, were used to study the mechanisms involved in the anti-inflammation and anti-tumor effects of canolol. Tg mice receiving canolol diet had a reduced tumor incidence, to 41.2%, compared with Non-treatment Tg mice, 77.8% of which had gastric tumor (P=0.002). Besides that, the mean tumor diameter was decreased from 6.5mm to 4.5mm (P<0.001) after canolol administration. COX-2/PGE2 pathway is known to play pivotal role in inflammation-induced gastric tumorigenesis. The neutrophils and lymphocytes infiltration was suppressed significantly, and the mRNA levels of the proinflammatory cytokines COX-2, IL-1β and IL-12b were also downregulated in gastric mucosa. Additionally, immunohistochemical analysis showed that COX-2, EP2, Gαs and β-catenin, key factors involving in PGE2 signal transduction, were positive staining with higher H scores in Non-treatment Tg mice, while the expressions were suppressed significantly by 0.1% canolol (P<0.001). In addition, tumor-suppressor miR-7 was reactivated after canolol administration, and COX-2 was showed to be a functional target of miR-7 to suppress the tumor progression. In conclusion, canolol could inhibit the gastritis-related tumor initiation and progression, and the suppression effect was correlated with the blocking up of canonical COX-2/PGE2 signaling pathway and might be regulated by miR-7.
Collapse
|
22
|
The role of the mediators of inflammation in cancer development. Pathol Oncol Res 2015; 21:527-34. [PMID: 25740073 DOI: 10.1007/s12253-015-9913-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Epigenetic disorders such as point mutations in cellular tumor suppressor genes, DNA methylation and post-translational modifications are needed to transformation of normal cells into cancer cells. These events result in alterations in critical pathways responsible for maintaining the normal cellular homeostasis, triggering to an inflammatory response which can lead the development of cancer. The inflammatory response is a universal defense mechanism activated in response to an injury tissue, of any nature, that involves both innate and adaptive immune responses, through the collective action of a variety of soluble mediators. Many inflammatory signaling pathways are activated in several types of cancer, linking chronic inflammation to tumorigenesis process. Thus, Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, growth, invasion, and metastasis, affecting also the immune surveillance. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. A range of inflammation mediators, including cytokines, chemokines, free radicals, prostaglandins, growth and transcription factors, microRNAs, and enzymes as, cyclooxygenase and matrix metalloproteinase, collectively acts to create a favorable microenvironment for the development of tumors. In this review are presented the main mediators of the inflammatory response and discussed the likely mechanisms through which, they interact with each other to create a condition favorable to development of cancer.
Collapse
|
23
|
Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S, Habu N, Otsuka K, Sato Y, Watanabe Y, Ozawa H, Tomita T, Kameyama K, Fujii M, Ogawa K. Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:40. [PMID: 24887090 PMCID: PMC4030015 DOI: 10.1186/1756-9966-33-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/03/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) accompanied by the downregulation of E-cadherin has been thought to promote metastasis. Cyclooxygenase-2 (Cox-2) is presumed to contribute to cancer progression through its multifaceted function, and recently its inverse relationship with E-cadherin was suggested. The aim of the present study was to investigate whether selective Cox-2 inhibitors restore the expression of E-cadherin in head and neck squamous cell carcinoma (HNSCC) cells, and to examine the possible correlations of the expression levels of EMT-related molecules with clinicopathological factors in HNSCC. METHODS We used quantitative real-time PCR to examine the effects of three selective Cox-2 inhibitors, i.e., celecoxib, NS-398, and SC-791 on the gene expressions of E-cadherin (CDH-1) and its transcriptional repressors (SIP1, Snail, Twist) in the human HNSCC cell lines HSC-2 and HSC-4. To evaluate the changes in E-cadherin expression on the cell surface, we used a flowcytometer and immunofluorescent staining in addition to Western blotting. We evaluated and statistically analyzed the clinicopathological factors and mRNA expressions of Cox-2, CDH-1 and its repressors in surgical specimens of 40 patients with tongue squamous cell carcinoma (TSCC). RESULTS The selective Cox-2 inhibitors upregulated the E-cadherin expression on the cell surface of the HNSCC cells through the downregulation of its transcriptional repressors. The extent of this effect depended on the baseline expression levels of both E-cadherin and Cox-2 in each cell line. A univariate analysis showed that higher Cox-2 mRNA expression (p = 0.037), lower CDH-1 mRNA expression (p = 0.020), and advanced T-classification (p = 0.036) were significantly correlated with lymph node metastasis in TSCC. A multivariate logistic regression revealed that lower CDH-1 mRNA expression was the independent risk factor affecting lymph node metastasis (p = 0.041). CONCLUSIONS These findings suggest that the appropriately selective administration of certain Cox-2 inhibitors may have an anti-metastatic effect through suppression of the EMT by restoring E-cadherin expression. In addition, the downregulation of CDH-1 resulting from the EMT may be closely involved in lymph node metastasis in TSCC.
Collapse
Affiliation(s)
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bravo S, Núñez F, Cruzat F, Cafferata EG, De Ferrari GV, Montecino M, Podhajcer OL. Enhanced CRAd activity using enhancer motifs driven by a nucleosome positioning sequence. Mol Ther 2013; 21:1403-12. [PMID: 23712038 PMCID: PMC3702098 DOI: 10.1038/mt.2013.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/10/2013] [Indexed: 01/13/2023] Open
Abstract
Cancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd. pART enhanced the transcriptional activity of the gastrointestinal cancer (GIC)-specific REG1A promoter (REG1A-pr); moreover, pART also increased the in vitro lytic activity of a CRAd whose replication was driven by REG1A-Pr. The pART enhancer effect in vitro and in vivo was strictly dependent on the presence of the NPS. Indeed, deletion of the NPS was strongly deleterious for the in vivo antitumor efficacy of the CRAd on orthotopically established pancreatic xenografts. pART also enhanced the specific activity of other heterologous promoters; moreover, the NPS was also able to enhance the responsiveness of hypoxia- and NFκB-response elements. We conclude that NPS could be useful for gene therapy approaches in cancer as well as other diseases.
Collapse
Affiliation(s)
- Soraya Bravo
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Felipe Núñez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Fernando Cruzat
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Giancarlo V De Ferrari
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Centro de Investigaciones Biomédicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
25
|
Keinan D, Leigh NJ, Nelson JW, De Oleo L, Baker OJ. Understanding resolvin signaling pathways to improve oral health. Int J Mol Sci 2013; 14:5501-18. [PMID: 23528855 PMCID: PMC3634469 DOI: 10.3390/ijms14035501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022] Open
Abstract
The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity.
Collapse
Affiliation(s)
- David Keinan
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mail:
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Noel J. Leigh
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Joel W. Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Laura De Oleo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Olga J. Baker
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
- To whom correspondence should be addressed; E-Mail: ; Tel.: +1-716-829-3667; Fax: +1-716-829-3942
| |
Collapse
|
26
|
Flesch D, Merk D, Lamers C, Schubert-Zsilavecz M. Novel prostaglandin receptor modulators – Part II: EP receptor modulators; a patent review (2002 – 2012). Expert Opin Ther Pat 2013; 23:233-67. [DOI: 10.1517/13543776.2013.744822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Lamers C, Flesch D, Schubert-Zsilavecz M, Merk D. Novel prostaglandin receptor modulators: a patent review (2002 – 2012) – part I: non-EP receptor modulators. Expert Opin Ther Pat 2012; 23:47-77. [DOI: 10.1517/13543776.2013.736495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther 2012; 137:200-15. [PMID: 23064233 DOI: 10.1016/j.pharmthera.2012.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cancer is not only composed malignant epithelial component but also stromal components such as fibroblasts, endothelial cells, and inflammatory cells, by which an appropriate tumor microenvironment (TME) is formed to promote tumorigenesis, progression, and metastasis. As the most abundant component in the TME, cancer-associated fibroblasts (CAFs) are involved in multifaceted mechanistic details including remodeling the extracellular matrix, suppressing immune responses, and secreting growth factors and cytokines that mediate signaling pathways to extensively affect tumor cell growth and invasiveness, differentiation, angiogenesis, and chronic inflammatory milieu. Today, more and more therapeutic strategies are purposefully designed to target the TME as well as tumor cells. This review will focus on the role of CAFs in tumor development and the novel strategies to target this component to inhibit the tumor growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, State Key Laboratory of Tumor Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | |
Collapse
|
29
|
Booth L, Cazanave SC, Hamed HA, Yacoub A, Ogretmen B, Chen CS, Grant S, Dent P. OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing. Cancer Biol Ther 2012; 13:224-36. [PMID: 22354011 DOI: 10.4161/cbt.13.4.18877] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have further defined mechanism(s) by which the drug OSU-03012 (OSU) kills tumor cells. OSU lethality was suppressed by knock down of PERK and enhanced by knock down of ATF6 and IRE1α. OSU treatment suppressed expression of the chaperone, BiP/GRP78, and did so through reduced stability of the protein. Knock down of BiP/GRP78 further enhanced OSU lethality. Overexpression of BiP/GRP78 abolished OSU toxicity. Pre-treatment of cells with OSU enhanced radiosensitivity to a greater extent than concomitant or sequential drug treatment with radiation exposure. Expression of a mutant active p110 PI3K, or mutant active forms of the EGFR in GBM cells did not differentially suppress OSU killing. In contrast loss of PTEN function reduced OSU lethality, without altering AKT, p70 S6K or mTOR activity, or the drug's ability to radiosensitize GBM cells. Knock down of PTEN protected cells from OSU and radiation treatment whereas re-expression of PTEN facilitated drug lethality and radiosensitization. In a dose-dependent fashion OSU prolonged the survival of mice carrying GBM tumors and interacted with radiotherapy to further prolong survival. Collectively, our data show that reduced BiP/GRP78 levels play a key role in OSU-3012 toxicity in GBM cells, and that this drug has in vivo activity against an invasive primary human GBM isolate.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 2012; 11:25. [PMID: 22333072 PMCID: PMC3295719 DOI: 10.1186/1476-511x-11-25] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022] Open
Abstract
Considerable arguments remain regarding the diverse biological activities of polyunsaturated fatty acids (PUFA). One of the most interesting but controversial dietary approaches focused on the diverse function of dihomo-dietary γ-linolenic acid (DGLA) in anti-inflammation and anti-proliferation diseases, especially for cancers. This strategy is based on the ability of DGLA to interfere in cellular lipid metabolism and eicosanoid (cyclooxygenase and lipoxygenase) biosynthesis. Subsequently, DGLA can be further converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1 (PGE1). This is noteworthy because these compounds possess both anti-inflammatory and anti-proliferative properties. PGE1 could also induce growth inhibition and differentiation of cancer cells. Although the mechanism of DGLA has not yet been elucidated, it is significant to anticipate the antitumor potential benefits from DGLA.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China.
| | | | | |
Collapse
|