1
|
Godet I, Oza HH, Shi Y, Joe NS, Weinstein AG, Johnson J, Considine M, Talluri S, Zhang J, Xu R, Doctorman S, Mbulaiteye D, Stein-O'Brien G, Kagohara LT, Santa-Maria CA, Fertig EJ, Gilkes DM. Hypoxia induces ROS-resistant memory upon reoxygenation in vivo promoting metastasis in part via MUC1-C. Nat Commun 2024; 15:8416. [PMID: 39341835 PMCID: PMC11438863 DOI: 10.1038/s41467-024-51995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Hypoxia occurs in 90% of solid tumors and is associated with metastasis and mortality. Breast cancer cells that experience intratumoral hypoxia are 5x more likely to develop lung metastasis in animal models. Using spatial transcriptomics, we determine that hypoxic cells localized in more oxygenated tumor regions (termed 'post-hypoxic') retain expression of hypoxia-inducible and NF-kB-regulated genes, even in the oxygen-rich bloodstream. This cellular response is reproduced in vitro under chronic hypoxic conditions followed by reoxygenation. A subset of genes remains increased in reoxygenated cells. MUC1/MUC1-C is upregulated by both HIF-1α and NF-kB-p65 during chronic hypoxia. Abrogating MUC1 decreases the expression of superoxide dismutase enzymes, causing reactive oxygen species (ROS) production and cell death. A hypoxia-dependent genetic deletion of MUC1, or MUC1-C inhibition by GO-203, increases ROS levels in circulating tumor cells (CTCs), reducing the extent of metastasis. High MUC1 expression in tumor biopsies is associated with recurrence, and MUC1+ CTCs have lower ROS levels than MUC1- CTCs in patient-derived xenograft models. This study demonstrates that therapeutically targeting MUC1-C reduces hypoxia-driven metastasis.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie S Joe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa G Weinstein
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, The Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Jeanette Johnson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Considine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swathi Talluri
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingyuan Zhang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, The Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Reid Xu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Steven Doctorman
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Delma Mbulaiteye
- NIDDK STEP-UP Program, National Institutes of Health, Bethesda, USA
| | - Genevieve Stein-O'Brien
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cesar A Santa-Maria
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA.
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Fadıloğlu M, Bozkurt AS, Akarsu E, Yilmaz ŞG, Sayiner ZA, Ulusal H. Evaluation of mucin-1, nuclear factor κB, and hemoglobin A1c levels in obese and non-obese individuals. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231214. [PMID: 38716942 PMCID: PMC11068388 DOI: 10.1590/1806-9282.20231214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Obesity is a chronic multisystem disease associated with increased morbidity and mortality. Obesity, which is a complex, multifactorial, and heterogeneous condition, is thought to result from the interaction of environmental, physiological, and genetic factors. In this study, the relationship between serum levels of hemoglobin A1c, mucin-1, and nuclear factor κB in obese and healthy cohorts was evaluated along with biochemical and gene expressions and with demographic and clinical covariates, and their effects on obesity were evaluated. METHODS This case-control study included a total of 80 individuals, 40 healthy controls and 40 obesity patients, consisting of female and male aged between 18 and 63 years. Hemoglobin A1c, mucin-1, and nuclear factor κB levels were determined by ELISA in serum samples obtained from patients. In addition, aspartate aminotransferase, alanine transaminase, low density lipoprotein, and glucose values were measured. The gene expressions of the same markers were analyzed by quantitative real-time polymerase chain reaction, and their regulation status was defined. RESULTS Serum levels of hemoglobin A1c, mucin-1, and nuclear factor κB were found to be high in obese individuals (p<0.05). The gene expression of these serum markers was found to be upregulated. Of the anthropometric measurements, waist circumference and body mass index were correlated with both serum markers and gene expressions (p<0.05). CONCLUSION In addition to the known association of hemoglobin A1c and nuclear factor κB with obesity, serum levels of mucin-1 as well as upregulation of genes point to its modifier effect on obesity. These parameters can be the powerful markers in the diagnosis of obesity.
Collapse
Affiliation(s)
- Müjde Fadıloğlu
- Gaziantep University, Medicine Faculty, Department of Physiology – Gaziantep, Turkey
| | - Ahmet Sarper Bozkurt
- Gaziantep University, Medicine Faculty, Department of Physiology – Gaziantep, Turkey
| | - Ersin Akarsu
- Gaziantep University, Medicine Faculty, Department of Endocrinology and Metabolism – Gaziantep, Turkey
| | - Şenay Görücü Yilmaz
- Gaziantep University, Faculty of Health Sciences, Department of Nutrition and Dietetics – Gaziantep, Turkey
| | - Zeynel Abidin Sayiner
- Gaziantep University, Medicine Faculty, Department of Endocrinology and Metabolism – Gaziantep, Turkey
| | - Hasan Ulusal
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry – Gaziantep, Turkey
| |
Collapse
|
3
|
Zhao A, Pan Y, Gao Y, Zhi Z, Lu H, Dong B, Zhang X, Wu M, Zhu F, Zhou S, Ma S. MUC1 promotes cervical squamous cell carcinoma through ERK phosphorylation-mediated regulation of ITGA2/ITGA3. BMC Cancer 2024; 24:559. [PMID: 38702644 PMCID: PMC11069143 DOI: 10.1186/s12885-024-12314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.
Collapse
Affiliation(s)
- Aiqin Zhao
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215131, China
| | - Yingyin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zheng Zhi
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China
| | - Haiying Lu
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Bei Dong
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Xuan Zhang
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Meiying Wu
- Department of Tuberculosis, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215131, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sufang Zhou
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, 215129, China.
| | - Sai Ma
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
- Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
4
|
Murthy D, Attri KS, Suresh V, Rajacharya GH, Valenzuela CA, Thakur R, Zhao J, Shukla SK, Chaika NV, LaBreck D, Rao CV, Hollingsworth MA, Mehla K, Singh PK. The MUC1-HIF-1α signaling axis regulates pancreatic cancer pathogenesis through polyamine metabolism remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315509121. [PMID: 38547055 PMCID: PMC10998584 DOI: 10.1073/pnas.2315509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Kuldeep S. Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Voddu Suresh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Girish H. Rajacharya
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Carlos A. Valenzuela
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Junzhang Zhao
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Surendra K. Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Nina V. Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Drew LaBreck
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Chinthalapally V. Rao
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
5
|
Yang Q, Deng S, Preibsch H, Schade T, Koch A, Berezhnoy G, Zizmare L, Fischer A, Gückel B, Staebler A, Hartkopf AD, Pichler BJ, la Fougère C, Hahn M, Bonzheim I, Nikolaou K, Trautwein C. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med 2024; 14:e1550. [PMID: 38332687 PMCID: PMC10853679 DOI: 10.1002/ctm2.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.
Collapse
Affiliation(s)
- Qianlu Yang
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Sisi Deng
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Heike Preibsch
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Tim‐Colin Schade
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - André Koch
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Georgy Berezhnoy
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Anna Fischer
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Brigitte Gückel
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Annette Staebler
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | | | - Bernd J. Pichler
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTuebingenGermany
| | - Markus Hahn
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Irina Bonzheim
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christoph Trautwein
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| |
Collapse
|
6
|
Chumak V, Rajacharya GH, Singh PK. Metabolomic Investigations into Hypoxia-Mediated Metabolic Reprogramming of Pancreatic Cancer Cells. Methods Mol Biol 2024; 2755:191-200. [PMID: 38319579 PMCID: PMC10915399 DOI: 10.1007/978-1-0716-3633-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia is a crucial microenvironmental factor that defines tumor cell growth and aggressiveness. Cancer cells adapt to hypoxia by altering their metabolism. These alterations impact various cellular and physiological functions, including energy metabolism, vascularization, invasion and metastasis, genetic instability, cell immortalization, stem cell maintenance, and resistance to chemotherapy (Li et al. Technol Cancer Res Treat 20:15330338211036304, 2021). Hypoxia-inducible factor-1α (HIF-1α) is known to be a critical regulator of glycolysis that directly regulates the transcription of multiple key enzymes of the glycolysis pathway. Moreover, HIF-1α stabilization can be directly modulated by TCA-derived metabolites, including 2-ketoglutarate and succinate (Infantino et al, Int J Mol Sci 22(22), https://doi.org/10.3390/ijms22115703 , 2021). Overall, the molecular mechanisms underlying the adaptation of cellular metabolism to hypoxia impact the metabolic phenotype of cancer cells. Such adaptations include increased glucose uptake, increased lactate production, and increased levels of other metabolites that stabilize HIF-1α, leading to a vicious circle of hypoxia-induced tumor growth.
Collapse
Affiliation(s)
- Vira Chumak
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Girish H Rajacharya
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pankaj K Singh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Cockey SG, Xu H, Al-Jumayli M. Elevation of cancer antigen 15-3 owing to oncocytic renal neoplasm in a patient without evidence of breast cancer recurrence on follow-up: a case report. J Med Case Rep 2023; 17:526. [PMID: 38062521 PMCID: PMC10701971 DOI: 10.1186/s13256-023-04088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer antigen 15-3 is a protein that clinicians commonly measure to monitor outcomes and response to treatment in patients with breast cancer. However, cancer antigen 15-3 can also be elevated in other, benign and malignant conditions. CASE PRESENTATION A 73-year-old White woman with history of breast cancer presented to her primary care physician with right hip pain, and laboratory testing revealed elevated cancer antigen 15-3. Further workup with radiographic imaging revealed a large mass in her right kidney. The renal mass was subsequently removed, and the cancer antigen 15-3 level returned to normal. CONCLUSIONS Elevation of cancer antigen 15-3 owing to causes other than breast cancer recurrence can be a potential diagnostic pitfall during a patient's follow-up. It is important for clinicians to be aware of the limitations of cancer markers and to utilize a combination of diagnostic tests for patient evaluation.
Collapse
Affiliation(s)
- Samuel G Cockey
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hongzhi Xu
- Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
8
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
9
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
10
|
MUC1 Tissue Expression and Its Soluble Form CA15-3 Identify a Clear Cell Renal Cell Carcinoma with Distinct Metabolic Profile and Poor Clinical Outcome. Int J Mol Sci 2022; 23:ijms232213968. [PMID: 36430448 PMCID: PMC9696833 DOI: 10.3390/ijms232213968] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
An altered metabolism is involved in the development of clear cell renal carcinoma (ccRCC). MUC1 overexpression has been found to be associated with advanced disease and poor prognosis. In this study, we evaluated the metabolomic profile of human ccRCC, according to MUC1 expression, and integrated it with transcriptomic data. Moreover, we analyzed the role of MUC1 in sustaining ccRCC aggressiveness and the prognostic value of its soluble form CA15-3. Integrated metabolomic and transcriptomic analysis showed that MUC1-expressing ccRCC was characterized by metabolic reprogramming involving the glucose and lipid metabolism pathway. In addition, primary renal cancer cells treated with a small interfering RNA targeting MUC1 (siMUC1) migrated and proliferated at a slower rate than untreated cancer cells. After cisplatin treatment, the death rate of cancer cells treated with siMUC1 was significantly greater than that of untreated cells. Kaplan-Meier curves showed significant differences in CSS and PFS among groups of patients with high versus low levels of CA15-3. In a multivariate analysis, CA15-3 was an independent adverse prognostic factor for cancer-specific and progression-free survival. In conclusion, MUC1 expressing ccRCC is characterized by a particular metabolic reprogramming. The inhibition of MUC1 expression decreases cell motility and viability and improves cisplatin susceptibility, suggesting that this pathway can regulate de novo chemotherapy resistance in ccRCC.
Collapse
|
11
|
Pang Z, Dong X, Deng H, Wang C, Liao X, Liao C, Liao Y, Tian W, Cheng J, Chen G, Yi H, Huang L. MUC1 triggers lineage plasticity of Her2 positive mammary tumors. Oncogene 2022; 41:3064-3078. [DOI: 10.1038/s41388-022-02320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
|
12
|
Yu Z, Huang S, Li Y, Niu Y, Chen H, Wu J. Milk Fat Globule Membrane Alleviates Short Bowel Syndrome-Associated Liver Injury in Rats Through Inhibiting Autophagy and NLRP3 Inflammasome Activation. Front Nutr 2022; 9:758762. [PMID: 35308293 PMCID: PMC8931399 DOI: 10.3389/fnut.2022.758762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background The milk fat globule membrane (MFGM), a tri-layer membrane structure surrounding the milk fat globule, has been shown to have immune-modulating properties. This study aimed to investigate the effects of MFGM supplementation in a rat model of short bowel syndrome (SBS) associated liver disease and its possible mechanisms. Materials and Methods Twenty one male Sprague-Dawley rats were randomly divided into three groups: Sham, SBS (underwent massive small bowel resection), and SBS+MFGM (SBS rats supplemented with 1.5 g/kg/d MFGM). Liver pathology, myeloperoxidase (MPO) staining, serum levels of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), endotoxin concentration, protein expression of autophagy and nucleotide binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) pathway in the liver tissue were measured. Results Both SBS and SBS + MFGM groups had higher serum levels of ALT and liver endotoxin levels than the Sham group (P < 0.05), with no difference detected between each other. Compared with the SBS group, the SBS+MFGM group showed lower liver pathology scores of steatosis and inflammation, less MPO positive cells and reduced expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, interleukin (IL)-1β(P < 0.05) in the liver. Additionally, the expression of Beclin-1 and microtubule-associated protein1 light chain 3(LC3) B, the fluorescence intensity of NLRP3 and LC3B in the SBS + MFGM group were lower than the SBS group (P < 0.05). The LC3B expression was positively correlated with the NLRP3 level. Conclusion Enteral supplementation of MFGM help to alleviate liver injury in SBS rats, which might be related to inhibition of aberrant activation of autophagy and NLRP3 inflammasome pathways.
Collapse
Affiliation(s)
- Zhicai Yu
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shanshan Huang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Li
- Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Yang Niu
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Honghao Chen
- Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Jiang Wu
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- *Correspondence: Jiang Wu
| |
Collapse
|
13
|
Goodwin PJ, Dowling RJO, Ennis M, Chen BE, Parulekar WR, Shepherd LE, Gelmon KA, Whelan TJ, Ligibel JA, Hershman DL, Mayer IA, Hobday TJ, Rastogi P, Rabaglio-Poretti M, Lemieux J, Thompson AM, Rea DW, Stambolic V. Cancer Antigen 15-3/Mucin 1 Levels in CCTG MA.32: A Breast Cancer Randomized Trial of Metformin vs Placebo. JNCI Cancer Spectr 2021; 5:pkab066. [PMID: 34485814 PMCID: PMC8410139 DOI: 10.1093/jncics/pkab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background Circulating levels of cancer antigen (CA) 15-3, a tumor marker and regulator of cellular metabolism, were reduced by metformin in a nonrandomized neoadjuvant study. We examined the effects of metformin (vs placebo) on CA 15-3 in participants of MA.32, a phase III randomized trial in early-stage breast cancer. Methods A total of 3649 patients with T1-3, N0-3, M0 breast cancer were randomly assigned; pretreatment and 6-month on-treatment fasting plasma were centrally assayed for CA 15-3. Genomic DNA was analyzed for the rs11212617 single nucleotide polymorphism. Absolute and relative change of CA 15-3 (metformin vs placebo) were compared using Wilcoxon rank and t tests. Regression models adjusted for baseline differences and assessed key interactions. All statistical tests were 2-sided. Results Mean (SD) age was 52.4 (10.0) years. The majority of patients had T2/3, node-positive, hormone receptor-positive, HER2-negative breast cancer treated with (neo)adjuvant chemotherapy and hormone therapy. Mean (SD) baseline CA 15-3 was 17.7 (7.6) and 18.0 (8.1 U/mL). At 6 months, CA 15-3 was statistically significantly reduced in metformin vs placebo arms (absolute geometric mean reduction in CA 15-3 = 7.7% vs 2.0%, P < .001; relative metformin: placebo level of CA 15-3 [adjusted for age, baseline body mass index, and baseline CA 15-3] = 0.94, 95% confidence interval = 0.92 to 0.96). This reduction was independent of tumor characteristics, perioperative systemic therapy, baseline body mass index, insulin, and the single nucleotide polymorphism status (all Ps > .11). Conclusions Our observation that metformin reduces CA 15-3 by approximately 6% was corroborated in a large placebo-controlled randomized trial. The clinical implications of this reduction in CA 15-3 will be explored in upcoming efficacy analyses of breast cancer outcomes in MA.32.
Collapse
Affiliation(s)
- Pamela J Goodwin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Bingshu E Chen
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Wendy R Parulekar
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Lois E Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Karen A Gelmon
- University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada
| | - Timothy J Whelan
- McMaster University, Juravinski Cancer Centre, Hamilton, ON, Canada
| | | | - Dawn L Hershman
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, NY, USA
| | | | | | - Priya Rastogi
- NRG Oncology and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Manuela Rabaglio-Poretti
- IBCSG and Department of Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | - Daniel W Rea
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Vuk Stambolic
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.
Collapse
Affiliation(s)
- Dong-Han Wi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon 22212, Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
15
|
Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 2021; 40:575-588. [PMID: 33813658 DOI: 10.1007/s10555-021-09959-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Collapse
|
16
|
Kurashige T, Takahashi T, Nagano Y, Sugie K, Maruyama H. Krebs von den Lungen 6 decreased in the serum and muscle of GNE myopathy patients. Neuropathology 2020; 41:29-36. [PMID: 33225515 PMCID: PMC7983952 DOI: 10.1111/neup.12703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
UDP‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase (GNE) is necessary for sialic acid biosynthesis. GNE myopathy is caused by a defect in GNE, and hyposialylation is a key factor in the pathomechanism of GNE myopathy. Although candidates for evaluating hyposialylation have been reported, it is difficult to measure them in routine clinical practice. Sialylation is necessary for synthesis of various glycoproteins, including Krebs von den Lungen‐6 (KL‐6)/mucin 1 (MUC1). Here we report that KL‐6/MUC1 is decreased in GNE myopathy. We observed that KL‐6 levels were decreased in the serum of patients with GNE myopathy, and that KL‐6 and MUC1‐C were also decreased in muscle biopsy specimens from these patients. An immunofluorescent study revealed that KL‐6 and MUC1‐C were not present in the sarcolemma but were, instead, localized in rimmed vacuoles in specimens from patients with GNE myopathy. KL‐6 is already used to detect lung diseases in clinical practice, and this glycoprotein may be a novel candidate for evaluating hyposialylation in GNE myopathy.
Collapse
Affiliation(s)
- Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan.,Department of Clinical Neuroscience and Therapeutics, Division of Applied Life Science, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Division of Applied Life Science, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshito Nagano
- Department of Clinical Neuroscience and Therapeutics, Division of Applied Life Science, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Division of Applied Life Science, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
17
|
GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/β-catenin pathway in cholangiocarcinoma. Cell Death Dis 2020; 11:860. [PMID: 33060563 PMCID: PMC7567063 DOI: 10.1038/s41419-020-03070-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
GATA6 acts as an oncogene or tumour suppressor in different cancers. Previously, we found that aberrant expression of GATA6 promoted metastasis in cholangiocarcinoma (CCA). However, the mechanism by which GATA6 promotes metastasis in CCA is unclear. In the present study, we aimed to investigate the role of GATA6 in CCA cell epithelial–mesenchymal transition (EMT). Our results showed that GATA6 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. GATA6 promoted EMT and metastasis in CCA cells in vitro and in vivo based on knockdown and overexpression analyses. ChIP-sequencing data revealed that MUC1 is a novel downstream target of GATA6. GATA6 upregulated MUC1 expression through binding to both the 1584 and 1456 GATA-motifs in the promoter region and enhancing its transcription by luciferase reporter assays and point-mutant assays. MUC1 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. In addition, MUC1 promoted EMT in CCA cells based on knockdown and overexpression analyses. Moreover, MUC1 knockdown significantly abrogated the GATA6-induced EMT in CCA cells, indicating that MUC1 promoted EMT through upregulating MUC1 in CCA cells. β-Catenin is a putative transcriptional coactivator that regulates EMT in cancers. Our data showed that MUC1 expression was positively associated with nuclear β-catenin expression in 91 CCA samples. MUC1 upregulated nuclear β-catenin expression in CCA cells. Moreover, MUC1 bound to β-catenin in CCA cells based on protein immunoprecipitation analyses. MUC1 knockdown significantly decreased the binding of MUC1 to β-catenin, and thereby decreased nuclear β-catenin protein levels in CCA cells, indicating that MUC1 bound to β-catenin and increased its nuclear expression in CCA cells. Together, our results show that GATA6 promotes EMT through MUC1/β-catenin pathway in CCA, indicating potential implications for anti-metastatic therapy.
Collapse
|
18
|
Wang S, You L, Dai M, Zhao Y. Mucins in pancreatic cancer: A well-established but promising family for diagnosis, prognosis and therapy. J Cell Mol Med 2020; 24:10279-10289. [PMID: 32745356 PMCID: PMC7521221 DOI: 10.1111/jcmm.15684] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Sheng YH, Ng GZ, Summers KM, Every AL, Price G, Hasnain SZ, Sutton P, McGuckin MA. Influence of the MUC1 Cell Surface Mucin on Gastric Mucosal Gene Expression Profiles in Response to Helicobacter pylori Infection in Mice. Front Cell Infect Microbiol 2020; 10:343. [PMID: 32793510 PMCID: PMC7393270 DOI: 10.3389/fcimb.2020.00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
The cell surface mucin MUC1 is an important host factor limiting Helicobacter pylori (H. pylori) pathogenesis in both humans and mice by providing a protective barrier and modulating mucosal epithelial and leukocyte responses. The aim of this study was to establish the time-course of molecular events in MUC1-modulated gene expression profiles in response to H. pylori infection in wild type (WT) and MUC1-deficient mice using microarray-determined mRNA expression, gene network analysis and Ingenuity Pathway Analysis (IPA). A time-course over the first 72 h of infection showed significantly higher mucosal loads of bacteria at 8 h of infection in Muc1−/− mice compared with WT, confirming its importance in the early stages of infection (P = 0.0003). Microarray analysis revealed 266 differentially expressed genes at one or more time-points over 72 h in the gastric mucosa of Muc1−/− mice compared with WT control using a threshold of 2-fold change. The SPINK1 pancreatic cancer canonical pathway was strongly inhibited in Muc1−/− mice compared with WT at sham and 8 h infection (P = 6.08E-14 and P = 2.25 E-19, respectively) but potently activated at 24 and 72 h post-infection (P = 1.38E-22 and P = 5.87E-13, respectively). The changes in this pathway are reflective of higher expression of genes mediating digestion and absorption of lipids, carbohydrates, and proteins at sham and 8 h infection in the absence of MUC1, but that this transcriptional signature is highly down regulated as infection progresses in the absence of MUC1. Uninfected Muc1−/− gastric tissue was highly enriched for expression of factors involved in lipid metabolism and 8 h infection further activated this network compared with WT. As infection progressed, a network of antimicrobial and anti-inflammatory response genes was more highly activated in Muc1−/− than WT mice. Key target genes identified by time-course microarrays were independently validated using RT-qPCR. These results highlight the dynamic interplay between the host and H. pylori, and the role of MUC1 in host defense, and provide a general picture of changes in cellular gene expression modulated by MUC1 in a time-dependent manner in response to H. pylori infection.
Collapse
Affiliation(s)
- Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Garrett Z Ng
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kim M Summers
- Genetics, Genomics & Transcriptomics of Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Alison L Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Gareth Price
- QCIF Facility for Advanced Bioinformatics, Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Philip Sutton
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.,Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Phase II Study of Immunotherapy With Tecemotide and Bevacizumab After Chemoradiation in Patients With Unresectable Stage III Non-Squamous Non-Small-Cell Lung Cancer (NS-NSCLC): A Trial of the ECOG-ACRIN Cancer Research Group (E6508). Clin Lung Cancer 2020; 21:520-526. [PMID: 32807654 DOI: 10.1016/j.cllc.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Although chemoradiotherapy (CRT) is the standard of care for patients with unresectable stage III non-small-cell lung cancer (LA-NSCLC), most patients relapse. Tecemotide is a MUC1 antigen-specific cancer immunotherapy vaccine. Bevacizumab improves survival in advanced nonsquamous (NS)-NSCLC and has a role in immune modulation. This phase II trial tested the combination of tecemotide and bevacizumab following CRT in patients with LA-NSCLC. PATIENTS AND METHODS Subjects with stage III NS-NSCLC suitable for CRT received carboplatin/paclitaxel weekly + 66 Gy followed by 2 cycles of consolidation carboplatin/paclitaxel ≤ 4 weeks of completion of CRT (Step 1). Patients with partial response/stable disease after consolidation therapy were registered onto step 2, which was 6 weekly tecemotide injections followed by every 6 weekly injections and bevacizumab every 3 weeks for up to 34 doses. The primary endpoint was to determine the safety of this regimen. RESULTS Seventy patients were enrolled; 68 patients (median age, 63 years; 56% male; 57% stage IIIA) initiated therapy, but only 39 patients completed CRT and consolidation therapy per protocol, primarily owing to disease progression or toxicity. Thirty-three patients (median age, 61 years; 58% male; 61% stage IIIA) were registered to step 2 (tecemotide + bevacizumab). The median number of step 2 cycles received was 11 (range, 2-25). Step 2 worst toxicity included grade 3, N = 9; grade 4, N = 1; and grade 5, N = 1. Grade 5 toxicity in step 2 was esophageal perforation attributed to bevacizumab. Among the treated and eligible patients (n = 32) who were treated on step 2, the median overall survival was 42.7 months (95% confidence interval, 21.7-63.3 months), and the median progression-free survival was 14.9 months (95% confidence interval, 11.0-20.9 months) from step 1 registration. CONCLUSIONS This cooperative group trial met its endpoint, demonstrating tolerability of bevacizumab + tecemotide after CRT and consolidation. In this selected group of patients, the median progression-free survival and overall survival are encouraging. Given that consolidation immunotherapy is now a standard of care following CRT in patients with LA-NSCLC, these results support a role for continued investigation of antiangiogenic and immunotherapy combinations in LA-NSCLC.
Collapse
|
21
|
AGR2-induced glucose metabolism facilitated the progression of endometrial carcinoma via enhancing the MUC1/HIF-1α pathway. Hum Cell 2020; 33:790-800. [PMID: 32304027 DOI: 10.1007/s13577-020-00356-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Anterior gradient 2 (AGR2) was proved to modulate cancer progression. However, the role of AGR2 on endometrial cancer was not established. Here, we investigated the effects of AGR2 expression on endometrial cancer and explored the regulation mechanism. In the study, we found that AGR2 was overexpressed in tumor tissues of 30 endometrial cancer patients. A high level of AGR2 promoted endometrial cancer cells proliferation, migration and invasion. AGR2 induced the expression of lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), kallikrein 2 (HK2), and enolase 1-α (ENO1), glucose uptake and lactate production. AGR2 could bind to MUC1 and induce MUC1 and hypoxia-inducible factor 1α (HIF-1α). The inhibition effects of AGR2 knockdown on cells proliferation, migration and invasion ability were abolished by the overexpression of MUC1. Besides, the overexpression of MUC1 also reversed the inhibition effects of AGR2 knockdown on the expression of LDHA, HK2, PGK1 and ENO1, glucose uptake and lactate production. AGR2 knockdown inhibited tumor growth, the levels of Ki-67, MUC1, HIF-1α and glycolysis. In conclusion, AGR2 was overexpressed in endometrial cancer and AGR2-induced glucose metabolism facilitated the progression of endometrial carcinoma via the MUC1/HIF-1α pathway. AGR2 may be an effective therapeutic target for endometrial carcinoma.
Collapse
|
22
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020; 19:50. [PMID: 32122374 PMCID: PMC7053123 DOI: 10.1186/s12943-020-01169-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, PR China. .,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, PR China.
| |
Collapse
|
23
|
MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism. Oncogene 2020; 39:3381-3395. [PMID: 32103170 PMCID: PMC7165067 DOI: 10.1038/s41388-020-1225-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The Mucin 1 (MUC1) protein is overexpressed in various cancers and mediates chemotherapy resistance. However, the mechanism is not fully understood. Given that most chemotherapeutic drugs disrupt ER homeostasis as part of their toxicity, and MUC1 expression is regulated by proteins involved in ER homeostasis, we investigated the link between MUC1 and ER homeostasis. MUC1 knockdown in pancreatic cancer cells enhanced unfolded protein response (UPR) signaling and cell death upon ER stress induction. Transcriptomic analysis revealed alterations in the pyrimidine metabolic pathway and cytidine deaminase (CDA). ChIP and CDA activity assays showed that MUC1 occupied CDA gene promoter upon ER stress induction correlating with increased CDA expression and activity in MUC1-expressing cells as compared to MUC1 knockdown cells. Inhibition of either the CDA or pyrimidine metabolic pathway diminished survival in MUC1-expressing cancer cells upon ER stress induction. Metabolomic analysis demonstrated that MUC1-mediated CDA activity corresponded to deoxycytidine to deoxyuridine metabolic reprogramming upon ER stress induction. The resulting increase in deoxyuridine mitigated ER stress-induced cytotoxicity. Additionally, given 1) the established roles of MUC1 in protecting cells against reactive oxygen species (ROS) insults, 2) ER stress-generated ROS further promote ER stress and 3) the emerging anti-oxidant property of deoxyuridine, we further investigated if MUC1 regulated ER stress by a deoxyuridine-mediated modulation of ROS levels. We observed that deoxyuridine could abrogate ROS-induced ER stress to promote cancer cell survival. Taken together, our findings demonstrate a novel MUC1-CDA axis of the adaptive UPR that provides survival advantage upon ER stress induction.
Collapse
|
24
|
Metabolic Alterations in Pancreatic Cancer Progression. Cancers (Basel) 2019; 12:cancers12010002. [PMID: 31861288 PMCID: PMC7016676 DOI: 10.3390/cancers12010002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the USA. Pancreatic tumors are characterized by enhanced glycolytic metabolism promoted by a hypoxic tumor microenvironment and a resultant acidic milieu. The metabolic reprogramming allows cancer cells to survive hostile microenvironments. Through the analysis of the principal metabolic pathways, we identified the specific metabolites that are altered during pancreatic cancer progression in the spontaneous progression (KPC) mouse model. Genetically engineered mice exhibited metabolic alterations during PanINs formation, even before the tumor development. To account for other cells in the tumor microenvironment and to focus on metabolic adaptations concerning tumorigenic cells only, we compared the metabolic profile of KPC and orthotopic tumors with those obtained from KPC-tumor derived cell lines. We observed significant upregulation of glycolysis and the pentose phosphate pathway metabolites even at the early stages of pathogenesis. Other biosynthetic pathways also demonstrated a few common perturbations. While some of the metabolic changes in tumor cells are not detectable in orthotopic and spontaneous tumors, a significant number of tumor cell-intrinsic metabolic alterations are readily detectable in the animal models. Overall, we identified that metabolic alterations in precancerous lesions are maintained during cancer development and are largely mirrored by cancer cells in culture conditions.
Collapse
|
25
|
Metabolic Regulation of Macrophage Polarization in Cancer. Trends Cancer 2019; 5:822-834. [PMID: 31813459 DOI: 10.1016/j.trecan.2019.10.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Macrophages act as scavengers, modulating the immune response against pathogens and maintaining tissue homeostasis. Metabolism governs macrophage differentiation, polarization, mobilization, and the ability to mount an effective antitumor response. However, in cancer, the tumor microenvironment (TME) can actively reprogram macrophage metabolism either by direct exchange of metabolites or through cytokines and other signaling mediators. Thus, metabolic reprogramming holds potential for modulating macrophages and developing new therapeutic approaches. In this review, we provide an overview of macrophage metabolism as it relates to macrophage function and plasticity in cancer.
Collapse
|
26
|
Agrawal B. New therapeutic targets for cancer: the interplay between immune and metabolic checkpoints and gut microbiota. Clin Transl Med 2019; 8:23. [PMID: 31468283 PMCID: PMC6715761 DOI: 10.1186/s40169-019-0241-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Transformation and growth of tumor cells are associated with profound alterations in neighbouring cells and their environment, together forming the tumor microenvironment (TME). The TME provides a conducive but complex milieu for the tumors to thrive while incapacitating the immune cells that home there as part of our natural immunosurveillance mechanism. The orchestration of this successful survival strategy by tumor cells is associated with exploitation of numerous metabolic and immune checkpoints, as well as metabolic reprogramming in the tumor cells. Together these form an intricate network of feedback mechanisms that favor the growing tumor. In addition, an ecosystem of microbiota, proximal or distal to tumors, influences the successful survival or elimination of tumor cells mediated by immune cells. Discovery and clinical application of immune checkpoint inhibitors (ICIs) i.e., monoclonal antibodies (mAbs) blocking specific immune checkpoints CTLA-4 and PD-1/PD-L1, have revolutionized therapy of various cancers. However, they are still associated with limited response rates, severe immune-related adverse events, development of resistance, and more serious exacerbation of cancer progression termed hyper-progressive disease. Checkpoint inhibitors only represent a milestone and not the finish-line in the quest for treating and curing cancer. Efforts are underway to investigate and develop inhibitors of other immune as well as metabolic checkpoint molecules. Future therapy for various cancers is projected to target immune and metabolic checkpoints and the microbiota together.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:218. [PMID: 31122265 PMCID: PMC6533757 DOI: 10.1186/s13046-019-1214-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of cancer metabolism is a newly recognized hallmark of malignancy. The aberrant glucose metabolism is associated with dramatically increased bioenergetics, biosynthetic, and redox demands, which is vital to maintain rapid cell proliferation, tumor progression, and resistance to chemotherapy and radiation. When the glucose metabolism of cancer is rewiring, the characters of cancer will also occur corresponding changes to regulate the chemo- and radio-resistance of cancer. The procedure is involved in the alteration of many activities, such as the aberrant DNA repairing, enhanced autophagy, oxygen-deficient environment, and increasing exosomes secretions, etc. Targeting altered metabolic pathways related with the glucose metabolism has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of glucose metabolism in chemo- and radio-resistance malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Heran Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoyan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
28
|
Gunda V, Kumar S, Dasgupta A, Singh PK. Hypoxia-Induced Metabolomic Alterations in Pancreatic Cancer Cells. Methods Mol Biol 2019; 1742:95-105. [PMID: 29330793 DOI: 10.1007/978-1-4939-7665-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxic conditions in the pancreatic tumor microenvironment lead to the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which acts as the master regulator of cancer cell metabolism. HIF-1α-mediated metabolic reprogramming results in large-scale metabolite perturbations. Characterization of the metabolic intermediates and the corresponding metabolic pathways altered by HIF-1α would facilitate the identification of therapeutic targets for hypoxic microenvironments prevalent in pancreatic ductal adenocarcinoma and other solid tumors. Targeted metabolomic approaches are versatile in quantifying multiple metabolite levels in a single platform and, thus, enable the characterization of multiple metabolite alterations regulated by HIF-1α. In this chapter, we describe a detailed metabolomic approach for characterizing the hypoxia-induced metabolomic alterations using pancreatic cancer cell lines cultured in normoxic and hypoxic conditions. We elaborate the methodology of cell culture, hypoxic exposure, metabolite extraction, and relative quantification of polar metabolites from normoxia- and hypoxia-exposed cell extracts, using a liquid chromatography-coupled tandem mass spectrometry approach. Herein, using our metabolomic data, we also present the methods for metabolomic data representation.
Collapse
Affiliation(s)
- Venugopal Gunda
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Shukla SK, Mulder SE, Singh PK. Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis. Methods Mol Biol 2019; 1742:107-113. [PMID: 29330794 DOI: 10.1007/978-1-4939-7665-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most solid tumors are hypoxic in nature due to the limited supply of oxygen to internal tissues. Hypoxia plays an important role in metabolic adaptations of tumors that contribute significantly to cancer pathogenesis. Among the several metabolic alterations induced by hypoxia, hypoxia-mediated increased glucose uptake serves as the hallmark of metabolic reprogramming. Hypoxia-mediated stabilization of hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor leads to altered expression of several glycolytic genes and glucose transporters, which results in increased glucose uptake by tumor cells. Here we describe an easy and simple way of measuring the hypoxia-mediated tumor glucose uptake in vivo. The method is based on fluorescent imaging probe, RediJect 2-DG, which is a nonradioactive fluorescent-tagged glucose molecule. We have discussed orthotopic tumor implantation of HIF-1α knockdown and control pancreatic cancer cells and glucose uptake measurement in vivo by using IVIS imaging system along with reagent preparations.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott E Mulder
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
30
|
Brockhausen I, Elimova E, Woodward AM, Argüeso P. Glycosylation pathways of human corneal and conjunctival epithelial cell mucins. Carbohydr Res 2018; 470:50-56. [PMID: 30392563 DOI: 10.1016/j.carres.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Mucin glycoproteins on the ocular surface are rich in O-glycans and have important roles in the protection from physical, chemical and microbial impact. In this work, we have cultured human corneal and conjunctival epithelial cells to examine the glycosyltransferase activities that synthesize the O-glycans of mucins. The results indicate that ocular surface epithelial cells have active enzymes that synthesize O-glycans with sialylated core 1, Galβ1-3GalNAcα, and core 2, GlcNAcβ1-6(Galβ1-3)GalNAcα structures which corresponds to previous structural studies. Eye cells also have enzymes that synthesize complex N-glycans that are found on mucins. Results from treatment of eye cells with TNFα suggest that epithelial O-glycosylation changes in a dynamic fashion during inflammatory stimuli of the eye surface.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Elena Elimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ashley M Woodward
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Sikdar N, Saha G, Dutta A, Ghosh S, Shrikhande SV, Banerjee S. Genetic Alterations of Periampullary and Pancreatic Ductal Adenocarcinoma: An Overview. Curr Genomics 2018; 19:444-463. [PMID: 30258276 PMCID: PMC6128383 DOI: 10.2174/1389202919666180221160753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic Ductal AdenoCarcinoma (PDAC) is one of the most lethal malignancies of all solid cancers. Precancerous lesions for PDAC include PanIN, IPMNs and MCNs. PDAC has a poor prognosis with a 5-year survival of approximately 6%. Whereas Periampulary AdenoCarcinoma (PAC) having four anatomic subtypes, pancreatic, Common Bile Duct (CBD), ampullary and duodenum shows relative better prognosis. The highest incidence of PDAC has been reported with black with respect to white population. Similarly, incidence rate of PAC also differs with different ethnic populations. Several lifestyle, environmental and occupational exposures including long-term diabetes, obesity, and smoking, have been linked to PDAC, however, for PAC the causal risk factors were poorly described. It is now clear that PDAC and PAC are a multi-stage process resulting from the accumulation of genomic alterations in the somatic DNA of normal cells as well as inherited mutations. Approximately 10% of PDAC have a familial inheritance. Germline mutations in CDKN2A, BRCA2, STK11, PALB2, PRSS1, etc., as well as certain syndromes have been well associated with predisposition to PDAC. KRAS, CDKN2A, TP53 and SMAD4 are the 4 "mountains" (high-frequency driver genes) which have been known to earliest somatic alterations for PDAC while relatively less frequent in PAC. Our understanding of the molecular carcinogenesis has improved in the last few years due to extensive research on PDAC which was not well explored in case of PAC. The genetic alterations that have been identified in PDAC and different subgroups of PAC are important implications for the development of genetic screening test, early diagnosis, and prognostic genetic markers. The present review will provide a brief overview of the incidence and prevalence of PDAC and PAC, mainly, increased risk in India, the several kinds of risk factors associated with the diseases as well as required genetic alterations for disease initiation and progression.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Address correspondence to this author at the Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road Kolkata 700108, India; Tel (1): +91-33
-25773240 (L); (2): +91-9830780397 (M); Fax: +91 33 35773049;, E-mail:
| | | | | | | | | | | |
Collapse
|
32
|
Periasamy S, Lin CH, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu MY. Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. J Funct Foods 2018; 47:1-10. [PMID: 30555535 PMCID: PMC6289526 DOI: 10.1016/j.jff.2018.05.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tamarind xyloglucan (TXG) is edible, bioavailable and mucoadhesive polysaccharide. The aim of this study was (i) to investigate molecular docking studies on the interaction of TXG to MUC1 and cytokine receptors and (ii) to assess the mucoadhesive role of TXG in UC. In vivo study: C57Bl6 mice were administered with DSS 3% (w/v) in drinking water; TXG 100 or 300 mg/kg/day was given orally for 7 days simultaneously. TXG consistently binds to MUC1 and cytokine receptors in molecular docking studies. TXG decreased the expression of MUC1 and MUC2. The mucoadhesive ability of TXG decreased IL-1β and IL-6 levels. Furthermore, TXG decreased the expression of TLR4, MyD88, I-κB and NF-κB thereby attenuating inflammation via TLR4/NF-κB signaling pathway. TXG mucoadhesion to MUC1 played a pivotal role in attenuating inflammation. To conclude, the mucoadhesive role of TXG is important in the attenuation of inflammation and healing of UC.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chia-Hui Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
33
|
Mucin-1 Gene Mutation and the Kidney: The Link between Autosomal Dominant Tubulointerstitial Kidney Disease and Focal and Segmental Glomerulosclerosis. Case Rep Nephrol 2018; 2018:9514917. [PMID: 30155326 PMCID: PMC6091430 DOI: 10.1155/2018/9514917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/07/2018] [Accepted: 07/24/2018] [Indexed: 01/26/2023] Open
Abstract
Glomerular diseases are one of the most frequent causes of chronic kidney disease, focal and segmental glomerulosclerosis being one of the commonest glomerulopathies. However, the etiology of this glomerular entity, which merely depicts a morphologic pattern of disease, is often not established and, in most of the patients, remains unknown. Nephrologists tend to assume focal and segmental glomerulosclerosis as a definitive diagnosis. However, despite the increasing knowledge developed in the field, genetic causes of glomerular diseases are currently identified in fewer than 10% of chronic kidney disease subjects. Moreover, unexplained familial clustering among dialysis patients suggests that genetic causes may be underrecognized. Secondary focal and segmental glomerulosclerosis due to genetic mutations mainly located in the podocyte and slit diaphragm can occur from childbirth to adulthood with different clinical presentations, ranging from mild proteinuria and normal renal function to nephrotic syndrome and renal failure. However, this histopathological pattern can also be due to primary defects outside the glomerulus. The present report illustrates an adult case of secondary focal and segmental glomerulosclerosis with a dominant tubulointerstitial damage that led to the pursue of its cause at the tubular level. In this patient with an undiagnosed family history of adult kidney disease, a genetic study unraveled a mutation in the mucin-1 gene and a final diagnosis of adult dominant tubular kidney disease-MUC1 was made.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Recent studies in the kidney have revealed that the well characterized tumor antigen mucin 1 (MUC1/Muc1) also has numerous functions in the normal and injured kidney. RECENT FINDINGS Mucin 1 is a transmembrane mucin with a robust glycan-dependent apical targeting signal and efficient recycling from endosomes. It was recently reported that the TRPV5 calcium channel is stabilized on the cell surface by galectin-dependent cross-linking to mucin 1, providing a novel mechanism for regulation of ion channels and normal electrolyte balance.Our recent studies in mice show that Muc 1 is induced after ischemia, stabilizing hypoxia-inducible factor 1 (HIF-1)α and β-catenin levels, and transactivating the HIF-1 and β-catenin protective pathways. However, prolonged induction of either pathway in the injured kidney can proceed from apparent full recovery to chronic kidney disease. A very recent report indicates that aberrant activation of mucin 1 signaling after ischemic injury in mice and humans is associated with development of chronic kidney disease and fibrosis. A frameshift mutation in MUC1 was recently identified as the genetic lesion causing medullary cystic kidney disease type 1, now appropriately renamed MUC1 Kidney Disease. SUMMARY Studies of mucin 1 in the kidney now reveal significant functions for the extracellular mucin-like domain and signaling through the cytoplasmic tail.
Collapse
|
35
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
36
|
Hanson RL, Brown RB, Steele MM, Grandgenett PM, Grunkemeyer JA, Hollingsworth MA. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget 2018; 7:39996-40011. [PMID: 27220889 PMCID: PMC5129987 DOI: 10.18632/oncotarget.9557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
The MUC1 glycoprotein is overexpressed and aberrantly glycosylated in >90% of pancreatic ductal adenocarcinoma cases and impacts tumor progression by initiating downstream signaling through phosphorylation of its cytoplasmic tail. Previous studies have demonstrated that MUC1 alters expression of known targets of activator protein 1 (AP-1); however, no studies have evaluated the precise impact of MUC1 signaling on the activity and formation of AP-1. Given the known role of these proteins in modulating migration, invasion, and tumor progression, we explored the effects of MUC1 on AP-1 dimer formation and function. We determined that MUC1 increased the protein levels of c-Jun, the major component of AP-1, and promoted dimerization of c-Jun with the Fos-protein FRA-1. We demonstrate that FRA-1 acts as a potent mediator of migration and invasion in a manner that is modulated by signals through MUC1, which acts as a dominant regulator of specific AP-1 and FRA-1 target genes. Our results provide the first in vivo evidence of a FRA-1 mediated expression profile that impacts pancreatic tumor growth properties. In summary, we show that MUC1 enhancement of ERK activation influences FRA-1 activity to modulate tumor migration, invasion and metastasis in a subset of pancreatic cancer cases.
Collapse
Affiliation(s)
- Ryan L Hanson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Roger B Brown
- University of New Mexico, Albuquerque, NM 87131, USA
| | - Maria M Steele
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James A Grunkemeyer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Murthy D, Vernucci E, Goode G, Abrego J, Singh PK. Evaluating the Metabolic Impact of Hypoxia on Pancreatic Cancer Cells. Methods Mol Biol 2018; 1742:81-93. [PMID: 29330792 DOI: 10.1007/978-1-4939-7665-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxia is frequently observed in human cancers and induces global metabolic reprogramming that includes an increase in glucose uptake and glycolysis, alterations in NAD(P)H/NAD(P)+ and intracellular ATP levels, and increased utilization of glutamine as the major precursor for fatty acid synthesis. In this chapter, we describe in detail various physiological assays that have been adopted to study the metabolic shift propagated by exposure to hypoxic conditions in pancreatic cell culture model that includes glucose uptake, glutamine uptake, and lactate release by pancreatic cancer cell lines. We have also elaborated the assays to evaluate the ratio of NAD(P)H/NAD(P)+ and intracellular ATP estimation using the commercially available kit to assess the metabolic state of cancer cells.
Collapse
Affiliation(s)
- Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Wu G, Kim D, Kim JN, Park S, Maharjan S, Koh H, Moon K, Lee Y, Kwon HJ. A Mucin1 C-terminal Subunit-directed Monoclonal Antibody Targets Overexpressed Mucin1 in Breast Cancer. Am J Cancer Res 2018; 8:78-91. [PMID: 29290794 PMCID: PMC5743461 DOI: 10.7150/thno.21278] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Mucin1 (MUC1) is a highly glycosylated transmembrane protein that has gained attention because of its overexpression in various cancers. However, MUC1-targeted therapeutic antibodies have not yet been approved for cancer therapy. MUC1 is cleaved to two subunits, MUC1-N and MCU1-C. MUC1-N is released from the cell surface, making MUC1-C a more reasonable target for cancer therapy. Therefore, we produced a monoclonal antibody (anti-hMUC1) specific to the extracellular region of MUC1-C and evaluated its effects in vitro and in vivo. Methods: We produced a monoclonal antibody (anti-hMUC1) using a purified recombinant human MUC1 polypeptide and our novel immunization protocol. The reactivity of anti-hMUC1 was characterized by ELISA, western blotting and immunoprecipitation analyses. The localization of the antibody in the breast cancer cells after binding was determined by confocal image analysis. The effects of the antibody on the growth of cells were also investigated. We injected anti-hMUC1 and performed in vivo tracing analysis in xenograft mouse models. In addition, expression of MUC1 in tissue sections from patients with breast cancer was assessed by immunohistochemistry with anti-hMUC1. Results: The anti-hMUC1 antibody recognized recombinant MUC1 as well as native MUC1-C protein in breast cancer cells. Anti-hMUC1 binds to the membrane surface of cells that express MUC1 and is internalized in some cancer cell lines. Treatment with anti-hMUC1 significantly reduced proliferation of cells in which anti-hMUC1 antibody is internalized. Furthermore, the anti-hMUC1 antibody was specifically localized in the MUC1-expressing breast cancer cell-derived tumors in xenograft mouse models. Based on immunohistochemistry analysis, we detected significantly higher expression of MUC1 in cancer tissues than in normal control tissues. Conclusion: Our results reveal that the anti-hMUC1 antibody targets the extracellular region of MUC1-C subunit and may have utility in future applications as an anti-breast cancer agent.
Collapse
|
39
|
Abstract
Exposing cells to a hypoxic environment leads to significant physiological and molecular alterations. Most of the hypoxic responses are regulated by the transcription factors known as hypoxia-inducible factors (HIFs). HIF1, a heterodimer of hypoxia-stabilized subunit HIF-1alpha and a constitutively expressed subunit HIF-1beta, serves as a key transcription factor that regulates gene expressions which are involved in cell growth, metabolism, and proliferation. The global expression patterns can be analyzed by utilizing RNA-Seq to understand the cellular alterations in hypoxia. This technique enables us to understand the comprehensive regulation of gene expression by specific factors or environmental stimuli. Here, we describe the complete process of studying hypoxia-mediated gene expression by using RNA-Seq, including the hypoxic treatment of cells, RNA isolation, RNA quality check, cDNA library preparation, and library quality check.
Collapse
|
40
|
MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. J Clin Med 2017; 6:jcm6120110. [PMID: 29186029 PMCID: PMC5742799 DOI: 10.3390/jcm6120110] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
MUC1 is a membrane-bound mucin expressed on the apical surfaces of most mucosal epithelial cells. In normal lung epithelia, MUC1 is a binding site for Pseudomonas aeruginosa, an opportunistic human pathogen of great clinical importance. It has now been established that MUC1 also serves an anti-inflammatory role in the airways that is initiated late in the course of a bacterial infection and is mediated through inhibition of Toll-like receptor (TLR) signaling. MUC1 expression was initially shown to interfere with TLR5 signaling in response to P. aeruginosa flagellin, but has since been extended to other TLRs. These new findings point to an immunomodulatory role for MUC1 during P. aeruginosa lung infection, particularly during the resolution phase of inflammation. This review briefly summarizes the recent characterization of MUC1’s anti-inflammatory properties in both the respiratory tract and extrapulmonary tissues.
Collapse
|
41
|
Azevedo R, Peixoto A, Gaiteiro C, Fernandes E, Neves M, Lima L, Santos LL, Ferreira JA. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget 2017; 8:91734-91764. [PMID: 29207682 PMCID: PMC5710962 DOI: 10.18632/oncotarget.19433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Gebregiworgis T, Purohit V, Shukla SK, Tadros S, Chaika NV, Abrego J, Mulder SE, Gunda V, Singh PK, Powers R. Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells. J Proteome Res 2017; 16:3536-3546. [PMID: 28809118 PMCID: PMC5634392 DOI: 10.1021/acs.jproteome.7b00246] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Pancreatic cancer
cells overexpressing Mucin 1 (MUC1) rely on aerobic
glycolysis and, correspondingly, are dependent on glucose for survival.
Our NMR metabolomics comparative analysis of control (S2–013.Neo)
and MUC1-overexpressing (S2–013.MUC1) cells demonstrates that
MUC1 reprograms glutamine metabolism upon glucose limitation. The
observed alteration in glutamine metabolism under glucose limitation
was accompanied by a relative decrease in the proliferation of MUC1-overexpressing
cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2–013.MUC1
cells fail to enter S phase and synthesize DNA because of a significant
disruption in pyrimidine nucleotide biosynthesis. Our metabolomics
analysis indicates that glutamine is the major source of oxaloacetate
in S2–013.Neo and S2–013.MUC1 cells, where oxaloacetate
is converted to aspartate, an important metabolite for pyrimidine
nucleotide biosynthesis. However, glucose limitation impedes the flow
of glutamine carbons into the pyrimidine nucleotide rings and instead
leads to a significant accumulation of glutamine-derived aspartate
in S2–013.MUC1 cells.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Department of Chemistry, and ‡Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | | | | | | | | | | | - Scott E Mulder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | | | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Robert Powers
- Department of Chemistry, and ‡Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
43
|
Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, Grem J, Sasson AR, Singh PK. De Novo Lipid Synthesis Facilitates Gemcitabine Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. Cancer Res 2017; 77:5503-5517. [PMID: 28811332 DOI: 10.1158/0008-5472.can-16-3062] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Pancreatic adenocarcinoma is moderately responsive to gemcitabine-based chemotherapy, the most widely used single-agent therapy for pancreatic cancer. Although the prognosis in pancreatic cancer remains grim in part due to poor response to therapy, previous attempts at identifying and targeting the resistance mechanisms have not been very successful. By leveraging The Cancer Genome Atlas dataset, we identified lipid metabolism as the metabolic pathway that most significantly correlated with poor gemcitabine response in pancreatic cancer patients. Furthermore, we investigated the relationship between alterations in lipogenesis pathway and gemcitabine resistance by utilizing tissues from the genetically engineered mouse model and human pancreatic cancer patients. We observed a significant increase in fatty acid synthase (FASN) expression with increasing disease progression in spontaneous pancreatic cancer mouse model, and a correlation of high FASN expression with poor survival in patients and poor gemcitabine responsiveness in cell lines. We observed a synergistic effect of FASN inhibitors with gemcitabine in pancreatic cancer cells in culture and orthotopic implantation models. Combination of gemcitabine and the FASN inhibitor orlistat significantly diminished stemness, in part due to induction of endoplasmic reticulum (ER) stress that resulted in apoptosis. Moreover, direct induction of ER stress with thapsigargin caused a similar decrease in stemness and showed synergistic activity with gemcitabine. Our in vivo studies with orthotopic implantation models demonstrated a robust increase in gemcitabine responsiveness upon inhibition of fatty acid biosynthesis with orlistat. Altogether, we demonstrate that fatty acid biosynthesis pathway manipulation can help overcome the gemcitabine resistance in pancreatic cancer by regulating ER stress and stemness. Cancer Res; 77(20); 5503-17. ©2017 AACR.
Collapse
Affiliation(s)
- Saber Tadros
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan J King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Venugopal Gunda
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Enza Vernucci
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jaime Abrego
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lyudmyla Berim
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron R Sasson
- Division of Surgical Oncology, Department of Surgery, Stony Brook Cancer Center, Stony Brook, New York
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
44
|
Gunda V, Souchek J, Abrego J, Shukla SK, Goode GD, Vernucci E, Dasgupta A, Chaika NV, King RJ, Li S, Wang S, Yu F, Bessho T, Lin C, Singh PK. MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer. Clin Cancer Res 2017; 23:5881-5891. [PMID: 28720669 DOI: 10.1158/1078-0432.ccr-17-1151] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/03/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose:MUC1, an oncogene overexpressed in multiple solid tumors, including pancreatic cancer, reduces overall survival and imparts resistance to radiation and chemotherapies. We previously identified that MUC1 facilitates growth-promoting metabolic alterations in pancreatic cancer cells. The present study investigates the role of MUC1-mediated metabolism in radiation resistance of pancreatic cancer by utilizing cell lines and in vivo models.Experimental Design: We used MUC1-knockdown and -overexpressed cell line models for evaluating the role of MUC1-mediated metabolism in radiation resistance through in vitro cytotoxicity, clonogenicity, DNA damage response, and metabolomic evaluations. We also investigated whether inhibition of glycolysis could revert MUC1-mediated metabolic alterations and radiation resistance by using in vitro and in vivo models.Results: MUC1 expression diminished radiation-induced cytotoxicity and DNA damage in pancreatic cancer cells by enhancing glycolysis, pentose phosphate pathway, and nucleotide biosynthesis. Such metabolic reprogramming resulted in high nucleotide pools and radiation resistance in in vitro models. Pretreatment with the glycolysis inhibitor 3-bromopyruvate abrogated MUC1-mediated radiation resistance both in vitro and in vivo, by reducing glucose flux into nucleotide biosynthetic pathways and enhancing DNA damage, which could again be reversed by pretreatment with nucleoside pools.Conclusions: MUC1-mediated nucleotide metabolism plays a key role in facilitating radiation resistance in pancreatic cancer and targeted effectively through glycolytic inhibition. Clin Cancer Res; 23(19); 5881-91. ©2017 AACR.
Collapse
Affiliation(s)
- Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joshua Souchek
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gennifer D Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sicong Li
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
45
|
Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, Illies AL, Gebregiworgis T, Dai B, Augustine JJ, Murthy D, Attri KS, Mashadova O, Grandgenett PM, Powers R, Ly QP, Lazenby AJ, Grem JL, Yu F, Matés JM, Asara JM, Kim JW, Hankins JH, Weekes C, Hollingsworth MA, Serkova NJ, Sasson AR, Fleming JB, Oliveto JM, Lyssiotis CA, Cantley LC, Berim L, Singh PK. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 2017; 32:71-87.e7. [PMID: 28697344 PMCID: PMC5533091 DOI: 10.1016/j.ccell.2017.06.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/01/2017] [Accepted: 06/08/2017] [Indexed: 12/27/2022]
Abstract
Poor response to cancer therapy due to resistance remains a clinical challenge. The present study establishes a widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP). Increased levels of dCTP diminish the effective levels of gemcitabine through molecular competition. We also demonstrate that MUC1-regulated stabilization of hypoxia inducible factor-1α (HIF-1α) mediates such metabolic reprogramming. Targeting HIF-1α or de novo pyrimidine biosynthesis, in combination with gemcitabine, strongly diminishes tumor burden. Finally, reduced expression of TKT and CTPS, which regulate flux into pyrimidine biosynthesis, correlates with better prognosis in pancreatic cancer patients on fluoropyrimidine analogs.
Collapse
Affiliation(s)
- Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Vinee Purohit
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kamiya Mehla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Venugopal Gunda
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Enza Vernucci
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Ryan J King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jaime Abrego
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Gennifer D Goode
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Aneesha Dasgupta
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Alysha L Illies
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jithesh J Augustine
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Oksana Mashadova
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jean L Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - José M Matés
- Department of Molecular Biology and Biochemistry, University of Málaga and IBIMA, 29071 Málaga, Spain
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jordan H Hankins
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Colin Weekes
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Natalie J Serkova
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Aaron R Sasson
- Department of Surgery, Health Sciences Center T18-065, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer M Oliveto
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lyudmyla Berim
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
46
|
Huang HL, Wu HY, Chu PC, Lai IL, Huang PH, Kulp SK, Pan SL, Teng CM, Chen CS. Role of integrin-linked kinase in regulating the protein stability of the MUC1-C oncoprotein in pancreatic cancer cells. Oncogenesis 2017; 6:e359. [PMID: 28692035 PMCID: PMC5541713 DOI: 10.1038/oncsis.2017.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
MUC1-C overexpression has been associated with the progression of pancreatic tumors by promoting the aggressive and metastatic phenotypes. As MUC1 is a STAT3 target gene, STAT3 plays a major role in regulating MUC1-C expression. In this study, we report an alternative mechanism by which integrin-linked kinase (ILK) post-transcriptionally modulates the expression of MUC1-C by maintaining its protein stability in pancreatic cancer cells. We found that ILK acts in concert with STAT3 to facilitate IL-6-mediated upregulation of MUC1-C; ILK depletion was equally effective as STAT3 depletion in abolishing IL-6-induced MUC1-C overexpression without disturbing the phosphorylation or cellular distribution of STAT3. Conversely, ectopic expression of constitutively active ILK increased MUC1-C expression, though this increase was not noted with kinase-dead ILK. This finding suggests the requirement of the kinase activity of ILK in regulating MUC1-C stability, which was confirmed by using the ILK kinase inhibitor T315. Furthermore, our data suggest the involvement of protein kinase C (PKC)δ in mediating the suppressive effect of ILK inhibition on MUC1-C repression. For example, co-immunoprecipitation analysis indicated that ILK depletion-mediated MUC1-C phosphorylation was accompanied by increased phosphorylation of PKCδ at the activation loop Thr-507 and increased binding of PKCδ to MUC1-C. Conversely, ILK overexpression resulted in decreased PKCδ phosphorylation. From a mechanistic perspective, the present finding, together with our recent report that ILK controls the expression of oncogenic KRAS through a regulatory loop, underscores the pivotal role of ILK in promoting pancreatic cancer progression.
Collapse
Affiliation(s)
- H-L Huang
- The PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - H-Y Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
| | - P-C Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-L Lai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - P-H Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - S-L Pan
- The PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - C-M Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-S Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Syrkina MS, Maslakova AA, Potashnikova DM, Veiko VP, Vassetzky YS, Rubtsov MA. Dual Role of the Extracellular Domain of Human Mucin MUC1 in Metastasis. J Cell Biochem 2017; 118:4002-4011. [PMID: 28407289 DOI: 10.1002/jcb.26056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Human mucin MUC1 plays an important role in cancer development. The increased level of this molecule expression during cancer cell progression induces metastasis and is associated with poor prognosis for patients. There is a large body of experimental data on the role of various functional domains of human mucin MUC1 in metastasis. While, the cytoplasmic domain determined to play a definitive role, the influence of extracellular domain on cancer cell invasiveness still remains unclear. The present paper reveals that the extracellular domain of MUC1 molecule consists of two functional subdomains-the region of tandem repeats (TR) and the region of irregular repeats (IR). We demonstrate the ability of each of these subdomains to alter the invasiveness of cancer cells. The presence of the MUC1 molecules containing TR subdomain (MUC1-TR) on the surface of low-invasive cancer cells leads to the increase in their transendothelial migration potency, while the addition of the IR subdomain to the MUC1-TR molecule (MUC1-IR-TR) restores their natural low invasiveness. J. Cell. Biochem. 118: 4002-4011, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M S Syrkina
- Faculty of Biology, Department of Molecular Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - A A Maslakova
- Faculty of Biology, Department of Human and Animal Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - D M Potashnikova
- Faculty of Biology, Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - V P Veiko
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Y S Vassetzky
- LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,UMR8126, Université Paris Sud-Paris Saclay, CNRS, Institut Gustave Roussy, Villejuif, France.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - M A Rubtsov
- Faculty of Biology, Department of Molecular Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Department of Biochemistry/Strategic Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
48
|
Abstract
The significance of mucins in cancers has led to the development of novel biomarkers and therapeutic agents against cancers. Despite significant advances in the understanding of mucins, systemic investigations into the role of mucins in cancer biology focusing particularly on the histological subtypes and stages, along with other variables, are yet to be carried out to discover potential novel functions and cancer-specific roles. Here, we investigated 11 mucin expressing cancers for DNA mutations, mRNA expression, copy number, methylation, and the impacts these genomic features may have on patient survival by utilizing The Cancer Genome Atlas dataset. We demonstrate that mucin DNA mutations have a significant rate, pattern, and impact on cancer patient survival depending on the tissue of origin. This includes a frequent T112P mutation in MUC1 that is seen in half of the pancreatic MUC1 mutations, as well as being present in other cancers. We also observed a very frequent MUC4 mutation at H4205, which correlated with survival outcomes in patients. Furthermore, we observed significant alterations in mucin mRNA expression in multiple tumor types. Our results demonstrate de novo expression of certain mucins in cancer tissues, including MUC21 in colorectal cancers. We observed a general decrease in promoter methylation for mucins, which correlated with decreased expression of many genes, such as MUC15 in kidney cancers. Lastly, several mucin gene loci demonstrated copy number increase in multiple histological subtypes. Thus, our study presents a comprehensive analysis of genomic alterations in mucins and their corresponding roles in cancer progression.
Collapse
|
49
|
Goode G, Gunda V, Chaika NV, Purohit V, Yu F, Singh PK. MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS One 2017; 12:e0176820. [PMID: 28464016 PMCID: PMC5413086 DOI: 10.1371/journal.pone.0176820] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Background Mucin1 (MUC1), a glycoprotein associated with chemoresistance and an aggressive cancer phenotype, is aberrantly overexpressed in triple-negative breast cancer (TNBC). Recent studies suggest that MUC1 plays a role in modulating cancer cell metabolism and thereby supports tumor growth. Herein, we examined the role of MUC1 in metabolic reprogramming in TNBC. Methods MUC1 was stably overexpressed in MDA-MB-231 TNBC cells and stably knocked down in MDA-MB-468 cells. We performed liquid chromatography-coupled tandem mass spectrometry-assisted metabolomic analyses and physiological assays, which indicated significant alterations in the metabolism of TNBC cells due to MUC1 expression. Results Differential analyses identified significant differences in metabolic pathways implicated in cancer cell growth. In particular, MUC1 expression altered glutamine dependency of the cells, which can be attributed in part to the changes in the expression of genes that regulate glutamine metabolism, as observed by real-time PCR analysis. Furthermore, MUC1 expression altered the sensitivity of cells to transaminase inhibitor aminooxyacetate (AOA), potentially by altering glutamine metabolism. Conclusions Collectively, these results suggest that MUC1 serves as a metabolic regulator in TNBC, facilitating the metabolic reprogramming of glutamine utilization that influences TNBC tumor growth.
Collapse
Affiliation(s)
- Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nina V. Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med 2017; 14:254-270. [PMID: 28884042 PMCID: PMC5570602 DOI: 10.20892/j.issn.2095-3941.2017.0029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- The First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens 11527, Greece
| |
Collapse
|