1
|
Fan G, Xie T, Yang M, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed S100P + TFF1 + tumor cells in spread through air spaces samples correlated with undesirable therapy response in non-small cell lung cancer. J Transl Med 2024; 22:917. [PMID: 39385235 PMCID: PMC11462816 DOI: 10.1186/s12967-024-05722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients' survival in public datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Notably, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell-cell communication analysis revealed that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role of S100P + TFF1 + tumor cells in survival outcomes.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Sarnowski C, Ma J, Nguyen NQH, Hoogeveen RC, Ballantyne CM, Coresh J, Morrison AC, Chatterjee N, Boerwinkle E, Yu B. Ancestrally diverse genome-wide association analysis highlights ancestry-specific differences in genetic regulation of plasma protein levels. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.27.24314500. [PMID: 39399032 PMCID: PMC11469718 DOI: 10.1101/2024.09.27.24314500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Fully characterizing the genetic architecture of circulating proteins in multi-ancestry populations provides an unprecedented opportunity to gain insights into the etiology of complex diseases. We characterized and contrasted the genetic associations of plasma proteomes in 9,455 participants of European and African (19.8%) ancestry from the Atherosclerosis Risk in Communities Study. Of 4,651 proteins, 1,408 and 2,565 proteins had protein-quantitative trait loci (pQTLs) identified in African and European ancestry respectively, and twelve unreported potentially causal protein-disease relationships were identified. Shared pQTLs across the two ancestries were detected in 1,113 aptamer-region pairs pQTLs, where 53 of them were not previously reported (all trans pQTLs). Sixteen unique protein-cardiovascular trait pairs were colocalized in both European and African ancestry with the same candidate causal variants. Our systematic cross-ancestry comparison provided a reliable set of pQTLs, highlighted the shared and distinct genetic architecture of proteome in two ancestries, and demonstrated possible biological mechanisms underlying complex diseases.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Jianzhong Ma
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Ngoc Quynh H. Nguyen
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Josef Coresh
- Optimal Aging Institute, New York University Grossman School of Medicine, New York, NY
- Department of Population Health, New York University Grossman School of Medicine, New York, NY
| | - Alanna C Morrison
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric Boerwinkle
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Bing Yu
- Department of Epidemiology, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| |
Collapse
|
3
|
Shah A, Jahan R, Kisling SG, Atri P, Natarajan G, Nallasamy P, Cox JL, Macha MA, Sheikh IA, Ponnusamy MP, Kumar S, Batra SK. Secretory Trefoil Factor 1 (TFF1) promotes gemcitabine resistance through chemokine receptor CXCR4 in Pancreatic Ductal Adenocarcinoma. Cancer Lett 2024; 598:217097. [PMID: 38964729 DOI: 10.1016/j.canlet.2024.217097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.
Collapse
MESH Headings
- Humans
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Drug Resistance, Neoplasm
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Trefoil Factor-1/genetics
- Trefoil Factor-1/metabolism
- Animals
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Antimetabolites, Antineoplastic/pharmacology
- Cell Movement/drug effects
- Mice
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Apoptosis/drug effects
- Mice, Nude
- Cell Proliferation/drug effects
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA.
| |
Collapse
|
4
|
Lund-Andersen C, Torgunrud A, Kanduri C, Dagenborg VJ, Frøysnes IS, Larsen MM, Davidson B, Larsen SG, Flatmark K. Novel drug resistance mechanisms and drug targets in BRAF-mutated peritoneal metastasis from colorectal cancer. J Transl Med 2024; 22:646. [PMID: 38982444 PMCID: PMC11234641 DOI: 10.1186/s12967-024-05467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Patients with peritoneal metastasis from colorectal cancer (PM-CRC) have inferior prognosis and respond particularly poorly to chemotherapy. This study aims to identify the molecular explanation for the observed clinical behavior and suggest novel treatment strategies in PM-CRC. METHODS Tumor samples (230) from a Norwegian national cohort undergoing surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) with mitomycin C (MMC) for PM-CRC were subjected to targeted DNA sequencing, and associations with clinical data were analyzed. mRNA sequencing was conducted on a subset of 30 samples to compare gene expression in tumors harboring BRAF or KRAS mutations and wild-type tumors. RESULTS BRAF mutations were detected in 27% of the patients, and the BRAF-mutated subgroup had inferior overall survival compared to wild-type cases (median 16 vs 36 months, respectively, p < 0.001). BRAF mutations were associated with RNF43/RSPO aberrations and low expression of negative Wnt regulators (ligand-dependent Wnt activation). Furthermore, BRAF mutations were associated with gene expression changes in transport solute carrier proteins (specifically SLC7A6) and drug metabolism enzymes (CES1 and CYP3A4) that could influence the efficacy of MMC and irinotecan, respectively. BRAF-mutated tumors additionally exhibited increased expression of members of the novel butyrophilin subfamily of immune checkpoint molecules (BTN1A1 and BTNL9). CONCLUSIONS BRAF mutations were frequently detected and were associated with particularly poor survival in this cohort, possibly related to ligand-dependent Wnt activation and altered drug transport and metabolism that could confer resistance to MMC and irinotecan. Drugs that target ligand-dependent Wnt activation or the BTN immune checkpoints could represent two novel therapy approaches.
Collapse
Affiliation(s)
- Christin Lund-Andersen
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.
| | - Annette Torgunrud
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | | | - Vegar J Dagenborg
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ida S Frøysnes
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Mette M Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Departments of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stein G Larsen
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Departments of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway
- Departments of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Masumoto Y, Matsuo S, Kinjou N, Narieda Y, Wada M, Fujimoto K. The expression of trefoil factor family member 2 in increased at an acidic pH. Oncol Lett 2024; 27:212. [PMID: 38572063 PMCID: PMC10988190 DOI: 10.3892/ol.2024.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
Trefoil factor family member 2 (Tff2) is significantly involved in intestinal tumor growth in ApcMin/+ mice, which can be used as a human colon cancer model. TFF2, which encodes TFF2 (spasmolytic protein 1) is highly expressed in human cancer tissues, including the pancreas, colon and bile ducts, as well as in normal gastric and duodenum tissues. By contrast, TFF2 exhibits low expression levels in other normal tissues, including the small and large intestine. Furthermore, TFF2 expression has not been detected in DLD-1 cells, a cell line derived from human colon cancer. What induces TFF2 expression in normal and tumor cells is still unknown. Highly malignant tumor tissues are characterized by higher temperatures and lower pH (6.2-6.9) than in normal tissues, where normal pH ranges from 7.2 to 7.4. This microenvironment exacerbates malignancy by promoting the acquisition of cell death resistance, drug resistance and immune escape. Therefore, the present study examined how TFF2 expression is affected in cultured cells that imitate the tumor tissue microenvironment. The incubation temperature was increased from 37 to 40°C, but no expression of TFF2 was induced. Subsequently, a culture solution with an acidic pH was prepared to simulate the Warburg effect in tumors. TFF2 expression was increased by 42.8- and 5.8-fold in cells cultured in acidic medium at pH 6.5 and 6.8 compared with at pH 7.4, respectively, as determined using the relative quantification method following quantitative polymerase chain reaction. The present study also analyzed fluctuations in the expression levels of genes other than TFF2, under acidic conditions. Acidic conditions upregulated the expression of genes related to cell membranes and glycoproteins, based on the Database for Annotation, Visualization, and Integrated Discovery. In conclusion, TFF2 was highly expressed under acidic conditions, implying that it may have an important function in protecting the plasma membrane from acidic environments in both normal and cancer cells. These findings warrant further investigation of TFF2 as a target of cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yui Masumoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Suzuka Matsuo
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Natsuno Kinjou
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Yuka Narieda
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Morimasa Wada
- Division of Molecular Biology, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Kyoko Fujimoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| |
Collapse
|
6
|
Haase A, Alefeld E, Yalinci F, Meenen DV, Busch MA, Dünker N. Gastric Inhibitory Polypeptide Receptor (GIPR) Overexpression Reduces the Tumorigenic Potential of Retinoblastoma Cells. Cancers (Basel) 2024; 16:1656. [PMID: 38730608 PMCID: PMC11083251 DOI: 10.3390/cancers16091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Gene expression profiling revealed that the gastric inhibitory polypeptide receptor (GIPR) is upregulated following trefoil factor family peptide 1 (TFF1) overexpression in RB cells. In the study presented, we found this G protein-coupled transmembrane receptor to be co-expressed with TFF1, a new diagnostic and prognostic RB biomarker for advanced subtype 2 RBs. Functional analyses in two RB cell lines revealed a significant reduction in cell viability and growth and a concomitant increase in apoptosis following stable, lentiviral GIPR overexpression, matching the effects seen after TFF1 overexpression. In chicken chorioallantoic membrane (CAM) assays, GIPR-overexpressing RB cells developed significantly smaller CAM tumors. The effect of GIPR overexpression in RB cells was reversed by the GIPR inhibitor MK0893. The administration of recombinant TFF1 did not augment GIPR overexpression effects, suggesting that GIPR does not serve as a TFF1 receptor. Investigations of potential GIPR up- and downstream mediators suggest the involvement of miR-542-5p and p53 in GIPR signaling. Our results indicate a tumor suppressor role of GIPR in RB, suggesting its pathway as a new potential target for future retinoblastoma therapy.
Collapse
|
7
|
Zhang T, Zhang Y, Tao J, Rong X, Yang Y. Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease. Endocrine 2024; 84:109-118. [PMID: 38148440 DOI: 10.1007/s12020-023-03559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE To investigate the effect of TFF3 in the pathogenesis of Diabetic Kidney Disease (DKD), and explore the dynamic changes of TFF3 expression pattern in renal injury process. METHODS DKD animal model was established by streptozotocin (STZ) (40 mg/kg/d, ip, for 5 days, consecutively) combined with the high fat diet (HFD) for 12 weeks. While animals were sacrificed at different time stages in DKD process (4 weeks, 8 weeks and 12 weeks, respectively). RESULTS STZ combined with high-fat diet induced weight gain, increased blood glucose and decreased glucose tolerance in DKD mice. Compared to the control group, the DKD group exhibits extracellular matrix (ECM) accumulation and the renal injury was aggravated in a time-dependent manner. The TFF3 expression level was decreased in kidney, and increased in colon tissue. CONCLUSION TFF3 is not only expressed in colon, but also expressed in renal medulla and cortex. TFF3 might be play a pivotal role in renal mucosal repair by gut-kidney crosstalk, and protect renal from high glucose microenvironment damage.
Collapse
Affiliation(s)
- Tao Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Tao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiqi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Guo M, Wang R, Geng J, Li Z, Liu M, Lu X, Wei J, Liu M. Human TFF2-Fc fusion protein alleviates DSS-induced ulcerative colitis in C57BL/6 mice by promoting intestinal epithelial cells repair and inhibiting macrophage inflammation. Inflammopharmacology 2023; 31:1387-1404. [PMID: 37129719 PMCID: PMC10153040 DOI: 10.1007/s10787-023-01226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The clinical drugs for ulcerative colitis mainly affect the inflammatory symposiums with limited outcomes and various side effects. Repairing the damaged intestinal mucosa is a promising and alternative strategy to treat ulcerative colitis. Trefoil factor family 2 (TFF2) could repair the intestinal mucosa, however, it has a short half-life in vivo. To improve the stability of TFF2, we have prepared a new fusion protein TFF2-Fc with much stability, investigated the therapeutic effect of TFF2-Fc on ulcerative colitis, and further illustrated the related mechanisms. We found that intrarectally administered TFF2-Fc alleviated the weight loss, the colon shortening, the disease activity index, the intestinal tissue injury, and the lymphocyte infiltration in dextran sulfate sodium (DSS)-induced colitis mice. In vitro, TFF2-Fc inhibited Caco2 cells injury and apoptosis, promoted cellular migration, and increased the expression of Occludin and ZO-1 by activating P-ERK in the presence of H2O2 or inflammatory conditioned medium (LPS-RAW264.7/CM). Moreover, TFF2-Fc could reduce lipopolysaccharide (LPS)-induced production of inflammation cytokines and reactive oxygen species in RAW264.7 cells, and also inhibits the polarization of RAW264.7 cells to M1 phenotype by reducing glucose consumption and lactate production. Taken together, in this work, we have prepared a novel fusion protein TFF2-Fc, which could alleviate ulcerative colitis in vivo via promoting intestinal epithelial cells repair and inhibiting macrophage inflammation, and TFF2-Fc might serve as a promising ulcerative colitis therapeutic agent.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jiajia Geng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhen Li
- Jingyuan Biomedicine (Suzhou) Co., Ltd., Suzhou, 215000, China
| | - Mingfei Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianteng Wei
- Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China
- Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
9
|
Li C, Dong X, Yuan Q, Xu G, Di Z, Yang Y, Hou J, Zheng L, Chen W, Wu G. Identification of novel characteristic biomarkers and immune infiltration profile for the anaplastic thyroid cancer via machine learning algorithms. J Endocrinol Invest 2023:10.1007/s40618-023-02022-6. [PMID: 36725810 DOI: 10.1007/s40618-023-02022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Anaplastic thyroid cancer (ATC) is a rare and lethal malignant cancer. In recent years, the application of molecular-driven targeted therapy and immunotherapy has markedly improved the prognosis of ATC. This study aimed to identify characteristic genes for ATC diagnosis and revealed the role of ATC characteristic genes in drug sensitivity and immune cell infiltration. METHODS We downloaded ATC RNA-sequencing data from the GEO database. Following the combination and normalization of the dataset, we first divided the combined datasets into the training cohort and the validation cohort. We identified differentially expressed genes (DEGs) in ATC by differential expression analysis in the training cohort. We used two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) to identify ATC characteristic genes. The CIBERSORT algorithm was performed to calculate the abundance of various immune cells in ATC. Finally, we validated the expression of ATC characteristic genes by quantitative RT-PCR (RT-qPCR) in ATC cell lines and immunohistochemistry (IHC). RESULTS A total of 425 DEGs were identified in the training cohort, including 240 upregulated genes and 185 downregulated genes. Four ATC characteristic genes (ADM, PXDN, MMP1, and TFF3) were identified, and their diagnostic value was validated in the validation cohort (AUC in ROC analysis > 0.75). We established a practical gene expression-based nomogram to accurately predict the probability of ATC. We also found that ATC characteristic biomarkers are associated with the tumor immune microenvironment and drug sensitivity. CONCLUSION ADM, PXDN, MMP1, and TFF3 might serve as potential ATC diagnostic biomarkers and may be helpful for ATC molecular targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- C Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - X Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Q Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - G Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Z Di
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Y Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - L Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - W Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - G Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Ganguly K, Shah A, Atri P, Rauth S, Ponnusamy MP, Kumar S, Batra SK. Chemokine-mucinome interplay in shaping the heterogeneous tumor microenvironment of pancreatic cancer. Semin Cancer Biol 2022; 86:511-520. [PMID: 35346803 PMCID: PMC9793394 DOI: 10.1016/j.semcancer.2022.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is exemplified by a complex immune-suppressive, fibrotic tumor microenvironment (TME), and aberrant expression of mucins. The constant crosstalk between cancer cells, cancer-associated fibroblasts (CAFs), and the immune cells mediated by the soluble factors and inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) promote the dynamic temporal switch towards an immune-escape phenotype in the neoplastic cells and its microenvironment that bolsters disease progression. Chemokines have been studied in PC pathogenesis, albeit poorly in the context of mucins, tumor glycocalyx, and TME heterogeneity (CAFs and immune cells). With correlative analysis from PC patients' transcriptome data, support from available literature, and scientific arguments-based speculative extrapolations in terms of disease pathogenesis, we have summarized in this review a comprehensive understanding of chemokine-mucinome interplay during stromal modulation and immune-suppression in PC. Future studies should focus on deciphering the complexities of chemokine-mediated control of glycocalyx maturation, immune infiltration, and CAF-associated immune suppression. Knowledge extracted from such studies will be beneficial to mechanistically correlate the mucin-chemokine abundance in serum versus pancreatic tumors of patients, which may aid in prognostication and stratification of PC patients for immunotherapy.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Qin W, Huang H, Dai Y, Han W, Gao Y. Proteome analysis of urinary biomarkers in a cigarette smoke-induced COPD rat model. Respir Res 2022; 23:156. [PMID: 35705945 PMCID: PMC9202220 DOI: 10.1186/s12931-022-02070-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease caused by inhalation of cigarette smoke (CS) and other harmful gases and particles. METHODS This study aimed to explore potential urinary biomarkers for CS-induced COPD based on LC-MS/MS analysis. RESULTS A total of 340 urinary proteins were identified, of which 79 were significantly changed (30, 31, and 37 at week 2, 4 and 8, respectively). GO annotation of the differential urinary proteins revealed that acute-phase response, response to organic cyclic compounds, complement activation classical pathway, and response to lead ion were significantly enriched at week 2 and 4. Another four processes were only enriched at week 8, namely response to oxidative stress, positive regulation of cell proliferation, thyroid hormone generation, and positive regulation of apoptotic process. The PPI network indicated that these differential proteins were biologically connected in CS-exposed rats. Of the 79 differential proteins in CS-exposed rats, 56 had human orthologs. Seven proteins that had changed at week 2 and 4 when there were no changes of pulmonary function and pathological morphology were verified as potential biomarkers for early screening of CS-induced COPD by proteomic analysis. Another six proteins that changed at week 8 when obvious airflow obstruction was detected were verified as potential biomarkers for prognostic assessment of CS-induced COPD. CONCLUSIONS These results reveal that the urinary proteome could sensitively reflect pathological changes in CS-exposed rats, and provide valuable clues for exploring COPD biomarkers.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - He Huang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Wei Han
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
12
|
Lin YH, Yang YF, Shiue YL. Multi-Omics Analyses to Identify FCGBP as a Potential Predictor in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051178. [PMID: 35626334 PMCID: PMC9140089 DOI: 10.3390/diagnostics12051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
(Purpose) Previous studies have pointed out the significance of IgG Fc binding protein (FCGBP) in carcinogenesis, cancer progression, and tumor immunity in certain malignancies. However, its prognostic values, molecular interaction, and immune characteristics in the head and neck squamous cell carcinoma (HNSC) remained unclear. (Methods) To evaluate the potential role of the FCGBP gene, we used GEPIA2 and UALCAN platforms to explore the differential levels, survivals, and genetic alteration through cBioPortal (based on The Cancer Genome Atlas dataset). STRING, GeneMania, and TIMER2.0 identified the interacting networks. LinkedOmics performed Gene enrichment analysis, and TISIDB and TIMER2.0 evaluated the role of FCGBP in the tumor microenvironment. (Results) The expression level of FCGBP is lower in cancer tissues. A high FCGBP level is significantly associated with better overall- and disease-specific-survivals, regardless of human papillomavirus infection. Low FCGBP levels correlated to a higher tumor protein p53 (TP53) mutation rate (p = 0.018). FCGBP alteration significantly co-occurred with that of TP53 (q = 0.037). Interacting networks revealed a significant association between FGFBP and trefoil factor 3 (TFF3), a novel prognostic marker in various cancers, at transcriptional and translational levels. Enrichment analyses identified that the top gene sets predominantly related to immune and inflammatory responses. Further investigation found that the FCGBP mRNA level positively correlated to the infiltration rates of B cells, Th17/CD8+ T lymphocytes, T helper follicular cells, mast cells, and expression levels of various immune molecules and immune checkpoints in HNSC. (Conclusions) We found that the FCGBP mRNA level negatively correlated to TP53 mutation status while positively correlated to the TFF3 level. Additionally, FCGBP may regulate the tumor microenvironment. These findings support the FCGBP as a potential biomarker to estimate HNSC prognoses.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000; Fax: +886-7-525-0197
| |
Collapse
|
13
|
Yang Y, Lin Z, Lin Q, Bei W, Guo J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis 2022; 13:62. [PMID: 35039476 PMCID: PMC8763889 DOI: 10.1038/s41419-022-04504-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Trefoil factor 3 (TFF3) is the last small-molecule peptide found in the trefoil factor family, which is mainly secreted by intestinal goblet cells and exerts mucosal repair effect in the gastrointestinal tract. Emerging evidence indicated that the TFF3 expression profile and biological effects changed significantly in pathological states such as cancer, colitis, gastric ulcer, diabetes mellitus, non-alcoholic fatty liver disease, and nervous system disease. More importantly, mucosal protection would no longer be the only effect of TFF3, it gradually exhibits carcinogenic activity and potential regulatory effect of nervous and endocrine systems, but the inner mechanisms remain unclear. Understanding the molecular function of TFF3 in specific diseases might provide a new insight for the clinical development of novel therapeutic strategies. This review provides an up-to-date overview of the pathological effects of TFF3 in different disease and discusses the binding proteins, signaling pathways, and clinical application.
Collapse
Affiliation(s)
- Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
14
|
Ergünay T, Ayhan Ö, Celen AB, Georgiadou P, Pekbilir E, Abaci YT, Yesildag D, Rettel M, Sobhiafshar U, Ogmen A, Emre NT, Sahin U. Sumoylation of Cas9 at lysine 848 regulates protein stability and DNA binding. Life Sci Alliance 2022; 5:5/4/e202101078. [PMID: 35022246 PMCID: PMC8761495 DOI: 10.26508/lsa.202101078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cas9 is sumoylated and ubiquitylated in human cells. K848 is the major SUMO2/3 modification site, but multiple lysines are ubiquitylated, precipitating proteasomal degradation. Preventing Cas9 sumoylation by K848 ablation or by pharmacologic means reduces Cas9 half-life and DNA binding ability. CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.
Collapse
Affiliation(s)
- Tunahan Ergünay
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Özgecan Ayhan
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda B Celen
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Panagiota Georgiadou
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Emre Pekbilir
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Yusuf T Abaci
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Duygu Yesildag
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Mandy Rettel
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | - Ulduz Sobhiafshar
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Anna Ogmen
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Nc Tolga Emre
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
15
|
Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, Dehainault C, Hua C, Fréneaux P, Reichman S, Karboul N, Biton A, Mirabal-Ortega L, Larcher M, Brulard C, Arrufat S, Nicolas A, Elarouci N, Popova T, Némati F, Decaudin D, Gentien D, Baulande S, Mariani O, Dufour F, Guibert S, Vallot C, Rouic LLL, Matet A, Desjardins L, Pascual-Pasto G, Suñol M, Catala-Mora J, Llano GC, Couturier J, Barillot E, Schaiquevich P, Gauthier-Villars M, Stoppa-Lyonnet D, Golmard L, Houdayer C, Brisse H, Bernard-Pierrot I, Letouzé E, Viari A, Saule S, Sastre-Garau X, Doz F, Carcaboso AM, Cassoux N, Pouponnot C, Goureau O, Chantada G, de Reyniès A, Aerts I, Radvanyi F. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 2021; 12:5578. [PMID: 34552068 PMCID: PMC8458383 DOI: 10.1038/s41467-021-25792-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Jing Liu
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniela Ottaviani
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Meriem Sefta
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Céline Desbrousses
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Elodie Chapeaublanc
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Rosario Aschero
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Nanor Sirab
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Fabiana Lubieniecki
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Gabriela Lamas
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Laurie Tonon
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Catherine Dehainault
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France
| | - Clément Hua
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Paul Fréneaux
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Narjesse Karboul
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Anne Biton
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France ,grid.428999.70000 0001 2353 6535Present Address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, 75015 Paris, France
| | - Liliana Mirabal-Ortega
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Magalie Larcher
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Céline Brulard
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.411777.30000 0004 1765 1563Present Address: INSERM U930, CHU Bretonneau, 37000 Tours, France
| | - Sandrine Arrufat
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - André Nicolas
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Nabila Elarouci
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Tatiana Popova
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Fariba Némati
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Didier Decaudin
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - David Gentien
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, NGS Platform, 75005 Paris, France
| | - Odette Mariani
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Florent Dufour
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Sylvain Guibert
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Céline Vallot
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Livia Lumbroso-Le Rouic
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Alexandre Matet
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Laurence Desjardins
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Guillem Pascual-Pasto
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Mariona Suñol
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jaume Catala-Mora
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Genoveva Correa Llano
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jérôme Couturier
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Emmanuel Barillot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France
| | - Paula Schaiquevich
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marion Gauthier-Villars
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Lisa Golmard
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Claude Houdayer
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France ,grid.41724.34Present Address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France
| | - Hervé Brisse
- grid.418596.70000 0004 0639 6384Département d’Imagerie Médicale, Institut Curie, 75005 Paris, France
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Eric Letouzé
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France ,grid.508487.60000 0004 7885 7602Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - Alain Viari
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Simon Saule
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Xavier Sastre-Garau
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.414145.10000 0004 1765 2136Present Address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - François Doz
- grid.508487.60000 0004 7885 7602Université de Paris, Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - Angel M. Carcaboso
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Nathalie Cassoux
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Celio Pouponnot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Guillermo Chantada
- grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Aurélien de Reyniès
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Isabelle Aerts
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - François Radvanyi
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| |
Collapse
|
16
|
Zhu R, Liu Y, Yan J, Tian Y, Yan W, Aryal S, Tan F, Chen Y, Tang Y, Bai Y. Overexpression of trefoil factor 1 and trefoil factor 3 in primary extramammary Paget's disease and implication of a novel therapeutic target. J Dermatol 2021; 48:e549-e550. [PMID: 34431541 DOI: 10.1111/1346-8138.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Ruizheng Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Minhang Hospital affiliated to Fudan University, Shanghai, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianna Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Tian
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wannian Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sabita Aryal
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchong Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yichen Tang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Braga Emidio N, Meli R, Tran HNT, Baik H, Morisset-Lopez S, Elliott AG, Blaskovich MAT, Spiller S, Beck-Sickinger AG, Schroeder CI, Muttenthaler M. Chemical Synthesis of TFF3 Reveals Novel Mechanistic Insights and a Gut-Stable Metabolite. J Med Chem 2021; 64:9484-9495. [PMID: 34142550 PMCID: PMC8273887 DOI: 10.1021/acs.jmedchem.1c00767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
TFF3 regulates essential
gastro- and neuroprotective functions,
but its molecular mode of action remains poorly understood. Synthetic
intractability and lack of reliable bioassays and validated receptors
are bottlenecks for mechanistic and structure–activity relationship
studies. Here, we report the chemical synthesis of TFF3 and its homodimer via native chemical ligation followed by oxidative folding.
Correct folding was confirmed by NMR and circular dichroism, and TFF3
and its homodimer were not cytotoxic or hemolytic. TFF3, its homodimer,
and the trefoil domain (TFF310-50) were susceptible
to gastrointestinal degradation, revealing a gut-stable metabolite
(TFF37-54; t1/2 >
24
h) that retained its trefoil structure and antiapoptotic bioactivity.
We tried to validate the putative TFF3 receptors CXCR4 and LINGO2,
but neither TFF3 nor its homodimer displayed any activity up to 10
μM. The discovery of a gut-stable bioactive metabolite and reliable
synthetic accessibility to TFF3 and its analogues are cornerstones
for future molecular probe development and structure–activity
relationship studies.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rajeshwari Meli
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hayeon Baik
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS, Unité Propre de Recherche 4301, Université d'Orléans, Orleans 45071, France
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig 04103, Germany
| | | | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
18
|
Duijndam B, Goudriaan A, van den Hoorn T, van der Stel W, Le Dévédec S, Bouwman P, van der Laan JW, van de Water B. Physiologically Relevant Estrogen Receptor Alpha Pathway Reporters for Single-Cell Imaging-Based Carcinogenic Hazard Assessment of Estrogenic Compounds. Toxicol Sci 2021; 181:187-198. [PMID: 33769548 PMCID: PMC8163057 DOI: 10.1093/toxsci/kfab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) belongs to the nuclear hormone receptor family of ligand-inducible transcription factors and regulates gene networks in biological processes such as cell growth and proliferation. Disruption of these networks by chemical compounds with estrogenic activity can result in adverse outcomes such as unscheduled cell proliferation, ultimately culminating in tumor formation. To distinguish disruptive activation from normal physiological responses, it is essential to quantify relationships between different key events leading to a particular adverse outcome. For this purpose, we established fluorescent protein MCF7 reporter cell lines for ERα-induced proliferation by bacterial artificial chromosome-based tagging of 3 ERα target genes: GREB1, PGR, and TFF1. These target genes are inducible by the non-genotoxic carcinogen and ERα agonist 17β-estradiol in an ERα-dependent manner and are essential for ERα-dependent cell-cycle progression and proliferation. The 3 GFP reporter cell lines were characterized in detail and showed different activation dynamics upon exposure to 17β-estradiol. In addition, they demonstrated specific activation in response to other established reference estrogenic compounds of different potencies, with similar sensitivities as validated OECD test methods. This study shows that these fluorescent reporter cell lines can be used to monitor the spatial and temporal dynamics of ERα pathway activation at the single-cell level for more mechanistic insight, thereby allowing a detailed assessment of the potential carcinogenic activity of estrogenic compounds in humans.
Collapse
Affiliation(s)
- Britt Duijndam
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands.,Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Annabel Goudriaan
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Tineke van den Hoorn
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Sylvia Le Dévédec
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
19
|
O’Brien MH, Pitot HC, Chung SH, Lambert PF, Drinkwater NR, Bilger A. Estrogen Receptor-α Suppresses Liver Carcinogenesis and Establishes Sex-Specific Gene Expression. Cancers (Basel) 2021; 13:2355. [PMID: 34068249 PMCID: PMC8153146 DOI: 10.3390/cancers13102355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen protects females from hepatocellular carcinoma (HCC). To determine whether this protection is mediated by classic estrogen receptors, we tested HCC susceptibility in estrogen receptor-deficient mice. In contrast to a previous study, we found that diethylnitrosamine induces hepatocarcinogenesis to a significantly greater extent when females lack Esr1, which encodes Estrogen Receptor-α. Relative to wild-type littermates, Esr1 knockout females developed 9-fold more tumors. Deficiency of Esr2, which encodes Estrogen Receptor-β, did not affect liver carcinogenesis in females. Using microarrays and QPCR to examine estrogen receptor effects on hepatic gene expression patterns, we found that germline Esr1 deficiency resulted in the masculinization of gene expression in the female liver. Six of the most dysregulated genes have previously been implicated in HCC. In contrast, Esr1 deletion specifically in hepatocytes of Esr1 conditional null female mice (in which Cre was expressed from the albumin promoter) resulted in the maintenance of female-specific liver gene expression. Wild-type adult females lacking ovarian estrogen due to ovariectomy, which is known to make females susceptible to HCC, also maintained female-specific expression in the liver of females. These studies indicate that Esr1 mediates liver cancer risk, and its control of sex-specific liver gene expression involves cells other than hepatocytes.
Collapse
Affiliation(s)
- Mara H. O’Brien
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA;
| | - Henry C. Pitot
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Norman R. Drinkwater
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Ave, Madison, WI 53705, USA; (H.C.P.); (P.F.L.); (N.R.D.)
| |
Collapse
|