1
|
Seese MH, Steelman AJ, Erdman JW. The Impact of LPS on Inflammatory Responses in Alpha-Tocopherol Deficient Mice. Curr Dev Nutr 2024; 8:104416. [PMID: 39185446 PMCID: PMC11342875 DOI: 10.1016/j.cdnut.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Background To facilitate the evaluation of vitamin E (α-tocopherol, αT) status on health outcomes, the αT transfer protein knockout (Ttpa -/- ) mouse model has proved to be an effective tool for lowering αT body stores. Our previous study showed a further reduction in grip strength in LPS-treated Ttpa -/- compared with wild-type (WT) mice during a 9-wk αT-deficient diet feeding period but did not find a difference in LPS-induced inflammatory response markers. Further optimization of this mouse model is warranted to determine the appropriate depletion period and biomarkers endpoints. Objectives The objective was to examine whether 12 wk of an αT-deficient diet altered the inflammatory response 4 and/or 24 h after LPS injection in WT and Ttpa -/- mice. Methods WT and Ttpa -/- weanling littermates were fed an αT-deficient diet ad libitum for 12 wk. Mice were then injected with LPS (10 μg/mouse) or saline (control) intraperitoneally and killed 4 (Study 1) or 24 h (Study 2) later. Concentrations of αT in tissues were measured via HPLC. Grip strength and burrowing were evaluated to assess sickness behaviors before/after LPS injection. Expression of genes related to inflammatory responses was examined via RT-PCR. Results αT concentrations in the brain, liver, and serum of Ttpa -/- mice were notably lower or undetectable compared with WT mice in both studies. Hepatic αT concentrations were further decreased 24 h after LPS injection. Grip strength was reduced at 4 h post-injection but partially recovered to baseline values 24 h after LPS injection. The expression of genes related to inflammatory responses were altered by LPS. However, neither measure of sickness behavior nor gene expression markers differed between genotypes. Conclusions A 4-h LPS challenge reduced grip strength and resulted in an inflammatory response. At 24 h post-dosing, there was a partial, transitory recovery response in both Ttpa -/- and WT mice.
Collapse
Affiliation(s)
- Megumi H Seese
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- USDA-ARS Children's Nutrition Research Center, Houston, TX, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Guerrero-Carrasco M, Targett I, Olmos-Alonso A, Vargas-Caballero M, Gomez-Nicola D. Low-grade systemic inflammation stimulates microglial turnover and accelerates the onset of Alzheimer's-like pathology. Glia 2024; 72:1340-1355. [PMID: 38597386 DOI: 10.1002/glia.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aβ accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.
Collapse
Affiliation(s)
- Monica Guerrero-Carrasco
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Imogen Targett
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Adrian Olmos-Alonso
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
4
|
Dietrich T, Aigner A, Hildebrandt A, Weber J, Meyer Günderoth M, Hohlbaum K, Keller J, Tsitsilonis S, Maleitzke T. Nesting behavior is associated with body weight and grip strength loss in mice suffering from experimental arthritis. Sci Rep 2023; 13:23087. [PMID: 38155203 PMCID: PMC10754866 DOI: 10.1038/s41598-023-49720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Objective animal health evaluation is essential to determine welfare and discomfort in preclinical in vivo research. Body condition scores, body weight, and grimace scales are commonly used to evaluate well-being in murine rheumatoid arthritis (RA) and osteoarthritis experiments. However, nest-building, a natural behavior in mice, has not yet been evaluated in wild type (WT) or genetically modified rodents suffering from collagen antibody-induced arthritis (CAIA). To address this, we analyzed nesting behavior in WT mice, calcitonin gene-related peptide alpha-deficient (αCGRP-/-) mice, and calcitonin receptor-deficient (Calcr-/-) mice suffering from experimental RA compared to healthy control (CTRL) groups of the same genotypes. CAIA was induced in 10-12-week-old male mice, and clinical parameters (body weight, grip strength, clinical arthritis score, ankle size) as well as nesting behavior were assessed over 10 or 48 days. A slight positive association between the nest score and body weight and grip strength was found for animals suffering from CAIA. For the clinical arthritis score and ankle size, no significant associations were observed. Mixed model analyses confirmed these associations. This study demonstrates that clinical effects of RA, such as loss of body weight and grip strength, might negatively affect nesting behavior in mice. Assessing nesting behavior in mice with arthritis could be an additional, non-invasive and thus valuable health parameter in future experiments to monitor welfare and discomfort in mice. During severe disease stages, pre-formed nest-building material may be provided to animals suffering from arthritis.
Collapse
Affiliation(s)
- Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mara Meyer Günderoth
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Patel RK, Pirozzi NT, Hoefler TG, Connolly MG, Singleton LG, Kohman RA. Sex-dependent deficits in associative learning across multiple LPS doses. Physiol Behav 2023; 268:114249. [PMID: 37210020 PMCID: PMC10330873 DOI: 10.1016/j.physbeh.2023.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Activation of the immune system by administration of the bacterial endotoxin lipopolysaccharide (LPS) impairs cognitive and neural plasticity processes. For instance, acute LPS exposure has been reported to impair memory consolidation, spatial learning and memory, and associative learning. However, the inclusion of both males and females in basic research is limited. Whether LPS-induced cognitive deficits are comparable in males and females is currently unclear. Therefore, the present study evaluated sex differences in associative learning following administration of LPS at a dose (i.e., 0.25 mg/kg) that impairs learning in males and higher LPS doses (i.e., 0.325 - 1 mg/kg) across multiple experiments. Adult male and female C57BL/6J mice were trained in a two-way active avoidance conditioning task following their respective treatments. Results showed that LPS had sex-dependent effects on associative learning. The 0.25 mg/kg LPS dose impaired learning in males, consistent with prior work. However, LPS, at any of the doses employed across three experiments, did not disrupt associative learning in females. Female mice were resistant to learning deficits despite showing heightened levels of select proinflammatory cytokines in response to LPS. Collectively, these findings demonstrate that the learning impairments resulting from acute LPS exposure are sex-dependent.
Collapse
Affiliation(s)
- Reeva K Patel
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Nicolas T Pirozzi
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Tiffany G Hoefler
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Meghan G Connolly
- University of Illinois Urbana-Champaign, Neuroscience Program, Champaign, IL, United States of America
| | - Lauren G Singleton
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America.
| |
Collapse
|
6
|
Othman O, Marshall H, Masterson M, Winlow P, Gibson G, Ding Y, Pardon MC. Thymosin beta 4 prevents systemic lipopolysaccharide-induced plaque load in middle-age APP/PS1 mice. Int Immunopharmacol 2023; 117:109951. [PMID: 36878045 DOI: 10.1016/j.intimp.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Lipopolysaccharide (LPS) produced by the gut during systemic infections and inflammation is thought to contribute to Alzheimer's disease (AD) progression. Since thymosin beta 4 (Tβ4) effectively reduces LPS-induced inflammation in sepsis, we tested its potential to alleviate the impact of LPS in the brain of the APPswePS1dE9 mouse model of AD (APP/PS1) and wildtype (WT) mice. 12.5-month-old male APP/PS1 mice (n = 30) and their WT littermates (n = 29) were tested for baseline food burrowing performance, spatial working memory and exploratory drive in the spontaneous alternation and open-field tests, prior to being challenged with LPS (100ug/kg, i.v.) or its vehicle phosphate buffered saline (PBS). Tβ4 (5 mg/kg, i.v.) or PBS, was administered immediately following and at 2 and 4 h after the PBS or LPS challenge, and then once daily for 6 days (n = 7-8). LPS-induced sickness was assessed though monitoring of changes in body weight and behaviour over a 7-day period. Brains were collected for the determination of amyloid plaque load and reactive gliosis in the hippocampus and cortex. Treatment with Tβ4 alleviated sickness symptoms to a greater extent in APP/PS1 than in WT mice by limiting LPS-induced weight loss and inhibition of food burrowing behaviour. It prevented LPS-induced amyloid burden in APP/PS1 mice but increased astrocytic and microglial proliferation in the hippocampus of LPS-treated WT mice. These data show that Tβ4 can alleviate the adverse effects of systemic LPS in the brain by preventing exacerbation of amyloid deposition in AD mice and by inducing reactive microgliosis in aging WT mice.
Collapse
Affiliation(s)
- Othman Othman
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Hayley Marshall
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Mitchell Masterson
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Poppy Winlow
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Graham Gibson
- Nottingham University Hospitals NHS Trust, Department of Histopathology, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yuchun Ding
- School of Computer Sciences, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom
| | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology & Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
7
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
8
|
Oliver VL, Pang DSJ. Pain Recognition in Rodents. Vet Clin North Am Exot Anim Pract 2023; 26:121-149. [PMID: 36402478 DOI: 10.1016/j.cvex.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Available methods for recognizing and assessing pain in rodents have increased over the last 10 years, including the development of validated pain assessment scales. Much of this work has been driven by the needs of biomedical research, and there are specific challenges to applying these scales in the clinical environment. This article provides an introduction to pain assessment scale validation, reviews current methods of pain assessment, highlighting their strengths and weaknesses, and makes recommendations for assessing pain in a clinical environment.
Collapse
Affiliation(s)
- Vanessa L Oliver
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Animal Health Unit, VP Research, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Daniel S J Pang
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
9
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
10
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
11
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
12
|
Brown WE, Bradford BJ. Invited review: Mechanisms of hypophagia during disease. J Dairy Sci 2021; 104:9418-9436. [PMID: 34099296 DOI: 10.3168/jds.2021-20217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Suppression of appetite, or hypophagia, is among the most recognizable effects of disease in livestock, with the potential to impair growth, reproduction, and lactation. The continued evolution of the field of immunology has led to a greater understanding of the immune and endocrine signaling networks underlying this conserved response to disease. Inflammatory mediators, especially including the cytokines tumor necrosis factor-α and interleukin-1β, are likely pivotal to disease-induced hypophagia, based on findings in both rodents and cattle. However, the specific mechanisms linking a cytokine surge to decreased feeding behavior are more difficult to pin down and likely include direct effects on appetite centers in the brain, alteration of gastric motility, and modulation of other endocrine factors that influence appetite and satiety. These insights into the mechanisms for disease-induced hypophagia have great relevance for management of neonatal calves, mature cows transitioning to lactation, and cows experiencing mastitis; however, it is not necessarily the case that increasing feed intake by any means possible will improve health outcomes for diseased cattle. We explore conflicting effects of hypophagia on immune responses, which may be impaired by the lack of specific substrates, versus apparent benefits for controlling the growth of some pathogens. Anti-inflammatory strategies have shown promise for promoting recovery of feed intake following some conditions but not others. Finally, we explore the potential for early disease detection through automated monitoring of feeding behavior and consider which strategies may be implemented to respond to early hypophagia.
Collapse
Affiliation(s)
- W E Brown
- Department of Animal Sciences & Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
13
|
Sallam MY, El-Gowilly SM, El-Mas MM. Androgenic modulation of arterial baroreceptor dysfunction and neuroinflammation in endotoxic male rats. Brain Res 2021; 1756:147330. [PMID: 33539800 DOI: 10.1016/j.brainres.2021.147330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Autonomic neuropathy contributes to cardiovascular derangements induced by endotoxemia. In this communication, we tested the hypothesis that androgenic hormones improve arterial baroreflex dysfunction and predisposing neuroinflammatory response caused by endotoxemia in male rats. Baroreflex curves relating changes in heart rate to increases or decreases in blood pressure evoked by phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious sham-operated, castrated, and testosterone-replaced castrated rats treated with or without lipopolysaccharide (LPS, 10 mg/kg i.v.). Slopes of baroreflex curves were taken as measures of baroreflex sensitivity (BRS). In sham rats, LPS significantly reduced reflex bradycardia (BRSPE) and tachycardia (BRSSNP) and increased immunohistochemical expression of nuclear factor kappa B (NFκB) in heart and brainstem neurons of nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM). The baroreflex depressant effect of LPS was maintained in castrated rats despite the remarkably attenuated inflammatory response. Testosterone replacement of castrated rats counteracted LPS-evoked BRSPE, but not BRSSNP, depression and increased cardiac, but not neuronal, NFκB expression. We also evaluated whether LPS responses could be affected following pharmacologic inhibition of androgenic biosynthetic pathways. Whereas none of LPS effects were altered in rats pretreated with formestane (aromatase inhibitor) or finasteride (5α-reductase inhibitor), the LPS-evoked BRSPE, but not BRSSNP, depression and cardiac and neuronal inflammation disappeared in rats pretreated with degarelix (gonadotropin-releasing hormone receptor blocker). Overall, despite the seemingly provocative role for the hypothalamic-pituitary-gonadal axis in the neuroinflammatory and baroreflex depressant effects of LPS, testosterone appears to distinctly modulate the two LPS effects.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
14
|
Schroeder P, Rivalan M, Zaqout S, Krüger C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM, Lehnardt S. Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun 2021; 91:181-193. [PMID: 33002631 DOI: 10.1016/j.bbi.2020.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
While the original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis, the role of its ortholog Toll-like receptors (TLRs), the interleukin 1 receptor (IL-1R) family, and the associated signaling pathways in mammalian brain development and structure is poorly understood. Because the adaptor protein myeloid differentiation primary response protein 88 (MyD88) is essential for downstream signaling of most TLRs and IL-1R, we systematically investigated the effect of MyD88 deficiency on murine brain structure during development and on behavior. In neonatal Myd88-/- mice, neocortical thickness was reduced, while density of cortical neurons was increased. In contrast, microglia, astrocyte, oligodendrocyte, and proliferating cell numbers were unchanged in these mice compared to wild-type mice. In adult Myd88-/- mice, neocortical thickness was unaltered, but neuronal density in neocortex and hippocampus was increased. Neuron arborization was less pronounced in adult Myd88-/- mice compared to wild-type animals. In addition, numbers of microglia and proliferating cells were increased in the neocortex and subventricular zone, respectively, with unaltered astrocyte and oligodendrocyte numbers, and myelinization was enhanced in the adult Myd88-/- neocortex. These morphologic changes in the brain of adult Myd88-/- mice were accompanied by specific behavioral traits, such as decreased locomotor activity, increased anxiety-like behavior, but normal day/light activity, satisfactory learning, short- and long-term spatial memory, potential cognitive inflexibility, and increased hanging and locomotor behavior within their home cage. Taken together, MyD88 deficiency results in morphologic and cellular changes in the mouse brain, as well as in altered natural and specific behaviors. Our data indicate a pathophysiological significance of MyD88 for mammalian CNS development, structure, and function.
Collapse
Affiliation(s)
- Patricia Schroeder
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Rivalan
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Schüler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melissa Long
- Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Mohamed MY, Masocha W. Indomethacin augments lipopolysaccharide-induced expression of inflammatory molecules in the mouse brain. PeerJ 2020; 8:e10391. [PMID: 33240677 PMCID: PMC7680052 DOI: 10.7717/peerj.10391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Indomethacin and other non-steroidal anti-inflammatory drugs (NSAIDs) are used to relieve pain and fever including during infections. However, some studies suggest that NSAIDs protect against neuroinflammation, while some find no effects or worsening of neuroinflammation. We evaluated the effect of indomethacin alone on in combination with minocycline, a drug that inhibits neuroinflammation, on the expression of transcripts of neuroinflammatory molecules-induced by lipopolysaccharide (LPS) in the brain of mice. Inoculation of male BALB/c mice with LPS induced the expression of the microglia marker ionized calcium binding adaptor molecule protein, mRNA expression of the genes for cytokines interleukin-1beta (Il1b) and tumor necrosis factor-alpha (Tnf) and inducible nitric oxide synthase gene (Nos2), but not Il10, in the brain. Treatment with indomethacin had no significant effect on the cytokines or Nos2 mRNA expression in naïve animals. However, pretreatment with indomethacin increased LPS-induced Nos2 mRNA and inducible nitric oxide (iNOS) protein expression, but had no significant effect on LPS-induced mRNA expression of the cytokines. Minocycline reduced LPS-induced Il1b and Tnf, but not Nos2, mRNA expression. Treatment with indomethacin plus minocycline had no effect on LPS-induced Il1b, Tnf and Nos2 mRNA expression. In conclusion these results show that indomethacin significantly augments LPS-induced Nos2 mRNA and iNOS protein expression in the brain. In the presence of indomethacin, minocycline could not inhibit LPS-induced pro-inflammatory cytokine expression. Thus, indomethacin could exacerbate neuroinflammation by increasing the expression of iNOS and also block the anti-inflammatory effects of minocycline.
Collapse
Affiliation(s)
- Mona Yasin Mohamed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
16
|
Social isolation in rats: Effects on animal welfare and molecular markers for neuroplasticity. PLoS One 2020; 15:e0240439. [PMID: 33108362 PMCID: PMC7591026 DOI: 10.1371/journal.pone.0240439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Early life stress compromises brain development and can contribute to the development of mental illnesses. A common animal model used to study different facets of psychiatric disorders is social isolation from early life on. In rats, this isolation can induce long-lasting alterations in molecular expression and in behavior. Since social isolation models severe psychiatric symptoms, it is to be expected that it affects the overall wellbeing of the animals. As also promoted by the 3Rs principle, though, it is pivotal to decrease the burden of laboratory animals by limiting the number of subjects (reduce, replace) and by improving the animals’ wellbeing (refine). The aim of this study was therefore to test possible refinement strategies such as resocialization and mere adult social isolation. We examined whether the alternatives still triggered the necessary phenotype while minimizing the stress load on the animals. Interestingly, we did not find reduced wellbeing-associated burrowing performance in isolated rats. The hyperactive phenotype seen in socially isolated animals was observed for rats undergoing the adult-only isolation, but resocializing ameliorated the locomotor abnormality. Isolation strongly affected markers of neuroplasticity in the prefrontal cortex independent of timing: mRNA levels of Arc, Bdnf and the pool of Bdnf transcripts with the 3’ long UTR were reduced in all groups. Bdnf splice variant IV expression was reduced in lifelong-isolated animals. Some of these deficits normalized after resocialization; likewise, exon VI Bdnf mRNA levels were reduced only in animals persistently isolated. Conversely, social deprivation did not affect the expression of Gad67 and Pvb, two GABAergic markers, whereas changes occurred in the expression of dopamine d1 and d2 receptors. As adult isolation was sufficient to trigger the hyperactive phenotype and impaired neuroplasticity in the prefrontal cortex, it could be a candidate for a refinement strategy for certain research questions. To fully grade the severity of post-weaning social isolation and the alternatives, adult isolation and resocialization, a more profound and multimodal assessment approach is necessary.
Collapse
|
17
|
Sarlus H, Codita A, Wang X, Cedazo-Minguez A, Schultzberg M, Oprica M. Chronic Airway Allergy Induces Pro-Inflammatory Responses in the Brain of Wildtype Mice but Not 3xTgAD Mice. Neuroscience 2020; 448:14-27. [PMID: 32916195 DOI: 10.1016/j.neuroscience.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022]
Abstract
The effects of systemic inflammation on the pathogenesis of Alzheimer's disease (AD) are not clarified, both beneficial and deleterious effects being reported. Allergy is accompanied by a systemic inflammatory response and some epidemiological studies have reported a positive association between a history of allergy/asthma and dementia. To investigate whether chronic airway allergy influences the inflammatory status in the brain, AD-like pathology, and behaviour in relation to AD, we induced chronic airway allergy in triple transgenic AD (3xTgAD) and wildtype (WT) mice by repeated exposure to ovalbumin (OVA) as allergen. Behavioural tests relevant for hippocampus-dependent behaviour were performed. We found that allergy significantly increased the brain levels of immunoglobulin (Ig) G, IgE. In 3xTgAD mice, allergy increased the levels of decay accelerating factor and decreased the phosphorylation of p38. In contrast, allergy increased the levels of interleukin (IL)-1β and complement component 1q (C1q) in WT mice. Bronchoalveolar lavage fluid analysis confirmed eosinophilia in both genotypes, but the basal levels of eosinophils were lower in 3xTgAD mice. In summary, allergy induced predominantly anti-inflammatory effects in 3xTgAD mice, and pro-inflammatory effects in WT mice, thus being another potential factor to be considered when studying AD pathogenesis.
Collapse
Affiliation(s)
- Heela Sarlus
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, SE-171 76 Solna, Sweden.
| | - Alina Codita
- Södertälje Hospital, Geriatric Clinic, Södertälje, Sweden.
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Neuroceriatrics, Center for Alzheimer Research at Karolinska Institutet, BioClinicum J9:20, SE-171 64 Solna, Sweden.
| | - Marianne Schultzberg
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Neuroceriatrics, Center for Alzheimer Research at Karolinska Institutet, BioClinicum J9:20, SE-171 64 Solna, Sweden.
| | - Mircea Oprica
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Acute Inflammation Alters Brain Energy Metabolism in Mice and Humans: Role in Suppressed Spontaneous Activity, Impaired Cognition, and Delirium. J Neurosci 2020; 40:5681-5696. [PMID: 32513828 PMCID: PMC7363463 DOI: 10.1523/jneurosci.2876-19.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes. LPS (250 µg/kg) induced hypoglycemia, which was mimicked by interleukin (IL)-1β (25 µg/kg) but not prevented in IL-1RI−/− mice, nor by IL-1 receptor antagonist (IL-1RA; 10 mg/kg). LPS suppression of locomotor activity correlated with blood glucose concentrations, was mitigated by exogenous glucose (2 g/kg), and was exacerbated by 2-deoxyglucose (2-DG) glycolytic inhibition, despite preventing IL-1β synthesis. Using the ME7 model of chronic neurodegeneration in female mice, to examine vulnerability of the diseased brain to acute stressors, we showed that LPS (100 µg/kg) produced acute cognitive dysfunction, selectively in those animals. These acute cognitive impairments were mimicked by insulin (11.5 IU/kg) and mitigated by glucose, demonstrating that acutely reduced glucose metabolism impairs cognition selectively in the vulnerable brain. To test whether these acute changes might predict altered carbohydrate metabolism during delirium, we assessed glycolytic metabolite levels in CSF in humans during inflammatory trauma-induced delirium. Hip fracture patients showed elevated CSF lactate and pyruvate during delirium, consistent with acutely altered brain energy metabolism. Collectively, the data suggest that disruption of energy metabolism drives behavioral and cognitive consequences of acute systemic inflammation. SIGNIFICANCE STATEMENT Acute systemic inflammation alters behavior and produces disproportionate effects, such as delirium, in vulnerable individuals. Delirium has serious short and long-term sequelae but mechanisms remain unclear. Here, we show that both LPS and interleukin (IL)-1β trigger hypoglycemia, reduce CSF glucose, and suppress spontaneous activity. Exogenous glucose mitigates these outcomes. Equivalent hypoglycemia, induced by lipopolysaccharide (LPS) or insulin, was sufficient to trigger cognitive impairment selectively in animals with existing neurodegeneration and glucose also mitigated those impairments. Patient CSF from inflammatory trauma-induced delirium also shows altered brain carbohydrate metabolism. The data suggest that the degenerating brain is exquisitely sensitive to acute behavioral and cognitive consequences of disrupted energy metabolism. Thus “bioenergetic stress” drives systemic inflammation-induced dysfunction. Elucidating this may offer routes to mitigating delirium.
Collapse
|
19
|
Lasselin J, Schedlowski M, Karshikoff B, Engler H, Lekander M, Konsman JP. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 2020; 115:15-24. [PMID: 32433924 DOI: 10.1016/j.neubiorev.2020.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Increasing evidence from animal and human studies suggests that inflammation may be involved in mood disorders. Sickness behavior and emotional changes induced by experimental inflammatory stimuli have been extensively studied in humans and rodents to better understand the mechanisms underlying inflammation-driven mood alterations. However, research in animals and humans have remained compartmentalized and a comprehensive comparison of inflammation-induced sickness and depressive-like behavior between rodents and humans is lacking. Thus, here, we highlight similarities and differences in the effects of bacterial lipopolysaccharide administration on the physiological (fever and cytokines), behavioral and emotional components of the sickness response in rodents and humans, and discuss the translational challenges involved. We also emphasize the differences between observable sickness behavior and subjective sickness reports, and advocate for the need to obtain both subjective reports and objective measurements of sickness behavior in humans. We aim to provide complementary insights for translational clinical and experimental research on inflammation-induced behavioral and emotional changes, and their relevance for mood disorders such as depression.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manfred Schedlowski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Pieter Konsman
- Institute for Cognitive and Integrative Neuroscience, CNRS UMR 5287, University of Bordeaux, France
| |
Collapse
|
20
|
Barron MR, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. Increasing Tau 4R Tau Levels Exacerbates Hippocampal Tau Hyperphosphorylation in the hTau Model of Tauopathy but Also Tau Dephosphorylation Following Acute Systemic Inflammation. Front Immunol 2020; 11:293. [PMID: 32194553 PMCID: PMC7066213 DOI: 10.3389/fimmu.2020.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation is considered a mechanistic driver of Alzheimer's disease, thought to increase tau phosphorylation, the first step to the formation of neurofibrillary tangles (NFTs). To further understand how inflammation impacts the development of tau pathology, we used (hTau) mice, which express all six, non-mutated, human tau isoforms, but with an altered ratio of tau isoforms favoring 3R tau due to the concomitant loss of murine tau (mTau) that is predominantly 4R. Such an imbalance pattern has been related to susceptibility to NFTs formation, but whether or not this also affects susceptibility to systemic inflammation and related changes in tau phosphorylation is not known. To reduce the predominance of 3R tau by increasing 4R tau availability, we bred hTau mice on a heterozygous mTau background and compared the impact of systemic inflammation induced by lipopolysaccharide (LPS) in hTau mice hetero- or homozygous mTau knockout. Three-month-old male wild-type (Wt), mTau+/-, mTau-/-, hTau/mTau+/-, and hTau/mTau-/- mice were administered 100, 250, or 330 μg/kg of LPS or its vehicle phosphate buffer saline (PBS) [intravenously (i.v.), n = 8-9/group]. Sickness behavior, reflected by behavioral suppression in the spontaneous alternation task, hippocampal tau phosphorylation, measured by western immunoblotting, and circulating cytokine levels were quantified 4 h after LPS administration. The persistence of the LPS effects (250 μg/kg) on these measures, and food burrowing behavior, was assessed at 24 h post-inoculation in Wt, mTau+/-, and hTau/mTau+/- mice (n = 9-10/group). In the absence of immune stimulation, increasing 4R tau levels in hTau/mTau+/- exacerbated pS202 and pS396/404 tau phosphorylation, without altering total tau levels or worsening early behavioral perturbations characteristic of hTau/mTau-/- mice. We also show for the first time that modulating 4R tau levels in hTau mice affects the response to systemic inflammation. Behavior was suppressed in all genotypes 4 h following LPS administration, but hTau/mTau+/- exhibited more severe sickness behavior at the 100 μg/kg dose and a milder behavioral and cytokine response than hTau/mTau-/- mice at the 330 μg/kg dose. All LPS doses decreased tau phosphorylation at both epitopes in hTau/mTau+/- mice, but pS202 levels were selectively reduced at the 100 μg/kg dose in hTau/mTau-/- mice. Behavioral suppression and decreased tau phosphorylation persisted at 24 h following LPS administration in hTau/mTau+/- mice.
Collapse
Affiliation(s)
- Matthew R Barron
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jane Gartlon
- EMEA Knowledge Centre, Eisai Ltd., Hatfield, United Kingdom
| | | | | | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
21
|
Cunningham CJ, Wong R, Barrington J, Tamburrano S, Pinteaux E, Allan SM. Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Res Ther 2020; 11:32. [PMID: 31964413 PMCID: PMC6975095 DOI: 10.1186/s13287-020-1560-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) hold great potential as a therapy for stroke and have previously been shown to promote recovery in preclinical models of cerebral ischaemia. MSCs secrete a wide range of growth factors, chemokines, cytokines and extracellular vesicles—collectively termed the secretome. In this study, we assessed for the first time the efficacy of the IL-1α-primed MSC-derived secretome on brain injury and functional recovery after cerebral ischaemia. Methods Stroke was induced in male C57BL/6 mice using the intraluminal filament model of middle cerebral artery occlusion. Conditioned medium from IL-1α-primed MSCs or vehicle was administered at the time of reperfusion or at 24 h post-stroke by subcutaneous injection. Results IL-1α-primed MSC-derived conditioned medium treatment at the time of stroke led to a ~ 30% reduction in lesion volume at 48 h and was associated with modest improvements in body mass gain, 28-point neurological score and nest building. Administration of MSC-derived conditioned medium at 24 h post-stroke led to improved nest building and neurological score despite no observed differences in lesion volume at day 2 post-stroke. Conclusions Our results show for the first time that the administration of conditioned medium from IL-1α-primed MSCs leads to improvements in behavioural outcomes independently of neuroprotection.
Collapse
Affiliation(s)
- Catriona J Cunningham
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Raymond Wong
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Jack Barrington
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sabrina Tamburrano
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Agostini A, Yuchun D, Li B, Kendall DA, Pardon MC. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Behav Immun 2020; 83:87-111. [PMID: 31560941 PMCID: PMC6928588 DOI: 10.1016/j.bbi.2019.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
Systemic inflammation enhances the risk and progression of Alzheimer's disease (AD). Lipopolysaccharide (LPS), a potent pro-inflammatory endotoxin produced by the gut, is found in excess levels in AD where it associates with neurological hallmarks of pathology. Sex differences in susceptibility to inflammation and AD progression have been reported, but how this impacts on LPS responses remains under investigated. We previously reported in an APP/PS1 model of AD that systemic LPS administration rapidly altered hippocampal metabolism in males. Here, we used untargeted metabolomics to comprehensively identify hippocampal metabolic processes occurring at onset of systemic inflammation with LPS (100 µg/kg, i.v.) in APP/PS1 mice, at an early pathological stage, and investigated the sexual dimorphism in this response. Four hours after LPS administration, pathways regulating energy metabolism, immune and oxidative stress responses were simultaneously recruited in the hippocampi of 4.5-month-old mice with a more protective response in females despite their pro-inflammatory and pro-oxidant metabolic signature in the absence of immune stimulation. LPS induced comparable behavioural sickness responses in male and female wild-type and APP/PS1 mice and comparable activation of both the serotonin and nicotinamide pathways of tryptophan metabolism in their hippocampi. Elevations in N-methyl-2-pyridone-5-carboxamide, a major toxic metabolite of nicotinamide, correlated with behavioural sickness regardless of sex, as well as with the LPS-induced hypothermia seen in males. Males also exhibited a pro-inflammatory-like downregulation of pyruvate metabolism, exacerbated in APP/PS1 males, and methionine metabolism whereas females showed a greater cytokine response and anti-inflammatory-like downregulation of hippocampal methylglyoxal and methionine metabolism. Metabolic changes were not associated with morphological markers of immune cell activation suggesting that they constitute an early event in the development of LPS-induced neuroinflammation and AD exacerbation. These data suggest that the female hippocampus is more tolerant to acute systemic inflammation.
Collapse
Affiliation(s)
- Alessandra Agostini
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ding Yuchun
- School of Computer Sciences, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK; School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - Bai Li
- School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - David A Kendall
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
23
|
Haley MJ, White CS, Roberts D, O'Toole K, Cunningham CJ, Rivers-Auty J, O'Boyle C, Lane C, Heaney O, Allan SM, Lawrence CB. Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Transl Stroke Res 2019; 11:837-850. [PMID: 31865538 PMCID: PMC7340675 DOI: 10.1007/s12975-019-00763-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
During recovery, stroke patients are at risk of developing long-term complications that impact quality of life, including changes in body weight and composition, depression and anxiety, as well as an increased risk of subsequent vascular events. The aetiologies and time-course of these post-stroke complications have not been extensively studied and are poorly understood. Therefore, we assessed long-term changes in body composition, metabolic markers and behaviour after middle cerebral artery occlusion in mice. These outcomes were also studied in the context of obesity, a common stroke co-morbidity proposed to protect against post-stroke weight loss in patients. We found that stroke induced long-term changes in body composition, characterised by a sustained loss of fat mass with a recovery of lean weight loss. These global changes in response to stroke were accompanied by an altered lipid profile (increased plasma free fatty acids and triglycerides) and increased adipokine release at 60 days. After stroke, the liver also showed histological changes indicative of liver damage and a decrease in plasma alanine aminotransferase (ALT) was observed. Stroke induced depression and anxiety-like behaviours in mice, illustrated by deficits in exploration, nest building and burrowing behaviours. When initial infarct volumes were matched between mice with and without comorbid obesity, these outcomes were not drastically altered. Overall, we found that stroke induced long-term changes in depressive/anxiety-like behaviours, and changes in plasma lipids, adipokines and the liver that may impact negatively on future vascular health.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Claire S White
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Daisy Roberts
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Kelly O'Toole
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Catriona J Cunningham
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Conor O'Boyle
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Conor Lane
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Oliver Heaney
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
24
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
25
|
Halawa AA, Rees KA, McCamy KM, Winzer-Serhan UH. Central and peripheral immune responses to low-dose lipopolysaccharide in a mouse model of the 15q13.3 microdeletion. Cytokine 2019; 126:154879. [PMID: 31629107 DOI: 10.1016/j.cyto.2019.154879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Carriers of the human 15q13.3 microdeletion (MD) present with a variable spectrum of neuropathological phenotypes that range from asymptomatic to severe clinical outcomes, suggesting an interplay of genetic and non-genetic factors. The most common 2 MB 15q13.3 MD encompasses six genes (MTMR10, FAN1, TRPM1, KLF13, OTUD7A, and CHRNA7), which are expressed in neuronal and non-neuronal tissues. The nicotinic acetylcholine receptor (nAChR) α7, encoded by CHRNA7, is a key player in the cholinergic anti-inflammatory pathway, and the transcription factor KLF13 is also involved in immune responses. Using a mouse model with a heterozygous deletion of the orthologous region of the human 15q13.3 (Df[h15q13]/+), the present study examined peripheral and central innate immune responses to an acute intraperitoneal (i.p.) injection of the bacteriomimetic, lipopolysaccharide (LPS) (100 μg/kg) in adult heterozygous (Het) and wildtype (WT) mice. Serum levels of inflammatory markers were measured 2 h post injection using a Multiplex assay. In control saline injected animals, all measured cytokines were at or below detection limits, whereas LPS significantly increased serum levels of interleukin 1beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6 and IL-10, but not interferon-γ. There was no effect of genotype but a sexual dimorphic response for TNF-α, with females exhibiting greater LPS-induced TNF-α serum levels than males. In situ hybridization revealed similar increases in LPS-induced c-fos mRNA expression in the dorsal vagal complex in all groups. The hippocampal expression of the pro-inflammatory cytokines was evaluated by real-time quantitative PCR. LPS-treatment resulted in significantly increased mRNA expression for IL-1β, IL-6, and TNF-α compared to saline controls, with no effect of genotype, but a significant sex-effect was detected for IL-1β. The present study provided no evidence for interactive effects between the heterozygous 15q13.3 MD and a low-dose LPS immune challenge in innate peripheral or central immune responses, although, sex-differential effects in males and females were detected.
Collapse
Affiliation(s)
- Amal A Halawa
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
26
|
Gomes GF, Peixoto RDDF, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, Fernandes TN, de Abreu CC, Casseb SMM, de Lima CM, de Oliveira MA, Diniz DG, Vasconcelos PFDC, Sosthenes MCK, Diniz CWP. Differential Microglial Morphological Response, TNFα, and Viral Load in Sedentary-like and Active Murine Models After Systemic Non-neurotropic Dengue Virus Infection. J Histochem Cytochem 2019; 67:419-439. [PMID: 30924711 DOI: 10.1369/0022155419835218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
Collapse
Affiliation(s)
- Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Railana Deise da Fonseca Peixoto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Brenda Gonçalves Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Kedma Farias Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Lohrane Rosa Bayma
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Pedro Alves Feitoza Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cintya Castro de Abreu
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
27
|
Maternal Flavonoids Intake Reverts Depression-Like Behaviour in Rat Female Offspring. Nutrients 2019; 11:nu11030572. [PMID: 30866491 PMCID: PMC6470771 DOI: 10.3390/nu11030572] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Maternal hypercaloric exposure during pregnancy and lactation is a risk factor for developing diseases associated with inflammation such as obesity, diabetes and, neurological diseases in the offspring. Neuroinflammation might modulate neuronal activation and flavonoids are dietary compounds that have been proven to exert anti-inflammatory properties. Thus, the aim of the present study is to evaluate the effect of maternal supplementation with flavonoids (kaempferol-3-O-glucoside and narirutin) on the prevention of depression-like behaviour in the female offspring of dams fed with an obesogenic diet during the perinatal period. Maternal programming was induced by high fat (HFD), high sugar (HSD), or cafeteria diets exposure and depressive like-behaviour, referred to as swimming, climbing, and immobility events, was evaluated around postnatal day 56–60 before and after 30 mg/kg i.p. imipramine administration in the female offspring groups. Central inflammation was analyzed by measuring the TANK binding kinase 1 (TBK1) expression. We found that the offspring of mothers exposed to HSD programming failed to show the expected antidepressant effect of imipramine. Also, imipramine injection, to the offspring of mothers exposed to cafeteria diet, displayed a pro-depressive like-behaviour phenotype. However, dietary supplementation with flavonoids reverted the depression-like behaviour in the female offspring. Finally, we found that HSD programming increases the TBK1 inflammatory protein marker in the hippocampus. Our data suggest that maternal HSD programming disrupts the antidepressant effect of imipramine whereas cafeteria diet exposure leads to depressive-like behaviour in female offspring, which is reverted by maternal flavonoid supplementation.
Collapse
|
28
|
Standard analgesics reverse burrowing deficits in a rat CCI model of neuropathic pain, but not in models of type 1 and type 2 diabetes-induced neuropathic pain. Behav Brain Res 2018; 350:129-138. [DOI: 10.1016/j.bbr.2018.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
|
29
|
Kumar A, Rani A, Scheinert RB, Ormerod BK, Foster TC. Nonsteroidal anti-inflammatory drug, indomethacin improves spatial memory and NMDA receptor function in aged animals. Neurobiol Aging 2018; 70:184-193. [PMID: 30031231 DOI: 10.1016/j.neurobiolaging.2018.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
A redox-mediated decrease in N-methyl-D-aspartate (NMDA) receptor function contributes to psychiatric diseases and impaired cognition during aging. Inflammation provides a potential source of reactive oxygen species for inducing NMDA receptor hypofunction. The present study tested the hypothesis that the nonsteroidal anti-inflammatory drug indomethacin, which improves spatial episodic memory in aging rats, would enhance NMDA receptor function through a shift in the redox state. Male F344 young and aged rats were prescreened using a 1-day version of the water maze task. Animals were then treated with the indomethacin or vehicle, delivered in a frozen milk treat (orally, twice per day, 18 days), and retested on the water maze. Indomethacin treatment enhanced water maze performance. Hippocampal slices were prepared for examination of CA3-CA1 synaptic responses, long-term potentiation, and NMDA receptor-mediated synaptic responses. No effect of treatment was observed for the total synaptic response. Long-term potentiation magnitude and NMDA receptor input-output curves were enhanced for aged indomethacin-treated animals. To examine redox regulation of NMDA receptors, a second group of aged animals was treated with indomethacin or vehicle, and the effect of the reducing agent, dithiothreitol ([DTT], 0.5 mM) on NMDA receptor-mediated synaptic responses was evaluated. As expected, DTT increased the NMDA receptor response and the effect of DTT was reduced by indomethacin treatment. The results indicate that indomethacin acted to diminish the age-related and redox-mediated NMDA receptor hypofunction and suggest that inflammation contributes to cognitive impairment through an increase in redox stress.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rachel B Scheinert
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, J. Crayton Pruitt Family, University of Florida, Gainesville, FL, USA
| | - Brandi K Ormerod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, J. Crayton Pruitt Family, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Albertini G, Deneyer L, Ottestad-Hansen S, Zhou Y, Ates G, Walrave L, Demuyser T, Bentea E, Sato H, De Bundel D, Danbolt NC, Massie A, Smolders I. Genetic deletion of xCT attenuates peripheral and central inflammation and mitigates LPS-induced sickness and depressive-like behavior in mice. Glia 2018; 66:1845-1861. [PMID: 29693305 DOI: 10.1002/glia.23343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.
Collapse
Affiliation(s)
- Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Sigrid Ottestad-Hansen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Yun Zhou
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Gamze Ates
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Niigata University, Niigata, 951-8518, Japan
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Niels C Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
31
|
Verma M, Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, Seckl JR, Holmes MC, Chapman KE. 11β-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav Immun 2018; 69:223-234. [PMID: 29162555 PMCID: PMC5871395 DOI: 10.1016/j.bbi.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11β-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11β-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11β-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11β-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.
Collapse
Affiliation(s)
- Manu Verma
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tiina M J Kipari
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Zhenguang Zhang
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tak Yung Man
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan R Seckl
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Megan C Holmes
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
32
|
The effect of an acute systemic inflammatory insult on the chronic effects of a single mild traumatic brain injury. Behav Brain Res 2018; 336:22-31. [DOI: 10.1016/j.bbr.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
|
33
|
Whittaker AL, Zhu Y, Howarth GS, Loung CS, Bastian SEP, Wirthensohn MG. Effects of commercially produced almond by-products on chemotherapy-induced mucositis in rats. World J Gastrointest Pathophysiol 2017; 8:176-187. [PMID: 29184703 PMCID: PMC5696615 DOI: 10.4291/wjgp.v8.i4.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine if almond extracts reduce the severity of chemotherapy-induced mucositis as determined through biochemical, histological and behavioural markers.
METHODS Intestinal mucositis is a debilitating condition characterized by inflammation and ulceration of the gastrointestinal mucosa experienced by cancer patients undergoing chemotherapy. Certain bioactive plant products have shown promise in accelerating mucosal repair and alleviating clinical symptoms. This study evaluated almond extracts for their potential to reduce the severity of chemotherapy-induced mucositis in Dark Agouti rats. Female Dark Agouti rats were gavaged (days 3-11) with either PBS, almond hull or almond blanched water extract at two doses, and were injected intraperitoneally with 5-fluorouracil (5-FU-150 mg/kg) or saline on day 9 to induce mucositis. Burrowing behavior, histological parameters and myeloperoxidase activity were assessed.
RESULTS Bodyweight was significantly reduced in rats that received 5-FU compared to saline-treated controls (P < 0.05). Rats administered 5-FU significantly increased jejunal and ileal MPO levels (1048%; P < 0.001 and 409%; P < 0.001), compared to healthy controls. Almond hull extract caused a pro-inflammatory response in rats with mucositis as evidenced by increased myeloperoxidase activity in the jejunum when compared to 5-FU alone (rise 50%, 1088 ± 96 U/g vs 723 ± 135 U/g, P = 0.02). Other extract-related effects on inflammatory activity were minimal. 5-FU significantly increased histological severity score compared to healthy controls confirming the presence of mucositis (median of 9.75 vs 0; P < 0.001). The extracts had no ameliorating effect on histological severity score in the jejunum or ileum. Burrowing behavior was significantly reduced in all chemotherapy-treated groups (P = 0.001). The extracts failed to normalize burrowing activity to baseline levels.
CONCLUSION Almond extracts at these dosages offer little beneficial effect on mucositis severity. Burrowing provides a novel measure of affective state in studies of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Ying Zhu
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chi S Loung
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
34
|
Santos LE, Ferreira ST. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology 2017; 136:350-360. [PMID: 29129774 DOI: 10.1016/j.neuropharm.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
While most often noted for its cognitive symptoms, Alzheimer's disease (AD) is, at its core, a disease of protein misfolding/aggregation, with an intriguing inflammatory component. Defective clearance and/or abnormal production of the amyloid-β peptide (Aβ), and its ensuing accumulation and aggregation, underlie two hallmark features of AD: brain accumulation of insoluble protein deposits known as amyloid or senile plaques, and buildup of soluble Aβ oligomers (AβOs), diffusible toxins linked to synapse dysfunction and memory impairment. In neurons, as in typical eukaryotic cells, the endoplasmic reticulum (ER) serves as a main compartment for the folding, maturation, trafficking and quality control of newly synthesized proteins. The ER lumen, a calcium-rich, oxidizing environment, provides favorable conditions for these physiological functions to occur. These conditions, however, also favor protein aggregation. Several stressors, including metabolic/nutrient stress and certain pathologies, may upset the ER homeostasis, e.g., by affecting calcium levels or by causing the accumulation of unfolded or misfolded proteins. Whatever the underlying cause, the result is what is commonly known as "ER stress". This, in turn, triggers a conserved cellular response mechanism known as the "unfolded protein response" (UPR). The UPR comprises three pathways involving transcriptional or translational regulators aimed at normalizing ER function, and each of them results in pro-inflammatory signaling. A positive feedback loop exists between ER stress and inflammation, with clear implications for neurodegeneration and AD. Here, we explore recent findings on the role of ER stress and the UPR in inflammatory processes leading to synapse failure and memory impairment in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
35
|
Lima JBM, Veloso CC, Vilela FC, Giusti-Paiva A. Prostaglandins mediate zymosan-induced sickness behavior in mice. J Physiol Sci 2017; 67:673-679. [PMID: 27699583 PMCID: PMC10717961 DOI: 10.1007/s12576-016-0494-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Previous studies have demonstrated that zymosan, a cell wall component of the yeast Saccharomyces cerevisiae, induces inflammation in experimental models. However, few studies have evaluated the potential of zymosan to induce sickness behavior, a central motivational state that allows an organism to cope with infection. To determine whether zymosan administration results in sickness behavior, mice were submitted to the forced swim (FST) and open field (OFT) tests 2, 6, and 24 h after treatment with zymosan (1, 10, or 100 mg/kg). Additionally, to evaluate the possible relationship between zymosan-induced sickness behavior and prostaglandin synthesis, mice were pretreated with the cyclooxygenase inhibitors indomethacin (10 mg/kg) and nimesulide (5 mg/kg) and the glucocorticoid drug dexamethasone (1 mg/kg). Zymosan induced time-dependent decreases in locomotor activity in the OFT, and an increase in immobility in the FST, and increased plasma levels of corticosterone at 2 h. Pretreatment with indomethacin, nimesulide, or dexamethasone blocked zymosan-induced behavioral changes in both the FST and OFT at 2 h post administration. These findings confirm previous observations that zymosan induces sickness behavior. Furthermore, our results provide new evidence that prostaglandin synthesis is necessary for this effect, as anti-inflammatory drugs that inhibit prostaglandin synthesis attenuated zymosan-induced behavioral changes.
Collapse
Affiliation(s)
- Juliana B M Lima
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Clarice C Veloso
- Laboratory of Translational Physiology, Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Av. Jovino Fernandes Sales, 2600 Prédio E, Sala 300, 37130-000, Alfenas, MG, Brazil
| | - Fabiana C Vilela
- Laboratory of Translational Physiology, Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Av. Jovino Fernandes Sales, 2600 Prédio E, Sala 300, 37130-000, Alfenas, MG, Brazil
| | - Alexandre Giusti-Paiva
- Laboratory of Translational Physiology, Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Av. Jovino Fernandes Sales, 2600 Prédio E, Sala 300, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
36
|
Autism-Like Behaviours and Memory Deficits Result from a Western Diet in Mice. Neural Plast 2017; 2017:9498247. [PMID: 28685102 PMCID: PMC5480052 DOI: 10.1155/2017/9498247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023] Open
Abstract
Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2% of cholesterol and 21% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in naïve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.
Collapse
|
37
|
Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C, Cunningham C. Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 2017; 59:233-244. [PMID: 27633985 PMCID: PMC5176008 DOI: 10.1016/j.bbi.2016.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation influences chronic neurodegeneration but its precise roles are not yet clear. Systemic inflammation caused by infection, trauma or co-morbidity can alter the brain's inflammatory status, produce acute cognitive impairments, such as delirium, and drive new pathology and accelerated decline. Consistent with this, elevated systemic TNF-α is associated with more rapid cognitive decline over 6months in Alzheimer's disease patients. In the current study we challenged normal animals and those with existing progressive neurodegeneration (ME7 prion disease) with TNF-α (i.p.) to test the hypothesis that this cytokine has differential effects on cognitive function, sickness behavior and features of underlying pathology contingent on the animals' baseline condition. TNF-α (50μg/kg) had no impact on performance of normal animals (normal brain homogenate; NBH) on working memory (T-maze) but produced acute impairments in ME7 animals similarly challenged. Plasma TNF-α and CCL2 levels were equivalent in NBH and ME7 TNF-challenged animals but hippocampal and hypothalamic transcription of IL-1β, TNF-α and CCL2 and translation of IL-1β were higher in ME7+TNF-α than NBH+TNF-α animals. TNF-α produced an exaggerated sickness behavior response (hypothermia, weight loss, inactivity) in ME7 animals compared to that in NBH animals. However a single challenge with this dose was not sufficient to produce de novo neuronal death, synaptic loss or tau hyperphosphorylation that was distinguishable from that arising from ME7 alone. The data indicate that acutely elevated TNF-α has robust acute effects on brain function, selectively in the degenerating brain, but more sustained levels may be required to significantly impact on underlying neurodegeneration.
Collapse
Affiliation(s)
- Edel Hennessy
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane Gormley
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Caoimhe Murray
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
38
|
Huerta PT, Robbiati S, Huerta TS, Sabharwal A, Berlin R, Frankfurt M, Volpe BT. Preclinical models of overwhelming sepsis implicate the neural system that encodes contextual fear memory. Mol Med 2016; 22:789-799. [PMID: 27878209 PMCID: PMC5193462 DOI: 10.2119/molmed.2015.00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2016] [Indexed: 01/06/2023] Open
Abstract
Long-term sepsis survivors sustain cryptic brain injury that leads to cognitive impairment, emotional imbalance, and increased disability burden. Suitable animal models of sepsis, such as cecal ligation and puncture (CLP), have permitted the analysis of abnormal brain circuits that underlie post-septic behavioral phenotypes. For instance, we have previously shown that CLP-exposed mice exhibit impaired spatial memory together with depleted dendritic arbors and decreased spines in the apical dendrites of pyramidal neurons in the CA1 region of the hippocampus. Here we show that contextual fear conditioning, a form of associative memory for fear, is chronically disrupted in CLP mice when compared to SHAM-operated animals. We also find that the excitatory neurons in the basolateral nucleus of the amygdala (BLA) and the granule cells in the dentate gyrus (DG) display significantly fewer dendritic spines in the CLP group relative to the SHAM mice, although the dendritic arbors and gross morphology of the BLA and DG are comparable between the two groups. Moreover, the basal dendrites of CA1 pyramidal neurons are unaffected in the CLP mice. Taken together, our data indicate that the structural damage in the amygdalar-hippocampal network represents the neural substrate for impaired contextual fear memory in long-term sepsis survivors. Further, our data suggest that the brain injury caused by overwhelming sepsis alters the stability of the synaptic connections involved in associative fear. These results likely have implications for the emotional imbalance observed in human sepsis survivors.
Collapse
Affiliation(s)
- Patricio T Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Sergio Robbiati
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Tomás S Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Anchal Sabharwal
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Roseann Berlin
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Bruce T Volpe
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| |
Collapse
|
39
|
Leite HR, Oliveira-Lima OCD, Pereira LDM, Oliveira VEDM, Prado VF, Prado MAM, Pereira GS, Massensini AR. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide. Brain Behav Immun 2016; 57:282-292. [PMID: 27179819 DOI: 10.1016/j.bbi.2016.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023] Open
Abstract
In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.
Collapse
Affiliation(s)
- Hércules Ribeiro Leite
- Laboratório de Inflamação e Metabolismo (LIM), Programa de Pós-graduação em Ciências Fisiológicas, Centro Integrado de Pesquisa e Pós-Graduação em Saúde - CIPq-Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Alto da Jacuba, Minas Gerais 39100 000, Brazil; Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil.
| | - Onésia Cristina de Oliveira-Lima
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Luciana de Melo Pereira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Vinícius Elias de Moura Oliveira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Vania Ferreira Prado
- Molecular Medicine, Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Marco Antônio Máximo Prado
- Molecular Medicine, Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Grace Schenatto Pereira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - André Ricardo Massensini
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil.
| |
Collapse
|
40
|
Volpe BT, Berlin RA, Frankfurt M. The brain at risk: the sepsis syndrome and lessons from preclinical experiments. Immunol Res 2016; 63:70-4. [PMID: 26440589 DOI: 10.1007/s12026-015-8704-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a growing awareness of the chronic brain injury that results from the sepsis syndrome. We review experiments in several animal models of sepsis and show in one model, cecal ligation and puncture (CLP), that permanent structural pathology matures after the initial event. Specifically, we observed after exposure to CLP significant decreased spine density on the apical tree, but not the basal tree, of dendrites in the CA1 region of the dorsal hippocampus that was accompanied by a significantly diminished arbor of the apical dendrites, by 8 weeks, but not after 2 weeks. These novel data from dendritic arborizations elaborate information about a cohort of mice that had behaved in spatial memory tasks. These results raise questions about the relationship between long-term behavioral consequences and intervention strategies.
Collapse
Affiliation(s)
- Bruce T Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Hofstra North Shore LIJ Medical School, Hempstead, NY, USA.
| | - Rose Ann Berlin
- Autoimmunity Center, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore LIJ Medical School, Hempstead, NY, USA
| |
Collapse
|
41
|
Abstract
UNLABELLED Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Brain inflammation is increasingly recognized as a critical factor for seizure precipitation, but the molecular mediators of such proconvulsant effects are only partly understood. The chemokine CCL2 is one of the most elevated inflammatory mediators in patients with pharmacoresistent epilepsy, but its contribution to seizure generation remains unexplored. Here, we show, for the first time, a crucial role for CCL2 and its receptor CCR2 in seizure control. We imposed a systemic inflammatory challenge via lipopolysaccharide (LPS) administration in mice with mesial temporal lobe epilepsy. We found that LPS dramatically increased seizure frequency and upregulated the expression of many inflammatory proteins, including CCL2. To test the proconvulsant role of CCL2, we administered systemically either a CCL2 transcription inhibitor (bindarit) or a selective antagonist of the CCR2 receptor (RS102895). We found that interference with CCL2 signaling potently suppressed LPS-induced seizures. Intracerebral administration of anti-CCL2 antibodies also abrogated LPS-mediated seizure enhancement in chronically epileptic animals. Our results reveal that CCL2 is a key mediator in the molecular pathways that link peripheral inflammation with neuronal hyperexcitability. SIGNIFICANCE STATEMENT Substantial evidence points to a role for inflammation in epilepsy, but currently there is little insight as to how inflammatory pathways impact on seizure generation. Here, we examine the molecular mediators linking peripheral inflammation with seizure susceptibility in mice with mesial temporal lobe epilepsy. We show that a systemic inflammatory challenge via lipopolysaccharide administration potently enhances seizure frequency and upregulates the expression of the chemokine CCL2. Remarkably, selective pharmacological interference with CCL2 or its receptor CCR2 suppresses lipopolysaccharide-induced seizure enhancement. Thus, CCL2/CCR2 signaling plays a key role in linking systemic inflammation with seizure susceptibility.
Collapse
|
42
|
Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci Rep 2016; 6:30006. [PMID: 27445174 PMCID: PMC4956748 DOI: 10.1038/srep30006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022] Open
Abstract
It has long been believed that microglia morphologically transform into the activated state by retracting their long processes and consuming pathogens when bacteria infect into the brain parenchyma. In the present study, however, we showed for the first time that murine cortical microglia extend their processes towards focally injected Porphyromonas gingivalis. This P. gingivalis-induced microglial process extension was significantly increased during the light (sleeping) phase than the dark (waking) phase. In contrast, focally injected ATP-induced microglial process extension was significantly increased during the dark phase than the light phase. Furthermore, in contrast to the P2Y12 receptor-mediated mechanism of ATP-induced microglial process extension, the P. gingivalis-mediated microglial process extension was mediated by P2Y6 receptors. The infection of bacteria such as P. gingivalis to the brain parenchyma may induce the secretion of UDP from microglia at the site of infection, which in turn induces the process extension of the neighboring microglia.
Collapse
|
43
|
Muralidharan A, Kuo A, Jacob M, Lourdesamy JS, Carvalho LMSPD, Nicholson JR, Corradini L, Smith MT. Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain. Front Behav Neurosci 2016; 10:88. [PMID: 27242458 PMCID: PMC4862327 DOI: 10.3389/fnbeh.2016.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 01/30/2023] Open
Abstract
Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. Rats that burrowed ≤ 450 g of gravel on any 2 days of the individual training phase were excluded from the study. The remaining rats received either a unilateral intraplantar injection of Freund's complete adjuvant (FCA) or saline, or underwent unilateral chronic constriction injury (CCI) of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked pain behaviors were assessed prior to model induction, and twice-weekly until study completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner for both FCA-and CCI- rats, there was considerable inter-animal variability. By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Meera Jacob
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Jacintha S Lourdesamy
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | | | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of Queensland, St Lucia CampusBrisbane, QLD, Australia
| |
Collapse
|
44
|
Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication. Brain Behav Immun 2016; 54:1-14. [PMID: 26348582 DOI: 10.1016/j.bbi.2015.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated.
Collapse
|
45
|
Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, Volpe BT, Diamond B. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 2016; 11:e0144215. [PMID: 26790027 PMCID: PMC4720404 DOI: 10.1371/journal.pone.0144215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.
Collapse
Affiliation(s)
- Gerard Honig
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Simone Mader
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huiyi Chen
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Amit Porat
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mahendar Ochani
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T. Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Pharmacological characterization of intraplantar Complete Freund's Adjuvant-induced burrowing deficits. Behav Brain Res 2015; 301:142-51. [PMID: 26704218 DOI: 10.1016/j.bbr.2015.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND It has recently been suggested that non-reflex behavioral readouts, such as burrowing, may be used to evaluate the efficacy of analgesics in rodent models of pain. OBJECTIVE To confirm whether intraplantar Complete Freund's Adjuvant (CFA)-induced pain reliably results in burrowing deficits which can be ameliorated by clinically efficacious analgesics as previously suggested. METHODS Uni- or bilateral intraplantar CFA injections were performed in male Wistar Han rats. The time- and concentration-response of burrowing deficits and the ability of various analgesics to reinstate burrowing performance were studied. An anxiolytic was also tested to evaluate the motivational cue that drives this behavior. RESULTS Burrowing deficits were dependent on the concentration of CFA injected, most pronounced 24h after CFA injections and even more pronounced after bilateral compared with unilateral injections. Celecoxib and ibuprofen reversed CFA-induced burrowing deficits whereas indomethacin failed to significantly reinstate burrowing performance. Morphine and tramadol failed to reinstate burrowing performance, but sedation was observed in control rats at doses thought to be efficacious. An antibody directed against the nerve growth factor significantly improved CFA-induced burrowing deficits. Neither gabapentin nor the anxiolytic diazepam reinstated burrowing performance and the opportunity to find shelter did not modify burrowing performance. CONCLUSION Burrowing is an innate behavior reliably exhibited by rats. It is suppressed in a model of inflammatory pain and differently reinstated by clinically efficacious analgesics that lack motor impairing side effects, but not an anxiolytic, suggesting that this assay is suitable for the assessment of analgesic efficacy of novel drugs.
Collapse
|
47
|
Poon DCH, Ho YS, You R, Tse HL, Chiu K, Chang RCC. PKR deficiency alters E. coli-induced sickness behaviors but does not exacerbate neuroimmune responses or bacterial load. J Neuroinflammation 2015; 12:212. [PMID: 26585788 PMCID: PMC4653925 DOI: 10.1186/s12974-015-0433-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/14/2015] [Indexed: 11/15/2022] Open
Abstract
Background Systemic inflammation induces neuroimmune activation, ultimately leading to sickness (e.g., fever, anorexia, motor impairments, exploratory deficits, and social withdrawal). In this study, we evaluated the role of protein kinase R (PKR), a serine-threonine kinase that can control systemic inflammation, on neuroimmune responses and sickness. Methods Wild-type (WT) PKR+/+ mice and PKR−/− mice were subcutaneously injected with live Escherichia coli (E. coli) or vehicle. Food consumption, rotarod test performance, burrowing, open field activity, object investigation, and social interaction were monitored. Plasma TNF-α and corticosterone were measured by ELISA. The percentage of neutrophils in blood was deduced from blood smears. Inflammatory gene expression (IL-1β, TNF-α, IL-6, cyclooxygenase (COX)-2, iNOS) in the liver and the brain (hypothalamus and hippocampus) were quantified by real-time PCR. Blood and lavage fluid (injection site) were collected for microbiological plate count and for real-time PCR of bacterial 16S ribosomal DNA (rDNA). Corticotrophin-releasing hormone (CRH) expression in the hypothalamus was also determined by real-time PCR. Results Deficiency of PKR diminished peripheral inflammatory responses following E. coli challenge. However, while the core components of sickness (anorexia and motor impairments) were similar between both strains of mice, the behavioral components of sickness (reduced burrowing, exploratory activity deficits, and social withdrawal) were only observable in PKR−/− mice but not in WT mice. Such alteration of behavioral components was unlikely to be caused by exaggerated neuroimmune activation, by an impaired host defense to the infection, or due to a dysregulated corticosterone response, because both strains of mice displayed similar neuroimmune responses, bacterial titers, and plasma corticosterone profiles throughout the course of infection. Nevertheless, the induction of hypothalamic corticotrophin-releasing hormone (CRH) by E. coli was delayed in PKR−/− mice relative to WT mice, suggesting that PKR deficiency may postpone the CRH response during systemic inflammation. Conclusions Taken together, our findings show that (1) loss of PKR could alter E. coli-induced sickness behaviors and (2) this was unlikely to be due to exacerbated neuroimmune activation, (3) elevated bacterial load, or (4) dysregulation in the corticosterone response. Further studies can address the role of PKR in the CRH response together with its consequence on sickness.
Collapse
Affiliation(s)
- David Chun-Hei Poon
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Long Tse
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China. .,Rm. L1-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
48
|
Wolff C, Straub RH, Hahnel A, Randolf A, Wildmann J, Besedovsky HO, del Rey A. Mimicking disruption of brain-immune system-joint communication results in collagen type II-induced arthritis in non-susceptible PVG rats. Mol Cell Endocrinol 2015; 415:56-63. [PMID: 26265448 DOI: 10.1016/j.mce.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
The brain-immune system-joint communication is disrupted during collagen type II (CII) arthritis in DA rats. Since PVG rats are not susceptible to arthritis induction, comparison of hypothalamic and peripheral neuro-endocrine and immune responses between immunized DA and PVG rats might help to explain their different susceptibility to develop the disease. PVG and DA rats were immunized with CII. Corticosterone, neurotransmitters, anti-CII antibodies, and cytokine concentrations in plasma, and hypothalamic neurotransmitters and cytokines were determined by ELISA, Luminex, HPLC and RT-qPCR. Adrenalectomy or sham-operation was performed in PVG and DA rats 14 days before immunization. Basal plasma corticosterone and adrenaline concentrations were significantly higher, and plasma cytokines and hypothalamic noradrenaline were lower in PVG rats than in DA rats. While DA rats developed severe arthritis upon immunization (maximum score 16), only 12 out of 28 PVG rats showed minimal symptoms (score 1-2). The density of sympathetic nerve fibers in arthritic joints of DA rats markedly decreased, but it remained stable in immunized PVG rats. The ratio corticosterone to IL-1β levels in plasma was markedly higher in immunized PVG rats than in arthritic DA rats. Adrenalectomy resulted in severe arthritis in PVG rats upon immunization with CII. While DA rats show an altered immune-brain communication that favors the development of arthritis, PVG rats express a protective neuro-endocrine milieu, particularly linked to the basal tone of the HPA axis. Mimicking disruption of this axis elicits arthritis in non-susceptible PVG rats.
Collapse
Affiliation(s)
- Christine Wolff
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Germany.
| | - Anja Hahnel
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Anke Randolf
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, University of Marburg, Germany
| | - Johannes Wildmann
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, University of Marburg, Germany
| | - Hugo O Besedovsky
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, University of Marburg, Germany
| | - Adriana del Rey
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, University of Marburg, Germany
| |
Collapse
|
49
|
Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons. Neurosci Biobehav Rev 2015; 57:30-45. [PMID: 26363665 DOI: 10.1016/j.neubiorev.2015.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Systemic inflammation leads to a variety of physiological (e.g. fever) and behavioral (e.g. anorexia, immobility, social withdrawal, depressed mood, disturbed sleep) responses that are collectively known as sickness. While these phenomena have been studied for the past few decades, the neurobiological mechanisms by which sickness occurs remain unclear. In this review, we first revisit how the body senses and responds to infections and injuries by eliciting systemic inflammation. Next, we focus on how peripheral inflammatory molecules such as cytokines, prostaglandins, and activated complement factors communicate with the brain to trigger neuroinflammation and sickness. Since depression also involves inflammation, we further elaborate on the interrelationship between sickness and depression. Finally, we discuss how immune activation can modulate neurons in the brain, and suggest future perspectives to help unravel how changes in neuronal functions relate to sickness responses.
Collapse
|
50
|
Abstract
The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.
Collapse
|