1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Zhang T, Niu J, Ren T, Lin H, He M, Sheng Z, Tong Y, Jin B, Wu Y, Pan J, Xiao Z, Guo B, Wang Z, Chen T, Pan W. METTL3 prevents granulosa cells mitophagy by regulating YTHDF2-mediated BNIP3 mRNA degradation due to arsenic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117233. [PMID: 39490100 DOI: 10.1016/j.ecoenv.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The ovary is an important reproductive and endocrine organ for the continuation of the species and the homeostasis of the body's internal environment. Arsenic exposure is a global public health problem. However, the damage to the ovaries caused by exposure to arsenic-contaminated drinking water from neonatal mice period remains unclear. Here, we showed that arsenic exposure resulted in reduced granulosa cell proliferation, diminished ovarian reserve, decreased oogenesis, and endocrine disruption in mice. Mechanistically, arsenic exposure decreased the protein level of METTL3 in granulosa cells. The m6A modification levels of mitophagy regulated gene BNIP3 in 3'UTR region was decreased in arsenic exposed granulosa cells. Meanwhile, YTHDF2, which decays mRNA, bound to the 3'UTR region of BNIP3 was also decreased in arsenic exposed ovarian granulosa cells. Thus, BNIP3 mRNA becames more stable, and mitophagy was increased. The excessive mitophagy in granulosa cells led to endocrine disruption, follicular atresia and diminished ovarian reserve. In summary, our study reveals that METTL3-dependent m6A modification regulates granulosa cell mitophagy and follicular atresia by targeting BNIP3 which are induced by arsenic exposure.
Collapse
Affiliation(s)
- Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China; Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Jin Niu
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tianhe Ren
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Huan Lin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Zhiyi Sheng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Bangming Jin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yingmin Wu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Zhengrong Wang
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China.
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
3
|
Li LF, Yu J, Li R, Li SS, Huang JY, Wang MD, Jiang LN, Xu JH, Wang Z. Apoptosis, Mitochondrial Autophagy, Fission, and Fusion Maintain Mitochondrial Homeostasis in Mouse Liver Under Tail Suspension Conditions. Int J Mol Sci 2024; 25:11196. [PMID: 39456978 PMCID: PMC11508632 DOI: 10.3390/ijms252011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| | - Zhe Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| |
Collapse
|
4
|
Tang S, Fuß A, Fattahi Z, Culmsee C. Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis. Cell Death Dis 2024; 15:626. [PMID: 39191736 DOI: 10.1038/s41419-024-07015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.
Collapse
Affiliation(s)
- Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Anneke Fuß
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
- Institute of Reconstructive Neurobiology, Neurodevelopmental Genetics, University Bonn, LIFE & BRAIN Center, Bonn, Germany
| | - Zohreh Fattahi
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany.
| |
Collapse
|
5
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
6
|
Cattani-Cavalieri I, Trombetta-Lima M, Yan H, Manzano-Covarrubias AL, Baarsma HA, Oun A, van der Veen MM, Oosterhout E, Dolga AM, Ostrom RS, Valenca SS, Schmidt M. Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells. FRONTIERS IN TOXICOLOGY 2024; 6:1412864. [PMID: 39118833 PMCID: PMC11306203 DOI: 10.3389/ftox.2024.1412864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown. Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24-72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function. Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2-adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist). Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ana L. Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hoeke A. Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Emily Oosterhout
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Samuel Santos Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Zhang G, Wang Q, Jiang B, Yao L, Wu W, Zhang X, Wan D, Gu Y. Progress of medicinal plants and their active metabolites in ischemia-reperfusion injury of stroke: a novel therapeutic strategy based on regulation of crosstalk between mitophagy and ferroptosis. Front Pharmacol 2024; 15:1374445. [PMID: 38650626 PMCID: PMC11033413 DOI: 10.3389/fphar.2024.1374445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.
Collapse
Affiliation(s)
- Guozhen Zhang
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Qiang Wang
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lihe Yao
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjuan Wu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyan Zhang
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Dongjun Wan
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Youquan Gu
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Liu X, Cui H, Bai Q, Piao H, Song Y, Yan G. miR-128-3p alleviates airway inflammation in asthma by targeting SIX1 to regulate mitochondrial fission and fusion. Int Immunopharmacol 2024; 130:111703. [PMID: 38422767 DOI: 10.1016/j.intimp.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Bronchial asthma is known for airway inflammation, hyperresponsiveness, and remodeling.MicroRNAs (MiRNAs) have been involved in the development of asthma, whereas, the mechanism of various MiRNAs in asthma remains to be elucidated. In this study, we aim to explore the mechanism of miR-128-3p in asthma-related airway inflammation by targeting sine oculis homeobox homolog 1 (SIX1) to regulate the mitochondrial function. In an ovalbumin (OVA) asthma mouse model, miR-128-3p levels were found to be significantly diminished. Administration of miR-128-3p agomir decreased peribronchial inflammatory cell infiltration and improved airway inflammation. Afterwards, we used the luciferase reporter assay to predict and confirmed that SIX1 is a target gene of miR-128-3p. Overexpression of miR-128-3p attenuated IL-13-induced cellular inflammation and ROS production in bronchial epithelial cells (BEAS-2B). In vitro, overexpression of miR-128-3p and SIX1 knockdown mitigated mitochondrial fragmentation, reduced Drp1-mediated mitochondrial division, and upregulated mitochondrial membrane potential. Moreover, led to decreased production of ROS/mitochondrial ROS, P-Drp1(616) and Fis1 expression, while enhancing P-Drp1(637), MFN1, caspase-3/9, and Bax-mediated apoptosis. Our findings demonstrated that miR-128-3p could alleviate airway inflammation by downregulating SIX1 and improving mitochondrial function, positioning the miR-128-3p/SIX1/Drp1 signaling as a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Xiaohan Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, PR China
| | - Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| |
Collapse
|
9
|
Merkel M, Goebel B, Boll M, Adhikari A, Maurer V, Steinhilber D, Culmsee C. Mitochondrial Reactive Oxygen Species Formation Determines ACSL4/LPCAT2-Mediated Ferroptosis. Antioxidants (Basel) 2023; 12:1590. [PMID: 37627584 PMCID: PMC10451816 DOI: 10.3390/antiox12081590] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is a form of oxidative cell death that is characterized by enhanced lipid peroxidation and mitochondrial impairment. The enzymes acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase (LPCAT) play an essential role in the biosynthesis of polyunsaturated fatty acid (PUFA)-containing phospholipids, thereby providing the substrates for lipid peroxidation and promoting ferroptosis. To examine the impact of mitochondria in ACSL4/LPCAT2-driven ferroptosis, HEK293T cells overexpressing ACSL4 and LPCAT2 (OE) or empty vector controls (LV) were exposed to 1S, 3R-RSL3 (RSL3) for induction of ferroptosis. The ACSL4/LPCAT2 overexpression resulted in higher sensitivity against RSL3-induced cell death compared to LV-transfected controls. Moreover, mitochondrial parameters such as mitochondrial reactive oxygen species (ROS) formation, mitochondrial membrane potential, and mitochondrial respiration deteriorated in the OE cells, supporting the conclusion that mitochondria play a significant role in ACSL4/LPCAT2-driven ferroptosis. This was further confirmed through the protection of OE cells against RSL3-mediated cell death by the mitochondrial ROS scavenger mitoquinone (MitoQ), which exerted protection via antioxidative properties rather than through previously reported metabolic effects. Our findings implicate that mitochondrial ROS production and the accompanying organelle disintegration are essential for mediating oxidative cell death initiated through lipid peroxidation in ferroptosis.
Collapse
Affiliation(s)
- Melanie Merkel
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany; (B.G.); (D.S.)
| | - Moritz Boll
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Aasha Adhikari
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Viktoria Maurer
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany; (B.G.); (D.S.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| |
Collapse
|
10
|
Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166798. [PMID: 37392948 DOI: 10.1016/j.bbadis.2023.166798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid β (Aβ) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with Aβ and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with Aβ and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
12
|
Zhang B, Zhang Y, Zuo Z, Xiong G, Luo H, Song B, Zhao L, Zhou Z, Chang X. Paraquat-induced neurogenesis abnormalities via Drp1-mediated mitochondrial fission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114939. [PMID: 37087969 DOI: 10.1016/j.ecoenv.2023.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Neurogenesis is a fundamental process in the development and plasticity of the nervous system, and its regulation is tightly linked to mitochondrial dynamics. Imbalanced mitochondrial dynamics can result in oxidative stress, which has been implicated in various neurological disorders. Paraquat (PQ), a commonly used agricultural chemical known to be neurotoxic, induces oxidative stress that can lead to mitochondrial fragmentation. In this study, we investigated the effects of PQ on neurogenesis in primary murine neural progenitor cells (mNPCs) isolated from neonatal C57BL/6 mice. We treated the mNPCs with 0-40 μM PQ for 24 h and observed that PQ inhibited their proliferation, migration, and differentiation into neurons in a concentration-dependent manner. Moreover, PQ induced excessive mitochondrial fragmentation and upregulated the expression of Drp-1, p-Drp1, and Fis-1, while downregulating the expression of Mfn2 and Opa1. To confirm our findings, we used Mdivi-1, an inhibitor of mitochondrial fission, which reversed the adverse effects of PQ on neurogenesis, particularly differentiation into neurons and migration of mNPCs. Additionally, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, ameliorated excessive mitochondrial fragmentation caused by PQ. Our study suggests that PQ exposure impairs neurogenesis by inducing excessive mitochondrial fission and abnormal mitochondrial fragmentation via oxidative stress. These findings identify mitochondrial fission as a potential therapeutic target for PQ-induced neurotoxicity. Further research is needed to elucidate the underlying mechanisms of mitochondrial dynamics and neurogenesis in the context of oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lina Zhao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Zhou H, Zhou YL, Mao JA, Tang LF, Xu J, Wang ZX, He Y, Li M. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells. Redox Biol 2022; 55:102413. [PMID: 35932693 PMCID: PMC9356278 DOI: 10.1016/j.redox.2022.102413] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a newly recognized form of regulated cell death that is characterized by severe lipid peroxidation initiated by iron overload and the generation of reactive oxygen species (ROS). However, the role of iron in ionizing radiation (IR)-induced intestinal injury has not been fully illustrated yet. In this study, we found that IR induced ferroptosis in intestinal epithelial cells, as indicated by the increase in intracellular iron levels and lipid peroxidation, upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, reduced glutathione peroxidase 4 (GPX4) mRNA and glutathione (GSH) levels, and significant mitochondrial damage. In addition, the iron chelator deferoxamine (DFO) attenuated IR-induced ferroptosis and intestinal injury in vitro and in vivo. Intriguingly, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) mitigated IR-induced ferritin downregulation, iron overload and ferroptosis. IR increased the levels of nuclear receptor coactivator 4 (NCOA4) mRNA and protein. NCOA4 knockdown significantly inhibited the reduction of ferritin, decreased the level of intracellular free iron, and mitigated ferroptosis induced by IR in HIEC cells, indicating that NCOA4-mediated autophagic degradation of ferritin (ferritinophagy) was required for IR-induced ferroptosis. Furthermore, cytoplasmic iron further activated mitoferrin2 (Mfrn2) on the mitochondrial membrane, which in turn increased iron transport into the mitochondria, resulting in increased ROS production and ferroptosis. In addition, mice fed with an iron-deficient diet for 3 weeks showed a significant reversal in the intestinal injury induced by abdominal IR exposure. Taken together, ferroptosis is a novel mechanism of IR-induced intestinal epithelial cytotoxicity, and is dependent on NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ya-Li Zhou
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Jiu-Ang Mao
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jie Xu
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yang He
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Wang Z, Song Y, Jiang J, Piao Y, Li L, Bai Q, Xu C, Liu H, Li L, Piao H, Yan G. MicroRNA-182-5p Attenuates Asthmatic Airway Inflammation by Targeting NOX4. Front Immunol 2022; 13:853848. [PMID: 35711428 PMCID: PMC9192947 DOI: 10.3389/fimmu.2022.853848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchial asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. MicroRNA (miRNA) has recently been implicated in the pathogenesis of asthma. However, the mechanisms of different miRNAs in asthma are complicated, and the mechanism of miRNA-182-5p in asthma is still unclear. Here, we aim to explore the mechanism of miRNA182-5p in asthma-related airway inflammation. Ovalbumin (OVA)-induced asthma model was established. MiRNA Microarray Analysis was performed to analyze the differentially expressed miRNAs in the asthma model. We found that the expression of miRNA-182-5p was significantly decreased in OVA-induced asthma. In vitro, IL-13 stimulation of BEAS-2B cells resulted in a significant up-regulation of NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4), accompanied by mitochondrial damage-induced apoptosis, NLRP3 (NOD-like receptor family pyrin domain-containing 3)/IL-1β activation, and reduced miRNA-182-5p. In contrast, overexpression of miRNA-182-5p significantly inhibited epithelial cell apoptosis and NLRP3/IL-1β activation. In addition, we found that miRNA-182-5p could bind to the 3’ untranscripted region of NOX4 mRNA and inhibit epithelial cell inflammation by reducing oxidative stress and mitochondrial damage. In vivo, miRNA-182-5p agomir treatment significantly reduced the percentage of eosinophils in bronchoalveolar lavage fluid, and down-regulated Th2 inflammatory factors, including IL-4, IL-5, and OVA induced IL-13. Meanwhile, miRNA-182-5p agomir reduced the peribronchial inflammatory cell infiltration, goblet cell proliferation and collagen deposition. In summary, targeting miRNA-182-5p may provide a new strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
- *Correspondence: Hongmei Piao, ; Guanghai Yan, ;
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
- *Correspondence: Hongmei Piao, ; Guanghai Yan, ;
| |
Collapse
|
15
|
Wu J, Sun Z, Bi Q, Wang W. A Ferroptosis-Related Genes Model Allows for Prognosis and Treatment Stratification of Clear Cell Renal Cell Carcinoma: A Bioinformatics Analysis and Experimental Verification. Front Oncol 2022; 12:815223. [PMID: 35155251 PMCID: PMC8828561 DOI: 10.3389/fonc.2022.815223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is a malignant tumor characterized by poor prognosis and difficult treatment. Ferroptosis is a relatively new form of programmed cell death that involved in cancer development and therapy resistance. Studies have shown that targeted ferroptosis may be a novel option for the treatment of ccRCC, but key genes and their roles between ferroptosis and ccRCC are limited so far. This study aims to develop a ccRCC stratified model based on ferroptosis-related genes to provide a reference for the prognosis prediction and the individualized treatment of ccRCC. Materials and Methods The mRNAs expression data of ccRCC and FRGs were obtained from TCGA and FerrDb database, respectively. Through multiple analysis, a 4-FRG based prognostic stratified model was constructed and its predictive performance was validated through various methods. Then, a nomogram based on the model was constructed and ccRCC patients stratified by the model were analyzed for tumor microenvironment, immune infiltration, sensitivity for immune checkpoint inhibitors (ICIs)/traditional anti-tumor therapy and tumor mutation burden (TMB). Functional enrichment analysis was performed to explore potential biological pathways. Finally, we verified our model by RT-qPCR, siRNA transfection, scratch assay and CCK-8 assay. Results In this study, the stratified model and a model-based nomogram can accurately predict the prognosis of ccRCC patients in TCGA database. The patients stratified by the model showed different tumor microenvironments, immune infiltration, TMB, resistance to traditional and ICIs therapy, and sensitivity to ferroptosis. Functional enrichment analysis suggested several biological pathways related to the process and prognosis of ccRCC. RT-qPCR confirmed the differential expression of ferroptosis-related genes. Scratch assay and CCK-8 assay indicated the promotion effects of CD44 on the proliferation and migration of ccRCC. Conclusion In this study, we established a novel ccRCC stratified model based on FRGs, which can accurately predict the prognosis of ccRCC patients and provide a reference for clinical individualized treatment.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc’h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel) 2022; 11:antiox11020314. [PMID: 35204198 PMCID: PMC8868285 DOI: 10.3390/antiox11020314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Sarah C. Mitchel
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Ahmed Adzemovic
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Oliver Speek
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Francesca Morra
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Christina H. J. T. van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Frank Lezoualc’h
- Inserm UMR-1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse Paul Sabatier, 31400 Toulouse, France;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 7000, USA;
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Groningen Research Institute of Asthma and COPD (GRIAC), Groningen Research Institute of Pharmacy (GRIP), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| |
Collapse
|
17
|
Lin J, Tan B, Li Y, Feng H, Chen Y. Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Front Cell Neurosci 2022; 15:819182. [PMID: 35126060 PMCID: PMC8814659 DOI: 10.3389/fncel.2021.819182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage (ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly consisting of systemic inflammation and circulatory dysfunction. The main consequence of these two processes is neural dysfunction and multiple organ damages, notably, via oxidative stress and neurotoxic mediation under the mediation of central nervous system activation and blood-brain barrier disruption. Besides, the comorbidity-induced multiple organ damages will produce numerous damage-associated molecular patterns and consequently exacerbate the severity of the disease. At present, the prospective views are about operating artificial restriction for the peripheral immune system and achieving cross-tolerance among organs via altering immune cell composition to reduce inflammatory damage.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Binbin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yuhong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Hua Feng, ;
| | - Yujie Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Yujie Chen, ;
| |
Collapse
|
18
|
Lachowicz JI, Pichiri G, Piludu M, Fais S, Orrù G, Congiu T, Piras M, Faa G, Fanni D, Dalla Torre G, Lopez X, Chandra K, Szczepski K, Jaremko L, Ghosh M, Emwas AH, Castagnola M, Jaremko M, Hannappel E, Coni P. Thymosin β4 Is an Endogenous Iron Chelator and Molecular Switcher of Ferroptosis. Int J Mol Sci 2022; 23:551. [PMID: 35008976 PMCID: PMC8745404 DOI: 10.3390/ijms23010551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Thymosin β4 (Tβ4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tβ4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tβ4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tβ4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tβ4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tβ4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tβ4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tβ4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tβ4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.
Collapse
Affiliation(s)
- Joanna I. Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Giusi Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (S.F.); (G.O.)
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| | - Gabriele Dalla Torre
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072 Donostia Euskadi, 20080 San Sebastian, Spain; (G.D.T.); (X.L.)
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia International Physics Center (DIPC), P.K. 1072 Donostia Euskadi, 20080 San Sebastian, Spain; (G.D.T.); (X.L.)
| | - Kousik Chandra
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Lukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Mitra Ghosh
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Massimo Castagnola
- Institute of Chemistry of Molecular Recognition, National Research Council (Consiglio Nazionale delle Ricerche), 00185 Rome, Italy;
- Laboratory of Proteomics and Metabolomics, IRCCS, Santa Lucia Foundation, 00143 Rome, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.C.); (K.S.); (L.J.); (M.G.)
| | - Ewald Hannappel
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (J.I.L.); (T.C.); (M.P.); (G.F.); (D.F.); (P.C.)
| |
Collapse
|
19
|
Luan Y, Ren KD, Luan Y, Chen X, Yang Y. Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Front Cardiovasc Med 2021; 8:770574. [PMID: 34938787 PMCID: PMC8685340 DOI: 10.3389/fcvm.2021.770574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular diseases, particularly atherosclerosis, are associated with high morbidity and mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction leads to blood vessel abnormalities, which cause a series of vascular diseases. The mitochondria are the core sites of cell energy metabolism and function in blood vessel development and vascular disease pathogenesis. Mitochondrial dynamics, including fusion and fission, affect a variety of physiological or pathological processes. Multiple studies have confirmed the influence of mitochondrial dynamics on vascular diseases. This review discusses the regulatory mechanisms of mitochondrial dynamics, the key proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Hoffmann L, Waclawczyk MS, Tang S, Hanschmann EM, Gellert M, Rust MB, Culmsee C. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death Dis 2021; 12:953. [PMID: 34657120 PMCID: PMC8520533 DOI: 10.1038/s41419-021-04242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Marcel S Waclawczyk
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Marco B Rust
- Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.,Molecular Neurobiology Group, Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling", GRK 2213, University of Marburg, 35032, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany. .,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany. .,Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Hinder L, Pfaff AL, Emmerich RE, Michels S, Schlitzer M, Culmsee C. Characterization of Novel Diphenylamine Compounds as Ferroptosis Inhibitors. J Pharmacol Exp Ther 2021; 378:184-196. [PMID: 34011530 DOI: 10.1124/jpet.121.000534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis is a form of oxidative cell death that is increasingly recognized as a key mechanism not only in neurodegeneration but also in regulated cell death, causing disease in other tissues. In neurons, major hallmarks of ferroptosis involve the accumulation of lipid reactive oxygen species (ROS) and impairment of mitochondrial morphology and function. Compounds that interfere with ferroptosis could provide novel treatment options for neurodegenerative disorders and other diseases involving ferroptosis. In the present study, we developed new compounds by refining structural elements of the BH3 interacting-domain death agonist inhibitor BI-6c9, which was previously demonstrated to block ferroptosis signaling at the level of mitochondria. Here, we inserted an antioxidative diphenylamine (DPA) structure to the BI-6c9 structure. These DPA compounds were then tested in models of erastin, and Ras-selective lethal small molecule 3 induced ferroptosis in neuronal HT22 cells. The DPA compounds showed an increased protective potency against ferroptotic cell death compared with the scaffold molecule BI-6c9. Moreover, hallmarks of ferroptosis such as lipid, cytosolic, and mitochondrial ROS formation were abrogated in a concentration- and time-dependent manner. Additionally, mitochondrial parameters such as mitochondrial morphology, mitochondrial membrane potential, and mitochondrial respiration were preserved by the DPA compounds, supporting the conclusion that lipid ROS toxicity and mitochondrial impairment are closely related in ferroptosis. Our findings confirm that the DPA compounds are very effective agents in preventing ferroptotic cell death by blocking ROS production and, in particular, via mitochondrial protection. SIGNIFICANCE STATEMENT: Preventing neuronal cells from different forms of oxidative cell death was previously described as a promising strategy for treatment against several neurodegenerative diseases. This study reports novel compounds based on a diphenylamine structure that strongly protects neuronal HT22 cells from ferroptotic cell death upon erastin and Ras-selective lethal small molecule 3 induction by preventing the development of different reactive oxygen species and by protecting mitochondria from ferroptotic impairments.
Collapse
Affiliation(s)
- L Hinder
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| | - A L Pfaff
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| | - R E Emmerich
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| | - S Michels
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| | - M Schlitzer
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| | - C Culmsee
- Departments of Pharmacology & Clinical Pharmacy (L.H., S.M., C.C.) and Pharmaceutical Chemistry (A.L.P., R.E.E., M.S.), University of Marburg, Marburg, Germany, and Center for Mind, Brain and Behavior (CMBB), Marburg, Germany (L.H., S.M., C.C.)
| |
Collapse
|
22
|
Kepser LJ, Khudayberdiev S, Hinojosa LS, Macchi C, Ruscica M, Marcello E, Culmsee C, Grosse R, Rust MB. Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Sci Rep 2021; 11:4789. [PMID: 33637797 PMCID: PMC7910472 DOI: 10.1038/s41598-021-84213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Recent studies identified cyclase-associated proteins (CAPs) as important regulators of actin dynamics that control assembly and disassembly of actin filaments (F-actin). While these studies significantly advanced our knowledge of their molecular functions, the physiological relevance of CAPs largely remained elusive. Gene targeting in mice implicated CAP2 in heart physiology and skeletal muscle development. Heart defects in CAP2 mutant mice were associated with altered activity of serum response factor (SRF), a transcription factor involved in multiple biological processes including heart function, but also skeletal muscle development. By exploiting mouse embryonic fibroblasts (MEFs) from CAP2 mutant mice, we aimed at deciphering the CAP2-dependent mechanism relevant for SRF activity. Reporter assays and mRNA quantification by qPCR revealed reduced SRF-dependent gene expression in mutant MEFs. Reduced SRF activity in CAP2 mutant MEFs was associated with altered actin turnover, a shift in the actin equilibrium towards monomeric actin (G-actin) as well as and reduced nuclear levels of myocardin-related transcription factor A (MRTF-A), a transcriptional SRF coactivator that is shuttled out of the nucleus and, hence, inhibited upon G-actin binding. Moreover, pharmacological actin manipulation with jasplakinolide restored MRTF-A distribution in mutant MEFs. Our data are in line with a model in which CAP2 controls the MRTF-SRF pathway in an actin-dependent manner. While MRTF-A localization and SRF activity was impaired under basal conditions, serum stimulation induced nuclear MRTF-A translocation and SRF activity in mutant MEFs similar to controls. In summary, our data revealed that in MEFs CAP2 controls basal MRTF-A localization and SRF activity, while it was dispensable for serum-induced nuclear MRTF-A translocation and SRF stimulation.
Collapse
Affiliation(s)
- Lara-Jane Kepser
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Laura Soto Hinojosa
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Robert Grosse
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany.
| |
Collapse
|
23
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
24
|
Moujahed S, Ruiz A, Hallegue D, Sakly M. Quercetin alleviates styrene oxide-induced cytotoxicity in cortical neurons in vitro via modulation of oxidative stress and apoptosis. Drug Chem Toxicol 2020; 45:1634-1643. [PMID: 33297769 DOI: 10.1080/01480545.2020.1851706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Styrene 7,8-oxide (SO) is the principal metabolite of styrene, an industrial neurotoxic compound which causes various neurodegenerative disorders. The present study aimed to explore the mechanisms of SO cytotoxicity (0.5 - 4 mM) in primary cortical neurons and to evaluate the neuroprotective potential of quercetin (QUER). Our results showed that exposure to SO decreased viability of cortical neurons in a concentration-dependent manner. In the presence of QUER, cell viability was increased significantly. The neuroprotective effects of QUER were associated with the reduction of intracellular Reactive Oxygen Species (ROS), the decrease in calcium overload and the restoration of mitochondrial membrane depolarization caused by SO. Additionally, to evaluate neuronal death mechanisms triggered by SO, cells were incubated with Ac-DEVD-CHO, Calpeptin and Necrostatin-1, pharmacological inhibitors of caspase-3, calpains and necroptosis respectively. The data showed that the three inhibitors reduced cell death induced by SO and suggested the implication of apoptotic, necrotic and necroptotic pathways. However, western blot analysis showed that QUER attenuated the activation of caspase-3 but did not prevent calpain activity. Taken together, these data indicated that the cytotoxicity of SO was mediated by oxidative stress and apoptosis, necrosis and necroptosis mechanisms, while the neuroprotection provided by QUER against SO depended mainly on its anti-apoptotic activity.
Collapse
Affiliation(s)
- Sabrine Moujahed
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| | - Asier Ruiz
- Faculty of Medicine and Nursing, Department of Neurosciences, University of the Basque Country, Vizcaya, Spain
| | - Dorsaf Hallegue
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| |
Collapse
|
25
|
Galpayage Dona KNU, Du E, Wei J. An impedimetric assay for the identification of abnormal mitochondrial dynamics in living cells. Electrophoresis 2020; 42:163-170. [PMID: 33169407 DOI: 10.1002/elps.202000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial dynamics (fission and fusion) plays an important role in cell functions. Disruption in mitochondrial dynamics has been associated with diseases such as neurobiological disorders and cardiovascular diseases. Analysis of mitochondrial fission/fusion has been mostly achieved through direct visualization of the fission/fusion events in live-cell imaging of fluorescently labeled mitochondria. In this study, we demonstrated a label-free, non-invasive Electrical Impedance Spectroscopy (EIS) approach to analyze mitochondrial dynamics in a genetically modified human neuroblastoma SH-SY5Y cell line with no huntingtin protein expression. Huntingtin protein has been shown to regulate mitochondria dynamics. We performed EIS studies on normal SH-SY5Y cells and two independent clones of huntingtin-null cells. The impedance data was used to determine the suspension conductivity and further cytoplasmic conductivity and relate to the abnormal mitochondrial dynamics. For instance, the cytoplasm conductivity value was increased by 11% from huntingtin-null cells to normal cells. Results of this study demonstrated that EIS is sensitive to characterize the abnormal mitochondrial dynamics that can be difficult to quantify by the conventional microscopic method.
Collapse
Affiliation(s)
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
26
|
Zhou SY, Cui GZ, Yan XL, Wang X, Qu Y, Guo ZN, Jin H. Mechanism of Ferroptosis and Its Relationships With Other Types of Programmed Cell Death: Insights for Potential Interventions After Intracerebral Hemorrhage. Front Neurosci 2020; 14:589042. [PMID: 33281547 PMCID: PMC7691292 DOI: 10.3389/fnins.2020.589042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease with high morbidity and mortality, for which no effective therapies are currently available. Brain tissue damage caused by ICH is mediated by a newly identified form of non-apoptotic programmed cell death, called ferroptosis. Ferroptosis is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS cause damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. Numerous biological processes are involved in ferroptosis, including iron metabolism, lipid peroxidation, and glutathione biosynthesis; therefore, iron chelators, lipophilic antioxidants, and other specific inhibitors can suppress ferroptosis, suggesting that these modulators are beneficial for treating brain injury due to ICH. Accumulating evidence indicates that ferroptosis differs from other types of programmed cell death, such as necroptosis, apoptosis, oxytosis, and pyroptosis, in terms of ultrastructural characteristics, signaling pathways, and outcomes. Although several studies have emphasized the importance of ferroptosis due to ICH, the detailed mechanism underlying ferroptosis remains unclear. This review summarizes the available evidence on the mechanism underlying ferroptosis and its relationship with other types of cell death, with the aim to identify therapeutic targets and potential interventions for ICH.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Guo-Zhen Cui
- Department of Hepatology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Liu X, Zhao X, Li X, Lv S, Ma R, Qi Y, Abulikemu A, Duan H, Guo C, Li Y, Sun Z. PM 2.5 triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122608. [PMID: 32387827 DOI: 10.1016/j.jhazmat.2020.122608] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies revealed a sharp increase in respiratory diseases attributed to PM2.5. However, the underlying mechanisms remain unclear. Evidence suggested mitochondrion as a sensitive target upon the stimulus of PM2.5, and the centrality in the pathological processes and clinical characterization of lung diseases. To investigate cell fate and related mechanisms caused by PM2.5, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-100 μg/mL). Consequently, PM2.5 components were found in cytoplasm, and morphological and functional alterations in mitochondria occurred, as evidenced by loss of cristae, vacuolization and even the outer mitochondrial membrane rupture, mitochondrial membrane potential collapse, enhanced reactive oxygen species (ROS)/mtROS level, calcium overload, suppressed cellular respiration and ATP production in PM2.5-treated cells. Further, disturbed dynamics toward fission was clearly observed in PM2.5-treated mitochondria, associated with DRP1 mitochondrial translocation and phosphorylation. Besides, PM2.5 induced mitochondria-mediated apoptosis. More importantly, mechanistic results revealed ROS- and DRP1-mediated mitochondrial fission in a reciprocal way, and DRP1 inhibitor (Mdivi-1) significantly alleviated the pro-apoptotic effect of PM2.5 through reversing the activated mitochondrial apoptotic pathway. In summary, our results firstly revealed PM2.5 induced apoptosis in lung epithelial cells through a ROS-DRP1-mitochodrial fission axis-mediated mitochondrial apoptotic pathway, ultimately contributing to the onset and development of pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
28
|
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells 2020; 9:cells9061505. [PMID: 32575749 PMCID: PMC7349567 DOI: 10.3390/cells9061505] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Roberta Chirillo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Research Centre of Biochemistry and advanced Molecular Biology, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4105
| |
Collapse
|
29
|
Bueno DC, Canto RFS, de Souza V, Andreguetti RR, Barbosa FAR, Naime AA, Dey PN, Wüllner V, Lopes MW, Braga AL, Methner A, Farina M. New Probucol Analogues Inhibit Ferroptosis, Improve Mitochondrial Parameters, and Induce Glutathione Peroxidase in HT22 Cells. Mol Neurobiol 2020; 57:3273-3290. [DOI: 10.1007/s12035-020-01956-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
|
30
|
Mitochondria regulation in ferroptosis. Eur J Cell Biol 2019; 99:151058. [PMID: 31810634 DOI: 10.1016/j.ejcb.2019.151058] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it's the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.
Collapse
|
31
|
Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother 2019; 118:109295. [DOI: 10.1016/j.biopha.2019.109295] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
|
32
|
Zhao Y, Bai J, Luo Q, Zhang JY, Xu JR, Duan JL, Yan YA, Wu LM, Lu WL. Electric charge conversable drug liposomes enable to enhance treatment efficacy of breast cancer. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(3).190608.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intrinsic drug resistance has been demonstrated in different types of breast cancer cells, leading to the recurrence of disease after treatment. Here, we report a functional drug liposome that enables electric charge conversion in the weak acidic milieu of cancer to enhance the treatment efficacy of different breast cancers. The functional drug liposomes were developed by encapsulating daunorubicin and rofecoxib, and modified with new functional material, D-alpha tocopherol acid succinate-polyethylene glycol-glutarate (TPGS1000-glutarate). The results demonstrated that the liposomes promoted the effects of cellular uptake and lysosomal escape, followed by targeting the mitochondria. Consequently, the electric charge conversable drug liposomes significantly enhanced the treatment efficacy by initiating a cascade of reactions through inducing autophagy and apoptosis in different breast cancer cells. In conclusion, the electric charge conversable drug liposomes enable to enhance treatment efficacy of different breast cancers, and hence the study could offer a broadly applicable strategy to enhance efficacy against heterogeneous and refractory cancer cells.
Collapse
Affiliation(s)
- Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jing Bai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Qian Luo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jia-Rui Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Jia-Lun Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - YAn Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Li-Ming Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, Peking University,
| |
Collapse
|
33
|
Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats. Chem Biol Interact 2019; 304:173-185. [DOI: 10.1016/j.cbi.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
|
34
|
Lei P, Bai T, Sun Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol 2019; 10:139. [PMID: 30863316 PMCID: PMC6399426 DOI: 10.3389/fphys.2019.00139] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a newly identified form of nonapoptotic regulated cell death (RCD) characterized by iron-dependent accumulation of lipid peroxides. It is morphologically and biochemically different from known types of cell death. Ferroptosis plays a vital role in the treatment of tumors, renal failure, and ischemia reperfusion injury (IRI). Inhibition of glutathione peroxidase 4 (GPX4), starvation of cysteine, and peroxidation of arachidonoyl (AA) trigger ferroptosis in the cells. Iron chelators, lipophilic antioxidants, and specific inhibitor prevent ferroptosis. Although massive researches have demonstrated the importance of ferroptosis in human, its mechanism is not really clear. In this review, we distanced ourselves from this confusion by dividing the mechanisms of ferroptosis into two aspects: processes that facilitate the formation of lipid peroxides and processes that suppress the reduction of lipid peroxides. At the same time, we summarize the relations between ferroptosis and several types of cell death.
Collapse
Affiliation(s)
- Pengxu Lei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Tao Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, School of Medicine, Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Yuan H, Hu Y, Jiang L, Wang T. The research progress of miRNA/lncRNA associated with spinal cord injury. IBRAIN 2019. [DOI: 10.1002/j.2769-2795.2019.tb00042.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hao Yuan
- Department of Spinal SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yue Hu
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ling Jiang
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Neuroscience, Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
36
|
Rabenau M, Unger M, Drewe J, Culmsee C. Metabolic switch induced by Cimicifuga racemosa extract prevents mitochondrial damage and oxidative cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:107-116. [PMID: 30599889 DOI: 10.1016/j.phymed.2018.09.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cimicifuga racemosa extract is a well-established therapy for menopausal symptoms. The mechanisms underlying the multiple therapeutic effects of Cimicifuga extract, e.g. reducing hot flushes and profuse sweating are not well defined. Recent studies revealed pronounced effects of Ze 450, a Cimicifuga racemosa extract that was produced by a standardized procedure, on energy metabolism through activation of AMP-activated protein kinase in vitro and beneficial anti-diabetic effects in vivo. PURPOSE The aim of the study was to investigate the effects of Ze 450 on energy metabolism. Since mitochondria are the key regulators of cellular energy homeostasis, we wanted to elucidate whether Ze 450 affects mitochondrial resilience and can provide protection against oxidative damage in neuronal and liver cells. METHODS/STUDY DESIGN In this study, we investigated the effects of Ze 450 (1-200 µg/ml) on mitochondrial integrity and function, and cell viability in models of oxidative stress induced by erastin and RSL-3 in neuronal and liver cells. The effects of Ze 450 in control conditions and after induction of oxidative stress were analyzed using FACS for detecting lipid peroxidation (BODIPY), mitochondrial ROS formation (MitoSOX), mitochondrial membrane potential (TMRE) and cell death (AnnexinV/PI staining). Furthermore, we determined metabolic activity (MTT assay), ATP levels and mitochondrial respiration and glycolysis (oxygen consumption rates, extracellular acidification rates; Seahorse). RESULTS Ze 450 preserved mitochondrial integrity and ATP levels, and prevented mitochondrial ROS formation, loss of mitochondrial membrane potential and cell death. Notably, Cimicifuga racemosa extract alone did not alter mitochondrial ROS levels, and subtle inhibitory effects on cell proliferation were reversed after withdrawal of the extract. In addition, Ze 450 did not exert toxic effects to liver cells, but rather protected these from the oxidative challenge. Further analysis of the mitochondrial oxygen consumption rate and the extracellular acidification rate revealed that Ze 450 mediated a switch from mitochondrial respiration to glycolysis, and this metabolic shift was a prerequisite for the protective effects against oxidative damage. CONCLUSION In conclusion, the bioenergetic shift induced by Ze 450 exerted protective effects in different cell types, and offers promising therapeutic potential in age related diseases involving oxidative stress and mitochondrial damage.
Collapse
Affiliation(s)
- Malena Rabenau
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany
| | - Matthias Unger
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany.
| |
Collapse
|
37
|
Rabenau M, Unger M, Drewe J, Culmsee C. Effects of Cimicifuga racemosa extract Ze450 on mitochondria in models of oxidative stress in neuronal cells. Data Brief 2018; 21:1872-1879. [PMID: 30519610 PMCID: PMC6260237 DOI: 10.1016/j.dib.2018.10.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/18/2023] Open
Abstract
This data article describes the influence of Cimicifuga racemosa extract Ze 450 on neuronal cells in models of glutamate-induced excitotoxicity and cell death induced by oxidative stress. Effects of Ze 450 on glutamate-mediated excitotoxicity were assessed in primary cortical rat and mouse neurons and, further, glutamate-mediated oxidative stress was analyzed in HT22 cells lacking ionotropic glutamate receptors. This study especially focusses on mitochondrial parameters like mitochondrial ROS formation, mitochondrial membrane potential, ATP production and mitochondrial integrity. Further the effects of Ze 450 on lipid-peroxidation, metabolic activity, cell proliferation and cell death were assessed under control conditions and oxidative challenge evoked by millimolar concentrations of glutamate in HT22 cells. These data support the findings in HT22, mHypo and HepG2 liver cells (Rabenau et al., 2018) [1].
Collapse
Affiliation(s)
- Malena Rabenau
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany.,Center for Mind Brain and Behavior, 35032 Marburg, Germany
| | - Matthias Unger
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany.,Center for Mind Brain and Behavior, 35032 Marburg, Germany
| |
Collapse
|
38
|
Michels S, Ganjam GK, Martins H, Schratt GM, Wöhr M, Schwarting RKW, Culmsee C. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells. Cell Death Discov 2018; 4:54. [PMID: 29760952 PMCID: PMC5945680 DOI: 10.1038/s41420-018-0061-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Affective disorders such as major depression and bipolar disorder are among the most prevalent forms of mental illness and their etiologies involve complex interactions between genetic and environmental risk factors. Over the past ten years, several genome wide association studies (GWAS) have identified CACNA1C as one of the strongest genetic risk factors for the development of affective disorders. However, its role in disease pathogenesis is still largely unknown. Vulnerability to affective disorders also involves diverse environmental risk factors such as perinatal insults, childhood maltreatment, and other adverse pathophysiological or psychosocial life events. At the cellular level, such environmental influences may activate oxidative stress pathways, thereby altering neuronal plasticity and function. Mitochondria are the key organelles of energy metabolism and, further, highly important for the adaptation to oxidative stress. Accordingly, multiple lines of evidence including post-mortem brain and neuro-imaging studies suggest that psychiatric disorders are accompanied by mitochondrial dysfunction. In this study, we investigated the effects of Cacna1c downregulation in combination with glutamate-induced oxidative stress on mitochondrial function, Ca2+ homeostasis, and cell viability in mouse hippocampal HT22 cells. We found that the siRNA-mediated knockdown of Cacna1c preserved mitochondrial morphology, mitochondrial membrane potential, and ATP levels after glutamate treatment. Further, Cacna1c silencing inhibited excessive mitochondrial reactive oxygen species formation and calcium influx, and protected the HT22 cells from oxidative cell death. Overall, our findings suggest that the GWAS-confirmed psychiatric risk gene CACNA1C plays a major role in oxidative stress pathways with particular impact on mitochondrial integrity and function.
Collapse
Affiliation(s)
- Susanne Michels
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| | - Goutham K Ganjam
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| | - Helena Martins
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,3Department of Health Sciences and Technology, Systems Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Gerhard M Schratt
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,3Department of Health Sciences and Technology, Systems Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Markus Wöhr
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,4Department of Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University, Marburg, Germany
| | - Rainer K W Schwarting
- 2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany.,4Department of Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University, Marburg, Germany
| | - Carsten Culmsee
- 1Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,2Center for Mind, Brain and Behavior, Philipps-University, Marburg, Germany
| |
Collapse
|
39
|
Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE, Culmsee C. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med 2018; 117:45-57. [PMID: 29378335 DOI: 10.1016/j.freeradbiomed.2018.01.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Research into oxidative cell death is producing exciting new mechanisms, such as ferroptosis, in the neuropathologies of cerebral ischemia and hemorrhagic brain insults. Ferroptosis is an oxidative form of regulated necrotic cell death featuring glutathione (GSH) depletion, disrupted glutathione peroxidase-4 (GPX4) redox defense and detrimental lipid reactive oxygen species (ROS) formation. Further, our recent findings identified mitochondrial damage in models of oxidative glutamate toxicity, glutathione peroxidase depletion, and ferroptosis. Despite knowledge on the signaling pathways of ferroptosis increasing, the particular role of mitochondrial damage requires more in depth investigation in order to achieve effective treatment options targeting mitochondria. In the present study, we applied RSL3 to induce ferroptosis in neuronal HT22 cells and mouse embryonic fibroblasts. In both cell types, RSL3 mediated concentration-dependent inhibition of GPX4, lipid peroxidation, enhanced mitochondrial fragmentation, loss of mitochondrial membrane potential, and reduced mitochondrial respiration. Ferroptosis inhibitors, such as deferoxamine, ferrostatin-1 and liproxstatin-1, but also CRISPR/Cas9 Bid knockout and the BID inhibitor BI-6c9 protected against RSL3 toxicity. We found compelling new information that the mitochondria-targeted ROS scavenger mitoquinone (MitoQ) preserved mitochondrial integrity and function, and cell viability despite significant loss of GPX4 expression and associated increases in general lipid peroxidation after exposure to RSL3. Our data demonstrate that rescuing mitochondrial integrity and function through the inhibition of BID or by the mitochondria-targeted ROS scavenger MitoQ serves as a most effective strategy in the prevention of ferroptosis in different cell types. These findings expose mitochondria as promising targets for novel therapeutic intervention strategies in oxidative cell death.
Collapse
Affiliation(s)
- Anja Jelinek
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany; Marburg Center for Mind, Brain and Behavior - MCMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Lukas Heyder
- Institut für Pharmazeutische Chemie, Zentrum für Tumor, und Immunbiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Michael Daude
- Zentrum für Tumor, und Immunbiologie, Core Facility Medicinal Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Matthias Plessner
- Pharmakologisches Institut, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Sylvia Krippner
- Pharmakologisches Institut, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Robert Grosse
- Pharmakologisches Institut, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Wibke E Diederich
- Institut für Pharmazeutische Chemie, Zentrum für Tumor, und Immunbiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35032 Marburg, Germany; Zentrum für Tumor, und Immunbiologie, Core Facility Medicinal Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany; Marburg Center for Mind, Brain and Behavior - MCMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany.
| |
Collapse
|
40
|
Jin LB, Zhu J, Liang CZ, Tao LJ, Liu B, Yu W, Zou HH, Wang JJ, Tao H. Paeoniflorin induces G2/M cell cycle arrest and caspase-dependent apoptosis through the upregulation of Bcl-2 X-associated protein and downregulation of B-cell lymphoma 2 in human osteosarcoma cells. Mol Med Rep 2018; 17:5095-5101. [PMID: 29363721 PMCID: PMC5865973 DOI: 10.3892/mmr.2018.8464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Paeoniflorin (PF), extracted from the peony root, has been proved to possess antineoplastic activity in different cancer cell lines. However, it remains unclear whether PF has an antineoplastic effect against osteosarcoma cells. The present study investigated the effects and the specific mechanism of PF on various human osteosarcoma cell lines. Using the multiple methods to detect the activity of PF on HOS and Saos-2 human osteosarcoma cell lines, including an MTS assay, flow cytometry, transmission electron microscopy and western blotting, it was demonstrated that PF induces inhibition of proliferation, G2/M phase cell cycle arrest and apoptosis in the osteosarcoma cell lines in vitro, and activation of cleaved-caspase-3 and cleaved-poly (ADPribose) polymerase in a dose-dependent manner. Furthermore, the pro-apoptotic factors Bcl-2 X-associated protein and BH3 interacting domain death agonist were uregulated, while the anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-extra large were downregulated. In conclusion, these results demonstrated that PF has a promising therapeutic potential in for osteosarcoma.
Collapse
Affiliation(s)
- Li-Bin Jin
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Cheng-Zhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Jiang Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Han Hui Zou
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
41
|
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 2017; 3:17076. [PMID: 29367884 PMCID: PMC5672593 DOI: 10.1038/cddiscovery.2017.76] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER–mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER–mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER–mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Isabell Metz
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis 2017; 8:e3063. [PMID: 28981113 PMCID: PMC5680571 DOI: 10.1038/cddis.2017.448] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
Abstract
Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles’ morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization.
Collapse
|
43
|
Neitemeier S, Jelinek A, Laino V, Hoffmann L, Eisenbach I, Eying R, Ganjam GK, Dolga AM, Oppermann S, Culmsee C. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol 2017; 12:558-570. [PMID: 28384611 PMCID: PMC5382034 DOI: 10.1016/j.redox.2017.03.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. CRISPR Bid knockout reveals a pivotal role for BID in oxidative death. BID links ferroptosis to mitochondrial demise in neurons. Mitochondrial damage determines cell death in oxytosis and ferroptosis.
Collapse
Affiliation(s)
- Sandra Neitemeier
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Anja Jelinek
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Vincenzo Laino
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Lena Hoffmann
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Ina Eisenbach
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Roman Eying
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Goutham K Ganjam
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Amalia M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Sina Oppermann
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany.
| |
Collapse
|
44
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|
45
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
46
|
Neitemeier S, Dolga AM, Honrath B, Karuppagounder SS, Alim I, Ratan RR, Culmsee C. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death Dis 2016; 7:e2214. [PMID: 27148687 PMCID: PMC4917646 DOI: 10.1038/cddis.2016.107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/24/2022]
Abstract
Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death.
Collapse
Affiliation(s)
- S Neitemeier
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - A M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - B Honrath
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - S S Karuppagounder
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - I Alim
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - R R Ratan
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - C Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| |
Collapse
|
47
|
Abstract
Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new therapy to manage cerebellar disorders associated with hyperexcitatory CNS disorders like ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107-2699, USA,
| |
Collapse
|
48
|
The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis. Apoptosis 2016; 20:769-77. [PMID: 25721361 DOI: 10.1007/s10495-015-1110-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.
Collapse
|
49
|
Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P, Hao YL, Tu Y, Zhang S, Fei Z. Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol 2015; 69:29-40. [PMID: 26434502 DOI: 10.1016/j.biocel.2015.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Mitochondrial dynamics play a critical role in mitochondrial function and signaling. Although mitochondria play a critical role in hypoxia/ischemia, the further mechanisms between mitochondrial dynamics and ischemia are still unclear. The current study aimed to determine the role of mitofusin 2, a key regulator of mitochondrial fusion, in a hypoxic model and to explore a novel strategy for cerebral ischemia via modulation of mitochondrial dynamics. To the best of our knowledge, this is the first study to investigate both mitochondrial function and molecular pathways to determine the role of mitofusin 2 in hypoxia-induced neuronal apoptosis. In vivo, C57BL/6 mice (male, 19-25g) underwent a permanent middle cerebral artery occlusion for 12 or 24h (n=6 per group). In vitro, cobalt chloride was used to mimic hypoxia in immortalized hippocampal neurons. Down- or up-regulation of Mfn2 was induced to investigate the role of Mfn2 in hypoxia, especially in mitochondrial function and signaling pathways. The findings demonstrated that decreased mitofusin 2 occurred both in vivo and in vitro hypoxic models; second, the anti-apoptotic effect of Mfn2 may work via restoration of mitochondrial function; third, the modulation of the B Cell Leukemia 2/Bcl-2 Associated X protein and extracellular signal-regulated kinase 1/2 signaling pathways highlight the role of Mfn2 in signaling pathways beyond fusion. In summary, depletion of mitofusin 2 would lead to apoptosis both in normal or hypoxic conditions; however, mitofusin 2 overexpression could attenuate hypoxia-induced apoptosis, which represents a potential novel strategy for neuroprotection against ischemic brain damage.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Rao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kai Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hao Hui
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Li Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ning Su
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Peng Luo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ye-lu Hao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yue Tu
- Department of Neurosurgery, Affiliated Hospital of Logistics, University of Chinese Armed Police Forces, Chenglin Road, Tianjin 300162, PR China
| | - Sai Zhang
- Department of Neurosurgery, Affiliated Hospital of Logistics, University of Chinese Armed Police Forces, Chenglin Road, Tianjin 300162, PR China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
50
|
Pifithrin-α provides neuroprotective effects at the level of mitochondria independently of p53 inhibition. Apoptosis 2015; 19:1665-77. [PMID: 25343947 DOI: 10.1007/s10495-014-1048-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impaired mitochondrial integrity and function are key features of intrinsic death pathways in neuronal cells. Therefore, key regulators of intrinsic death pathways acting upstream of mitochondria are potential targets for therapeutic approaches of neuroprotection. The tumor suppressor p53 is a well-established regulator of cellular responses towards different kinds of lethal stress, including oxidative stress. Recent reports suggested that p53 may affect mitochondrial integrity and function through both, transcriptional activation of mitochondria-targeted pro-death proteins and direct effects at the mitochondrial membrane. In the present study, we compared the effects of pharmacological inhibition of p53 by pifithrin-α with those of selective p53 gene silencing by RNA interference. Using MTT assay and real-time cell impedance measurements we confirmed the protective effect of both strategies against glutamate-induced oxidative stress in immortalized mouse hippocampal HT-22 neurons. Further, we observed full restoration of mitochondrial membrane potential and inhibition of glutamate-induced mitochondrial fragmentation by pifithrin-α which was, in contrast, not achieved by p53 gene silencing. Downregulation of p53 by siRNA decreased p53 transcriptional activity and reduced expression levels of p21 mRNA, while pifithrin-α did not affect these endpoints. These results suggest a neuroprotective effect of pifithrin-α which occurred at the level of mitochondria and independently of p53 inhibition.
Collapse
|