1
|
Winiarczyk M, Thiede B, Utheim TP, Kaarniranta K, Winiarczyk D, Michalak K, Mackiewicz J. Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration. Life (Basel) 2024; 14:624. [PMID: 38792644 PMCID: PMC11122107 DOI: 10.3390/life14050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Neovascular age-related macular degeneration (AMD) is a major cause of irreversible blindness in elderly populations in developed countries. AMD's etiopathology is multifactorial, with strong environmental and genetic components, but the exact molecular pathomechanisms underlying the disease are still unknown. In this study, we analyzed blood serum collected from 74 neovascular AMD patients and 58 healthy controls to identify proteins that may serve as potential biomarkers and expand our knowledge about the etiopathogenesis of the disease. The study revealed 17 differentially expressed proteins-11 up-regulated and 6 down-regulated-in neovascular AMD, which are involved in the biological processes previously linked with the disease-oxidative stress and persistent inflammation, impaired cellular transport, lipid metabolism and blood coagulation. In conclusion, the differences in the expressions of the proteins identified in this study may contribute to our understanding of the mechanisms underlying AMD and possibly serve in future as promising biomarkers.
Collapse
Affiliation(s)
- Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland;
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway;
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway;
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70200 Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, 90-136 Lodz, Poland
| | - Dagmara Winiarczyk
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland;
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, 20-612 Lublin, Poland;
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland;
| |
Collapse
|
2
|
Reinehr S, Safaei A, Grotegut P, Guntermann A, Tsai T, Hahn SA, Kösters S, Theiss C, Marcus K, Dick HB, May C, Joachim SC. Heat Shock Protein Upregulation Supplemental to Complex mRNA Alterations in Autoimmune Glaucoma. Biomolecules 2022; 12:biom12101538. [PMID: 36291747 PMCID: PMC9599116 DOI: 10.3390/biom12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucomatous optic neuropathy is a common cause for blindness. An elevated intraocular pressure is the main risk factor, but also a contribution of the immune system seems likely. In the experimental autoimmune glaucoma model used here, systemic immunization with an optic nerve homogenate antigen (ONA) leads to retinal ganglion cell (RGC) and optic nerve degeneration. We processed retinae for quantitative real-time PCR and immunohistology 28 days after immunization. Furthermore, we performed mRNA profiling in this model for the first time. We detected a significant RGC loss in the ONA retinae. This was accompanied by an upregulation of mRNA expression of genes belonging to the heat shock protein family. Furthermore, mRNA expression levels of the genes of the immune system, such as C1qa, C1qb, Il18, and Nfkb1, were upregulated in ONA animals. After laser microdissection, inner retinal layers were used for mRNA microarrays. Nine of these probes were significantly upregulated in ONA animals (p < 0.05), including Hba-a1 and Cxcl10, while fifteen probes were significantly downregulated in ONA animals (p < 0.05), such as Gdf15 and Wwox. Taken together, these findings provide further insights into the pivotal role of the immune response in glaucomatous optic neuropathy and could help to identify novel diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Armin Safaei
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Annika Guntermann
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephan A. Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Steffen Kösters
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Katrin Marcus
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Caroline May
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| |
Collapse
|
3
|
Liu H, Bell K, Herrmann A, Arnhold S, Mercieca K, Anders F, Nagel-Wolfrum K, Thanos S, Prokosch V. Crystallins Play a Crucial Role in Glaucoma and Promote Neuronal Cell Survival in an In Vitro Model Through Modulating Müller Cell Secretion. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35816047 PMCID: PMC9284462 DOI: 10.1167/iovs.63.8.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to explore the roles of crystallins in the context of aging in glaucoma and potential mechanisms of neuroprotection in an experimental animal model of glaucoma. Methods Intraocular pressure (IOP) was significantly elevated for 8 weeks in animals at different ages (10 days, 12 weeks, and 44 weeks) by episcleral vein cauterization. Retinal ganglion cells (RGCs) were quantified by anti-Brn3a immunohistochemical staining (IHC). Proteomics using ESI-LTQ Orbitrap XL-MS was used to analyze the presence and abundance of crystallin isoforms the retinal samples, respectively. Neuroprotective property and localization of three selected crystallins CRYAB, CRYBB2, and CRYGB as most significantly changed in retina and retinal layers were determined by IHC. Their expressions and endocytic uptakes into Müller cells were analyzed by IHC and Western blotting. Müller cell secretion of neurotrophic factors into the supernatant following CRYAB, CRYBB2, and CRYGB supplementation in vitro was measured via microarray. Results IOP elevation resulted in significant RGC loss in all age groups (P < 0.001). The loss increased with aging. Proteomics analysis revealed in parallel a significant decrease of crystallin abundance – especially CRYAB, CRYBB2, and CRYGB. Significant neuroprotective effects of CRYAB, CRYBB2, and CRYGB after addition to retinal cultures were demonstrated (P < 0.001). Endocytic uptake of CRYAB, CRYBB2, and CRYGB was seen in Müller cells with subsequent increased secretion of various neurotrophic factors into the supernatant, including nerve growth factor, clusterin, and matrix metallopeptidase 9. Conclusions An age-dependent decrease in CRYAB, CRYBB2, and CRYGB abundance is found going along with increased RGC loss. Addition of CRYAB, CRYBB2, and CRYGB to culture protected RGCs in vitro. CRYAB, CRYBB2, and CRYGB were uptaken into Müller cells. Secretion of neurotrophic factors was increased as a potential mode of action.
Collapse
Affiliation(s)
- Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Katharina Bell
- Singapore Eye Research Institute and Singapore National Eye Center, Singapore; Duke-NUS Medical School, Singapore
| | - Anja Herrmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Karl Mercieca
- Department of Ophthalmology, University Medical Center Bonn, Bonn, Germany
| | - Fabian Anders
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Solon Thanos
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Münster, Münster, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Iridium nanoclusters as high sensitive-tunable elemental labels for immunoassays: Determination of IgE and APOE in aqueous humor by inductively coupled plasma-mass spectrometry. Talanta 2022; 244:123424. [DOI: 10.1016/j.talanta.2022.123424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
|
5
|
Asiedu K. Candidate Molecular Compounds as Potential Indicators for Meibomian Gland Dysfunction. Front Med (Lausanne) 2022; 9:873538. [PMID: 35685417 PMCID: PMC9170961 DOI: 10.3389/fmed.2022.873538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease throughout the world. Studies have shown that several molecules in meibum, including but not limited to interleukins, amino acids, cadherins, eicosanoids, carbohydrates, and proteins, are altered in meibomian gland dysfunction compared with healthy normal controls. Some of these molecules such as antileukoproteinase, phospholipase A2, and lactoperoxidase also show differences in concentrations in tears between meibomian gland dysfunction and dry eye disease, further boosting hopes as candidate biomarkers. MGD is a complex condition, making it difficult to distinguish patients using single biomarkers. Therefore, multiple biomarkers forming a multiplex panel may be required. This review aims to describe molecules comprising lipids, proteins, and carbohydrates with the potential of serving various capacities as monitoring, predictive, diagnostic, and risk biomarkers for meibomian gland dysfunction.
Collapse
|
6
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
7
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
8
|
Reinehr S, Mueller-Buehl AM, Tsai T, Joachim SC. Specific Biomarkers in the Aqueous Humour of Glaucoma Patients. Klin Monbl Augenheilkd 2022; 239:169-176. [PMID: 35211939 DOI: 10.1055/a-1690-7468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glaucoma, a multifactorial neurodegenerative disease, is the second most common cause of blindness. Since early diagnosis facilitates timely treatment, it is therefore essential to identify appropriate markers. In the future, so-called biomarkers could be helpful in early detection and follow-up. In glaucoma, these parameters could be obtained in the aqueous humour. Altered antibodies, proteins, microRNA (miRNA) and trace element levels have already been identified. This review provides insight into possible changes in the aqueous humour of patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or pseudoexfoliation glaucoma (PEXG). Studies on antibody changes in POAG patients identified an upregulation of immune system associated antibodies such as heat shock protein (HSP) 27. HSP27 was also upregulated in PEXG patients but decreased in NTG. In POAG and PEXG samples, the levels of certain proteins, including interleukins and endothelin-1, were elevated. The vasoconstrictor endothelin-1 may play a role in regulating intraocular pressure. By contrast, proteins playing a role in the response to oxidative stress were downregulated. In NTG patients, proteins responsible for the elimination of toxic by-products from the respiratory chain were downregulated. In addition, the aqueous humour of POAG and PEXG patients contained several miRNAs that have been linked to tissue development, neurological disease and cellular organisation. Other miRNAs regulated in glaucoma play a role in extracellular matrix remodelling and thus may affect drainage resistance in the trabecular meshwork. It is also interesting to note that the aqueous humour of glaucoma patients showed changes in the levels of trace elements such as zinc and selenium. The elevated zinc levels could be responsible for the imbalance of intraocular matrix metalloproteinases and thus for increased intraocular pressure. All these studies demonstrate the complex changes in aqueous humour in glaucoma. Some of these biomarkers may be useful in the future for early diagnosis of the disease.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | | - Teresa Tsai
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | |
Collapse
|
9
|
Proteomic Analysis of Retinal Tissue in an S100B Autoimmune Glaucoma Model. BIOLOGY 2021; 11:biology11010016. [PMID: 35053014 PMCID: PMC8773367 DOI: 10.3390/biology11010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is a neurodegenerative disease that leads to damage of retinal ganglion cells and the optic nerve. Patients display altered antibody profiles and increased antibody titer, e.g., against S100B. To identify the meaning of these antibodies, animals were immunized with S100B. Retinal ganglion cell loss, optic nerve degeneration, and increased glial cell activity were noted. Here, we aimed to gain more insights into the pathophysiology from a proteomic point of view. Hence, rats were immunized with S100B, while controls received sodium chloride. After 7 and 14 days, retinae were analyzed through mass spectrometry and immunohistology. Using data-independent acquisition-based mass spectrometry, we identified more than 1700 proteins on a high confidence level for both study groups, respectively. Of these 1700, 43 proteins were significantly altered in retinae after 7 days and 67 proteins revealed significant alterations at 14 days. For example, α2-macroglobulin was found significantly increased not only by mass spectrometry analysis, but also with immunohistological staining in S100B retinae at 7 and 14 days. All in all, the identified proteins are often associated with the immune system, such as heat shock protein 60. Once more, these data underline the important role of immunological factors in glaucoma pathogenesis.
Collapse
|
10
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
11
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
12
|
Fiedorowicz E, Cieślińska A, Kuklo P, Grzybowski A. Protein Biomarkers in Glaucoma: A Review. J Clin Med 2021; 10:5388. [PMID: 34830671 PMCID: PMC8624910 DOI: 10.3390/jcm10225388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a multifactorial disease. Early diagnosis of this disease can support treatment and reduce the effects of pathophysiological processes. A significant problem in the diagnosis of glaucoma is limited access to the tested material. Therefore, intensive research is underway to develop biomarkers for fast, noninvasive, and reliable testing. Biomarkers indicated in the formation of glaucoma include chemical compounds from different chemical groups, such as proteins, sugars, and lipids. This review summarizes our knowledge about protein and/or their protein-like derived biomarkers used for glaucoma diagnosis since 2000. The described possibilities resulting from a biomarker search may contribute to identifying a group of compounds strongly correlated with glaucoma development. Such a find would be of great importance in the diagnosis and treatment of this disorder, as current screening techniques have low sensitivity and are unable to diagnose early primary open-angle glaucoma.
Collapse
Affiliation(s)
- Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland; (E.F.); (A.C.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland; (E.F.); (A.C.)
| | - Patrycja Kuklo
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
13
|
Tezel G. Multiplex protein analysis for the study of glaucoma. Expert Rev Proteomics 2021; 18:911-924. [PMID: 34672220 PMCID: PMC8712406 DOI: 10.1080/14789450.2021.1996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers. Multiplexing techniques for protein analysis offer a valuable approach for translational glaucoma research. AREAS COVERED This review provides an overview of the increasing applications of multiplex protein analysis for glaucoma research and also highlights current research challenges in the field and expected solutions from emerging technological advances. EXPERT OPINION Analytical techniques for multiplex analysis of proteins can help uncover neurodegenerative processes for enhanced treatment of glaucoma and can help identify molecular biomarkers for improved clinical testing and monitoring of this complex disease. This evolving field and continuously growing availability of new technologies are expected to broaden the comprehension of this complex neurodegenerative disease and speed up the progress toward new therapeutics and personalized patient care to prevent blindness from glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, USA
| |
Collapse
|
14
|
Cueto AFV, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto LFV, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. BIOLOGY 2021; 10:763. [PMID: 34439995 PMCID: PMC8389649 DOI: 10.3390/biology10080763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| |
Collapse
|
15
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Beutgen VM, Pfeiffer N, Grus FH. Serological Levels of Anti-clathrin Antibodies Are Decreased in Patients With Pseudoexfoliation Glaucoma. Front Immunol 2021; 12:616421. [PMID: 33679756 PMCID: PMC7933590 DOI: 10.3389/fimmu.2021.616421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence for immunologic contribution to glaucoma pathophysiology is steadily increasing in ophthalmic research. Particularly, an altered abundance of circulating autoantibodies to ocular antigens is frequently observed. Here, we report an analysis of autoantibody abundancies to selected antigens in sera of open-angle glaucoma patients, subdivided into normal-tension glaucoma (N = 31), primary open-angle glaucoma (N = 43) and pseudoexfoliation glaucoma (N = 45), vs. a non-glaucomatous control group (N = 46). Serum samples were analyzed by protein microarray, including 38 antigens. Differences in antibody levels were assessed by ANOVA. Five serological antibodies showed significantly altered levels among the four groups (P < 0.05), which can be used to cluster the subjects in groups consisting mainly of PEXG or POAG/NTG samples. Among the altered autoantibodies, anti-Clathrin antibodies were identified as most important subgroup predictors, enhancing prospective glaucoma subtype prediction. As a second aim, we wanted to gain further insights into the characteristics of previously identified glaucoma-related antigens and their role in glaucoma pathogenesis. To this end, we used the bioinformatics toolset of Metascape to construct protein-protein interaction networks and GO enrichment analysis. Glaucoma-related antigens were significantly enriched in 13 biological processes, including mRNA metabolism, protein folding, blood coagulation and apoptosis, proposing a link of glaucoma-associated pathways to changes in the autoantibody repertoire. In conclusion, our study provides new aspects of the involvement of natural autoimmunity in glaucoma pathomechanisms and promotes advanced opportunities toward new diagnostic approaches.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Solís-Fernández G, Montero-Calle A, Alonso-Navarro M, Fernandez-Torres MÁ, Lledó VE, Garranzo-Asensio M, Barderas R, Guzman-Aranguez A. Protein Microarrays for Ocular Diseases. Methods Mol Biol 2021; 2344:239-265. [PMID: 34115364 DOI: 10.1007/978-1-0716-1562-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The eye is a multifaceted organ organized in several compartments with particular properties that reflect their diverse functions. The prevalence of ocular diseases is increasing, mainly because of its relationship with aging and of generalized lifestyle changes. However, the pathogenic molecular mechanisms of many common eye pathologies remain poorly understood. Considering the unquestionable importance of proteins in cellular processes and disease progression, proteomic techniques, such as protein microarrays, represent a valuable approach to analyze pathophysiological protein changes in the ocular environment. This technology enables to perform multiplex high-throughput protein expression profiling with minimal sample volume requirements broadening our knowledge of ocular proteome network in eye diseases.In this review, we present a brief summary of the main types of protein microarrays (antibody microarrays, reverse-phase protein microarrays, and protein microarrays) and their application for protein change detection in chronic ocular diseases such as dry eye, age-related macular degeneration, diabetic retinopathy, and glaucoma. The validation of these specific protein changes in eye pathologies may lead to the identification of new biomarkers, depiction of ocular disease pathways, and assistance in the diagnosis, prognosis, and development of new therapeutic options for eye pathologies.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Alonso-Navarro
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Serum Biomarkers for the Diagnosis of Glaucoma. Diagnostics (Basel) 2020; 11:diagnostics11010020. [PMID: 33374330 PMCID: PMC7823527 DOI: 10.3390/diagnostics11010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the importance of the early detection of glaucoma, most patients with progressive glaucoma show minimal symptoms. We aimed to evaluate biomarkers for glaucoma diagnosis in Korea. Forty-two volunteers with/without open-angle glaucoma were enrolled from January through October 2015—divided into a control or open-angle glaucoma group, which was further divided into normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) groups—and underwent assessments for myelin basic protein (MBP), heat shock protein 60, anti-Sjögren’s-syndrome-related antigen A (SSA) and antigen B (SSB), anti-α-fodrin, and anti-nucleic acid. The glaucoma group showed a higher serum MBP level and lower serum anti-α-fodrin antibody level than the control group (p < 0.05). The NTG group showed higher serum anti-SSA and anti-SSB levels and lower anti-α-fodrin IgG/IgA levels than the HTG group. In the receiver operating characteristic curve analysis, the area under the curve (AUC) for serum MBP level was 0.917 in discriminating between controls and patients with glaucoma. Between the NTG and HTG groups, anti-SSA, anti-SSB, and anti-α-fodrin IgG/IgA levels showed an AUC above 0.8. Thus, these biomarkers were useful for diagnosing glaucoma and discriminating between controls and patients with glaucoma, and patients with NTG and HTG.
Collapse
|
19
|
Reinehr S, Buschhorn V, Mueller-Buehl AM, Goldmann T, Grus FH, Wolfrum U, Dick HB, Joachim SC. Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Curr Eye Res 2020; 45:1124-1135. [PMID: 31935132 DOI: 10.1080/02713683.2020.1716987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE In glaucoma, an apoptotic death of retinal ganglion cells (RGCs) has been shown. However, little is known about other cell death mechanisms, like autophagy or necrosis. Therefore, we investigated these mechanisms in addition to antibody deposits in an experimental autoimmune glaucoma model. METHODS Rats were immunized with a retinal ganglion cell-layer homogenate (RGA), while controls received sodium chloride. Untreated rats served as natїve group. After seven weeks, retinal cross-sections were stained with antibodies against RGCs (Brn-3a), apoptosis (cleaved caspase 2, cleaved caspase 3 as well as caspase 3, 8, and 9), autophagy (LC3BII and LAMP1), and necrosis (RIPK3) followed by cell counts. Autophagy was additionally visualized via transmission electron microscopy on retinal sections. Antibody deposits were also analyzed. RESULTS We noted a RGC loss after RGA immunization compared to both control groups. Also, significantly more cleaved caspase 2+ RGCs were observed in RGA animals. More caspase 3 and 8 signals were noted in RGA retinas compared to both controls, while no changes were seen in regard to caspase 9. Furthermore, significantly more cleaved caspase 3+ cells were detected in RGA animals. We noted an increase of LC3BII+ and LAMP1+ autophagic cells in the RGA group, while no alterations were seen regarding necrotic RIPK3+ cells. Autophagic vesicles were observed via transmission electron microscopy. IgG staining revealed significant differences between the RGA group and controls concerning IgG deposits in the ganglion cell layer. CONCLUSIONS Due to the novel results from this study, we conclude that IgG antibodies are involved in RGC loss in this model leading to apoptotic and autophagic cell loss. These results could help to develop new therapy strategies for glaucoma patients.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Verena Buschhorn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Tobias Goldmann
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - Franz H Grus
- Experimental Ophthalmology, University Medical Center Mainz , Mainz, Germany
| | - Uwe Wolfrum
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| |
Collapse
|
20
|
Gassel CJ, Reinehr S, Gomes SC, Dick HB, Joachim SC. Preservation of optic nerve structure by complement inhibition in experimental glaucoma. Cell Tissue Res 2020; 382:293-306. [PMID: 32676862 PMCID: PMC8285355 DOI: 10.1007/s00441-020-03240-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
Glaucoma is characterized by a progressive damage of the retina and the optic nerve. Despite a huge research interest, the exact pathomechanisms are still unknown. In the experimental autoimmune glaucoma model, rats develop glaucoma-like damage of the retina and the optic nerve after immunization with an optic nerve antigen homogenate (ONA). An early activation of the complement system, even before optic nerve degeneration, was reported in this model. Here, we investigated the effects of a monoclonal antibody against complement factor C5 on optic nerves. Rats were immunized with ONA and compared to controls. In one eye of some ONA animals, the antibody against C5 was intravitreally injected (15 μmol: ONA + C5-I or 25 μmol: ONA + C5-II) before immunization and then every 2 weeks. After 6 weeks, optic nerves were processed for histology (n = 6/group). These analyses demonstrated that the intravitreal therapy reduced the depositions of the membrane attack complex compared to ONA animals (ONA + C5-I: p = 0.005; ONA + C5-II: p = 0.002). Cellular infiltration was significantly reduced in the ONA + C5-I group (p = 0.003), but not in ONA + C5-II tissues (p = 0.41). Furthermore, SMI-32 staining revealed that neurofilament was preserved in both treatment groups compared to ONA optic nerves (both p = 0.002). A decreased amount of microglia was found in treated animals in comparison to the ONA group (ONA + C5-I: p = 0.03; ONA + C5-II: p = 0.009). We observed, for the first time, that a complement system inhibition could prevent optic nerve damage in an autoimmune glaucoma model. Therefore, complement inhibition could serve as a new therapeutic tool for glaucoma.
Collapse
Affiliation(s)
- Caroline J Gassel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sara C Gomes
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
21
|
Hydrogen Sulfide and β-Synuclein Are Involved and Interlinked in the Aging Glaucomatous Retina. J Ophthalmol 2020; 2020:8642135. [PMID: 32351728 PMCID: PMC7178476 DOI: 10.1155/2020/8642135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose Glaucoma, one of the leading causes of irreversible blindness worldwide, is a group of disorders characterized by progressive retinal ganglion cell (RGC) loss. Synucleins, a family of small proteins, have been of interest in studies of neurodegeneration and CNS. However, their roles and functions in glaucoma are still not completely understood and remain to be explored. Our previous studies showed that α-synuclein and H2S play a pivotal role in glaucoma. This study aims to (1) elucidate the potential roles and functions of synucleins in glaucoma throughout aging, (2) investigate the interaction between the synucleins and H2S, and better understand the mechanism of H2S in neuroprotection. Methods The chronic IOP elevation model was carried out in 12 animals at different ages (3 months and 14 months), and RGCs were quantified by Brn3a staining. Mass spectrometric-assisted proteomics analysis was employed to measure synuclein levels and H2S producing proteins in retina. Secondly, the acute IOP elevation model was carried out in 12 juvenile animals, with or without intravitreal injection of GYY4137 (a H2S donor). RGCs were quantified along with the abundancy of synucleins. Results RGCs and β-synuclein (SNCB) are significantly changed in old animals. Under chronic IOP elevation, there is a significant RGC loss in old animals, whereas no significant change in young animals; SNCB is significantly downregulated and 3MST is significantly upregulated in young animals due to IOP, while no significant changes in old ones are notable. Under acute IOP elevation (approx. 55 mmHg), a significant RGC loss is observed; exogenous H2S significantly reduced RGC loss and downregulated SNCB levels. Conclusion The present study indicates a strong link between ageing and SNCB regulation. In young animals SNCB is downregulated going along with less RGC loss. Furthermore, increasing endogenous H2S is effective to downregulate SNCB and is neuroprotective against acute IOP elevation.
Collapse
|
22
|
Abstract
Introduction Autoimmune retinopathy (AR) is a sight-threating retinal disorder that is mediated by autoantibodies (AAbs) against retinal proteins. The visual paraneoplastic syndromes, including cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR) are mediated by anti-retinal AAbs. A number of immunochemical techniques have been used to detect serum anti-retinal autoantibodies in patients to help with autoimmune diagnosis. Area covered We review techniques used for serum autoantibody evaluation in patients with suspected autoimmune retinopathy. Expert opinion Detection of serum AAbs have served as the standard diagnostic tool for autoimmune retinopathies and for management of retinal disorders. An identification of anti-retinal autoantibody or multiple autoantibodies can be useful for not only for diagnosis of autoimmune retinopathies but also for management of retinal disorders. We propose that the line-blotting technique used in conjunction with immunohistochemistry are the best and most reliable assays for detection of serum anti-retinal AAb in the context of clinical history and findings. Clinician should recognize that the majority of antigenic targets identified to date in retinal autoimmunity are ubiquitously expressed proteins (e.g. enolase), which may be difficult to reconcile with the specific patterns of retinal damage observed in CAR, MAR, or AR.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunology 2020; 9:e01101. [PMID: 32140226 PMCID: PMC7049230 DOI: 10.1002/cti2.1101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Primary open-angle glaucoma (POAG) is a neurodegenerative disorder leading to a gradual vision loss caused by progressive damage to the optic nerve. Immunological processes are proposed to be involved in POAG pathogenesis. Altered serological autoantibody levels have been frequently reported, but complete analyses of the natural autoantibodies with respect to disease-related alterations are scarce. Here, we provide an explorative analysis of pathways and biological processes that may involve naturally immunogenic proteins and highlight POAG-specific alterations. METHODS Mass spectrometry-based antibody-mediated identification of autoantigens (MS-AMIDA) was carried out in healthy and glaucomatous trabecular meshwork (TM) cell lines, using antibody pools purified from serum samples of 30 POAG patients and 30 non-glaucomatous subjects. Selected antigens were validated by protein microarray (n = 120). Bioinformatic assessment of identified autoantigens, including Gene Ontology (GO) enrichment analysis and protein-protein interaction networks, was applied. RESULTS Overall, we identified 106 potential autoantigens [false discovery rate (FDR) < 0.01], from which we considered 66 as physiological targets of natural autoantibodies. Twenty-one autoantigens appeared to be related to POAG. Bioinformatic analysis revealed that the platelet-derived growth factor receptor beta (PDGFRB) pathway involved in TM fibrosis was particularly rich in POAG-related antigens. Antibodies to threonine-tRNA ligase (TARS), component 1 Q subcomponent-binding protein (C1QBP) and paraneoplastic antigen Ma2 (PNMA2) showed significantly (P < 0.05) higher levels in POAG patients as validated by protein microarray. CONCLUSION This study provides new insights into autoimmunity in health and glaucoma. Bioinformatic analysis of POAG-related autoantigens showed a strong association with the PDGFRB pathway and also increased levels of PNMA2, TARS, and C1QBP autoantibodies in the serum of POAG patients as potential glaucoma biomarkers.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Carsten Schmelter
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Norbert Pfeiffer
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Franz H Grus
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| |
Collapse
|
24
|
Role of Heat Shock Proteins in Glaucoma. Int J Mol Sci 2019; 20:ijms20205160. [PMID: 31635205 PMCID: PMC6834184 DOI: 10.3390/ijms20205160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Glaucoma, one of the most common causes of blindness worldwide, is a multifactorial neurodegenerative disease characterized by damage of retinal ganglion cells and optic nerve degeneration. However, the exact mechanism leading to glaucoma is still not understood. Evidences suggest an immunological involvement in the pathogenesis. Among other immune responses, altered autoantibody patterns were found in glaucoma patients. Especially elevated antibody levels against heat shock proteins (HSPs), like HSP27 or HSP60, were identified. In an animal model, an immunization with these HSPs induced a pressure-independent retinal ganglion cell degeneration and axon loss, hence mimicking glaucoma-like damage. In addition, development of autoreactive antibodies, as well as a glia and T-cell activation, were described in these animals. Recently, we noted that intravitreal HSP27 injection likewise led to a degeneration of retinal ganglion cells and their axons. Therefore, HSP27 might have a direct damaging effect on retinal cells, and might play a key role in glaucoma.
Collapse
|
25
|
Tsai T, Reinehr S, Maliha AM, Joachim SC. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front Neurosci 2019; 13:931. [PMID: 31543759 PMCID: PMC6733056 DOI: 10.3389/fnins.2019.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.
Collapse
Affiliation(s)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Garranzo-Asensio M, Montero-Calle A, Solís-Fernández G, Barderas R, Guzman-Aranguez A. Protein Microarrays: Valuable Tools for Ocular Diseases Research. Curr Med Chem 2019; 27:4549-4566. [PMID: 31244416 DOI: 10.2174/0929867326666190627131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples. In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| |
Collapse
|
27
|
Beutgen VM, Perumal N, Pfeiffer N, Grus FH. Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Front Immunol 2019; 10:381. [PMID: 30899261 PMCID: PMC6417464 DOI: 10.3389/fimmu.2019.00381] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is an optic neurological disorder and the leading cause of irreversible blindness worldwide, with primary open angle glaucoma (POAG) as its most prevalent form. An early diagnosis of the disease is crucial to prevent loss of vision. Mechanisms behind glaucoma pathogenesis are not completely understood, but disease related alterations in the serological autoantibody profile indicate an immunologic component. These changes in immunoreactivity may serve as potential biomarkers for glaucoma diagnostics. We aimed to identify novel disease related autoantibodies targeting antigens in the trabecular meshwork as biomarkers to support early detection of POAG. We used serological proteome analysis (SERPA) for initial autoantibody profiling in a discovery sample set. The identified autoantibodies were validated by protein microarray analysis in a larger cohort with 60 POAG patients and 45 control subjects. In this study, we discovered CALD1, PGAM1, and VDAC2 as new biomarker candidates. With the use of artificial neural networks, the panel of these candidates and the already known markers HSPD1 and VIM was able to classify subjects into POAG patients and non-glaucomatous controls with a sensitivity of 81% and a specificity of 93%. These results suggest the benefit of these potential autoantibody biomarkers for utilization in glaucoma diagnostics.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Bell K, Und Hohenstein-Blaul NVT, Teister J, Grus F. Modulation of the Immune System for the Treatment of Glaucoma. Curr Neuropharmacol 2018; 16:942-958. [PMID: 28730968 PMCID: PMC6120111 DOI: 10.2174/1570159x15666170720094529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/17/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background: At present intraocular pressure (IOP) lowering therapies are the only approach to treat glaucoma. Neuroprotective strategies to protect the retinal ganglion cells (RGC) from apoptosis are lacking to date. Substantial amount of research concerning the role of the immune system in glaucoma has been performed in the recent years. This review aims to analyse changes found in the peripheral immune system, as well as selected local changes of retina immune cells in the glaucomatous retina. Methods: By dividing the immune system into the innate and the adaptive immune system, a systematic literature research was performed to find recent approaches concerning the modulation of the immune system in the context of glaucoma. Also ClinicalTrials.gov was assessed to identify studies with a translational context. Results: We found that some aspects of the immune system, such as changes in antibody levels, changes in toll like receptor signalling, T cells and retinal microglial cells, experience more research activity than other areas such as changes in dendritic cells or macrophages. Briefly, results from clinical studies revealed altered immunoreactivities against retinal and optic nerve antigens in sera and aqueous humor of glaucoma patients and point toward an autoimmune involvement in glaucomatous neurodegeneration and RGC death. IgG accumulations along with plasma cells were found localised in human glaucomatous retinae in a pro-inflammatory environment possibly maintained by microglia. Animal studies show that antibodies (e.g. anti- heat shock protein 60 and anti-myelin basic protein) elevated in glaucoma patients provoke autoaggressive RGC loss and are associated with IgG depositions and increased microglial cells. Also, studies addressing changes in T lymphocytes, macrophages but also local immune responses in the retina have been performed and also hold promising results. Conclusions: This recapitulation of recent literature demonstrates that the immune system definitely plays a role in the pathogenesis of glaucoma. Multiple changes in the peripheral innate as well as adaptive immune system have been detected and give room for further research concerning valuable therapeutic targets. We conclude that there still is a great need to bring together the results derived from basic research analysing different aspects of the immune system in glaucoma to understand the immune context of the disease. Furthermore local immune changes in the retina of glaucoma patients still leave room for further therapeutic targets
Collapse
Affiliation(s)
- Katharina Bell
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Nadine von Thun Und Hohenstein-Blaul
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Julia Teister
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Franz Grus
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| |
Collapse
|
29
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
30
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017; 7:17478. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
31
|
Teister J, Anders F, Beck S, Funke S, von Pein H, Prokosch V, Pfeiffer N, Grus F. Decelerated neurodegeneration after intravitreal injection of α-synuclein antibodies in a glaucoma animal model. Sci Rep 2017; 7:6260. [PMID: 28740252 PMCID: PMC5524683 DOI: 10.1038/s41598-017-06702-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Although elevated intraocular pressure (IOP) remains the major risk factor in glaucoma, neurodegenerative processes continue despite effective IOP lowering. Altered α-synuclein antibody (Abs) levels have been reported to play a crucial role. This study aimed at identifying whether α-synuclein Abs are capable to decelerate neuronal decay while providing insights into proteomic changes. Four groups of Sprague Dawley rats received episcleral vein occlusion: (1) CTRL, no intravitreal injection, n = 6, (2) CTRL IgG, intravitreal injection of unspecific IgG, n = 5, (3) Buffer, intravitreal injection of buffer, n = 6, (4), α-synuclein Ab, intravitreal injection of α-synuclein Ab, n = 5. IOP and retinal nerve fiber layer thickness (RNFLT) were monitored and immunohistochemistry, microarray and proteomic analysis were performed. RNFLT was reduced in CTRL, CTRL IgG and Buffer group (all p < 0.01) and α-synuclein Ab group (p = 0.17). Axon and RGC density showed an increased neurodegeneration in CTRL, CTRL IgG and Buffer group (all p < 0.01) and increased neuronal survival in α-synuclein Ab group (p = 0.38 and 0.06, respectively) compared with fellow eyes. Proteomic analysis revealed alterations of cofilin 1 and superoxide dismutase 1 expression. This data indicate that α-synuclein Ab might indirectly modulate the actin cytoskeleton organization and negatively regulate apoptotic processes via cofilin 1 and superoxide dismutase 1.
Collapse
Affiliation(s)
- J Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - F Anders
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - S Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - S Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - H von Pein
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - V Prokosch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - N Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - F Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
32
|
Lorenz K, Scheller Y, Bell K, Grus F, Ponto KA, Bock F, Cursiefen C, Flach J, Gehring M, Peto T, Silva R, Tal Y, Pfeiffer N. A prospective, randomised, placebo-controlled, double-masked, three-armed, multicentre phase II/III trial for the Study of a Topical Treatment of Ischaemic Central Retinal Vein Occlusion to Prevent Neovascular Glaucoma - the STRONG study: study protocol for a randomised controlled trial. Trials 2017; 18:128. [PMID: 28302155 PMCID: PMC5356411 DOI: 10.1186/s13063-017-1861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Background Neovascular glaucoma (NVG) is rare, comprising only 3.9% of all glaucoma cases. The most common cause of NVG is ischaemic central retinal vein occlusion (iCRVO). NVG frequently results in blindness and painful end-stage glaucomatous damage leading to the need for enucleation. Currently, there is no preventive therapy for NVG following iCRVO. Rescue treatments have severe drawbacks. Accordingly, there is a great need for preventing the often visually devastating outcomes of NVG. The STRONG study is designed to test whether the topically active anti-angiogenic agent aganirsen is able to inhibit the formation of neovascularisation leading to the development of secondary NVG in eyes with iCRVO. At the same time, STRONG will provide important information on the natural course of iCRVO and NVG in a large and well-characterised cohort of such patients. Methods/design This protocol describes a phase II/III, prospective, randomised, placebo-controlled, double-masked, three-armed multicentre study for the investigation of aganirsen, a new topical treatment for iCRVO in order to prevent NVG. The study will evaluate the efficacy of two different doses of this newly developed antisense oligonucleotide formulated in an eye emulsion to avoid new vessel formation by blocking insulin receptor substrate-1 (IRS)-1. This leads to subsequent down-regulation of both angiogenic as well as proinflammatory growth factors such as vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF). Eligible patients (n = 333) will be treated with topical aganirsen or placebo for a period of 24 weeks. They will also be invited to participate in substudies involving analysis of gonioscopic images, detection of biomarkers for NVG and risk factors for iCRVO. Discussion The STRONG study has the potential to offer a new treatment modality for patients suffering from iCRVO with a high risk of developing NVG. The topical administration can reduce patients’ burden and risk related to rescue treatment, such as destructive laser treatment or enucleation, but requires a high level of patient compliance. Trial registration EudraCT: 2014-000239-18; ClinicalTrials.gov, ID: NCT02947867. (Registered on 15 October 2016); see also http://strong-nvg.com. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1861-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin Lorenz
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany.
| | - Yvonne Scheller
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Katharina Bell
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Franz Grus
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Jens Flach
- Bundesverband Glaukom-Selbsthilfe e.V., Märkische Str. 61, 44141, Dortmund, Germany
| | - Marta Gehring
- Gene Signal International SA, EPFL Innovation Park-A, 1015, Lausanne, Switzerland
| | - Tunde Peto
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra (FMUC), Azinhaga de Santa Comba, Celas, 3000-075, Coimbra, Portugal.,Department of Ophthalmology, Coimbra Hospital and University Center (CHUC), Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Yossi Tal
- TechnoSTAT Ltd., 34 Jerusalem Rd., Raanana, 4350108, Israel
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55131, Mainz, Germany
| |
Collapse
|
33
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
34
|
Lorenz K, Beck S, Keilani MM, Wasielica-Poslednik J, Pfeiffer N, Grus FH. Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin Exp Ophthalmol 2017; 45:280-287. [PMID: 27758063 DOI: 10.1111/ceo.12864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of our investigation was to analyze the autoantibody -reactivities of patients after acute angle-closure glaucoma (AACG) by means of a protein microarray approach to identify intraocular pressure(IOP)-dependent antibodies. METHODS Collected sera from different study time points (AACG n = 6, 0, 2, 4 and 12 weeks) and control group (CTRL n = 11, 0 and 12 weeks) were analyzed. Protein-microarrays were incubated with sera, and occurring immunoreactivities were visualized with fluorescence labeled secondary antibodies. To detect changes, spot intensities were digitized and compared with statistical techniques. RESULTS Three autoantibodies with significant level-alteration in the time course of the survey could be identified. Immunoreactivities to heat shock 27-kDa protein (HSP27), tubulin-tyrosine ligase-like protein 12 (TTLL12), and neuron-specific enolase (NSE) show an increasing linear trend from week 0 up to week 12 with a positive correlation coefficient (P ≤ 0.05, r ≥ 0.4). In the CTRL- group, no significant alterations could be detected in corresponding autoantibody-level. Analysis of variance revealed significant changes of antibody-level between certain time points (anti-HSP27 antibody [week 0 vs. 2], anti-TTLL12 antibody [week 0 vs. 12], and anti-NSE antibody [week 4 vs. 12] [P ≤ 0.05, respectively]) in AACG group. CONCLUSIONS With this autoantibodies profiling approach, we were able to detect autoimmune reactivities in sera of patients without former indication for glaucomatous damage after rise of IOP due to AACG attack. After further validation in subsequent studies, this autoantibodies could give further insights into the pathogenesis of glaucoma and could possibly help to understand the effect of IOP on glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Katrin Lorenz
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sabine Beck
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Germany
| | - Munir M Keilani
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Vision 100 Die Augenärzte, Gemeinschaftspraxis Mönchengladbach, Germany
| | - Joanna Wasielica-Poslednik
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Franz H Grus
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
35
|
Von Thun Und Hohenstein-Blaul N, Kunst S, Pfeiffer N, Grus FH. Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond) 2017; 31:225-231. [PMID: 28085137 DOI: 10.1038/eye.2016.300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 11/09/2022] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is often not diagnosed until many years after disease onset. Early and objective diagnostic measures are yet missing. Besides the main risk factor, an elevated intraocular pressure (IOP), age, sex, and ethnicity are known to affect disease progression and severity. Furthermore, oxidative stress, elevated glutamate concentrations, and an autoimmune component are considered possible risk factors. We could identify several potential proteomic biomarkers in glaucoma and examine distinct changes in the glaucomatous human retina proteome. Using an experimental autoimmune glaucoma animal (EAG) model we could demonstrate an IOP-independent loss of retinal ganglion cells (RGC), which is accompanied by antibody depositions and increased levels of microglia. In a different animal model we showed that intermittent IOP elevations provoke neurodegeneration in the optic nerve and the retina and elicit changes of IgG autoantibody reactivities. The correlation between neuronal damage and changes in autoantibody reactivity suggests that autoantibody profiling could be a useful biomarker for glaucoma. In vivo studies on neuroretinal cells and porcine retinal explants demonstrated a protective effect of antibodies (eg, anti-GFAP) on RGC, which seems to be the result of reduced stress levels in the retina. We conclude that the absence of some autoantibodies in glaucoma patients reflects a loss of the protective potential of natural autoimmunity and may thus encourage neurodegenerative processes. Concluding, autoantibody profiles resemble useful biomarkers for diagnosis, progression and severity of glaucoma. Future longitudinal studies will help to improve early detection and enable better monitoring of disease progression.
Collapse
Affiliation(s)
- N Von Thun Und Hohenstein-Blaul
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - S Kunst
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - N Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - F H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Longitudinal Analysis of Serum Autoantibody-Reactivities in Patients with Primary Open Angle Glaucoma and Optic Disc Hemorrhage. PLoS One 2016; 11:e0166813. [PMID: 28030545 PMCID: PMC5193360 DOI: 10.1371/journal.pone.0166813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
Background The aim of our current investigation was to analyze the autoantibody-reactivities of primary open angle glaucoma patients with optic disc hemorrhage as possibly correlated to disease progression by means of a protein microarray approach. Methods Sera of patients with primary open angle glaucoma and optic disc hemorrhage (n = 16) were collected directly after study inclusion (0 weeks) and after 2 weeks, 4 weeks and 12 weeks. As a control group patients with primary open angle glaucoma (n = 18) were used (0 weeks and 12 weeks). Microarrays were incubated and occurring antibody-antigen-reactions were visualized with fluorescence labeled anti-human-IgG secondary antibodies. To detect changes in autoantibodies spot intensities were digitized and compared. Results With respect to the immunoreactivity at 0 weeks level increment of anti-adaptor protein 1 complex subunit mu-1 antibodies and anti-SPRY domain-containing SOCS box protein 3 antibodies in sera of primary open angle patients with optic disc hemorrhage was detected. Linear trend analysis revealed a positive correlation with r ≥ 0.8 between antibody-level and time course. Control group show no relevant changes in the same period. Significant changes were found in time point 4 comparison between patient groups in anti-adaptor protein 1 complex subunit mu-1-level (p = 0.01). No significant changes in visual acuity were found. Conclusion With this approach we were able to detect autoimmune reactivities in sera of patients with primary open angle glaucoma and optic disc hemorrhage compared to patients without optic disc hemorrhage. These antibodies could give further insights into the pathogenesis and the autoimmune component of glaucomatous optic neuropathy.
Collapse
|
37
|
Abstract
The term glaucoma summarizes a group of eye diseases that are accompanied by impairments of the optic nerve and related visual field deficits. An early diagnosis of glaucoma is currently not possible due to a lack of diagnostic tests; therefore, in most cases the disease is diagnosed many years after onset, which prevents an early therapy. The known risk factors for the development and progression of glaucomatous optic neuropathy comprise elevated intraocular pressure and a broad range of pressure fluctuations as well as lipometabolic disorders, genetic factor and diabetes. The consequences include the induction of anti-inflammatory proteins, elevated levels of oxidative stress and the destruction of retinal ganglion cells. Changes in the autoantibody repertoire have also been observed in the course of the disease. Basic ophthalmological research therefore focuses on the investigation of basic biochemical processes in the course of the disease. A better understanding of physiological and biochemical events is sought in order to develop new and more sensitive diagnostic options and to allow more targeted therapeutic measures. The understanding of biochemical processes allows a better insight into glaucoma progression to be gained, which will lead to improvements in diagnosis and therapy.
Collapse
|
38
|
Gramlich OW, Teister J, Neumann M, Tao X, Beck S, von Pein HD, Pfeiffer N, Grus FH. Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma. J Neuroinflammation 2016; 13:82. [PMID: 27090083 PMCID: PMC4836145 DOI: 10.1186/s12974-016-0542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/07/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP), as well as fluctuations in IOP, is a main risk factor for glaucoma, but its pathogenic effect has not yet been clarified. Beyond the multifactorial pathology of the disease, autoimmune mechanisms seem to be linked to retinal ganglion cell (RGC) death. This study aimed to identify if intermittent IOP elevations in vivo (i) elicit neurodegeneration, (ii) provokes an immune response and (iii) whether progression of RGC loss can be attenuated by the B lymphocyte inhibitor Belimumab. METHODS Using an intermittent ocular hypertension model (iOHT), Long Evans rats (n = 21) underwent 27 unilateral simulations of a fluctuating pressure profile. Nine of these animals received Belimumab, and additional seven rats served as normotensive controls. Axonal density was analyzed in PPD-stained optic nerve cross-sections. Retinal cross-sections were immunostained against Brn3a, Iba1, and IgG autoantibody depositions. Serum IgG concentration and IgG reactivities were determined using ELISA and protein microarrays. Data was analyzed using ANOVA and Tukey HSD test (unequal N) or student's independent t test by groups. RESULTS A wavelike IOP profile led to a significant neurodegeneration of optic nerve axons (-10.6 %, p < 0.001) and RGC (-19.5 %, p = 0.02) in iOHT eyes compared with fellow eyes. Belimumab-treated animals only showed slightly higher axonal survival and reduced serum IgG concentration (-29 %) after iOHT. Neuroinflammatory events, indicated by significantly upregulated microglia activation and IgG autoantibody depositions, were shown in all injured retinas. Significantly elevated serum autoantibody immunoreactivities against glutathione-S-transferase, spectrin, and transferrin were observed after iOHT and were negatively correlated to the axon density. CONCLUSIONS Intermittent IOP elevations are sufficient to provoke neurodegeneration in the optic nerve and the retina and elicit changes of IgG autoantibody reactivities. Although the inhibition of B lymphocyte activation failed to ameliorate axonal survival, the correlation between damage and changes in the autoantibody reactivity suggests that autoantibody profiling could be useful as a biomarker for glaucoma.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Glaucoma Cell Biology Laboratory, Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 62242, USA
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mareike Neumann
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Xue Tao
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Harald D von Pein
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
39
|
Autoimmune aspects in glaucoma. Eur J Pharmacol 2016; 787:105-18. [PMID: 27090926 DOI: 10.1016/j.ejphar.2016.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Studies demonstrate changes of autoantibody concentrations against retinal and optic nerve head antigens in glaucoma patients. Furthermore we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Clinical studies showed up regulated, but also significantly down-regulated autoantibody levels. These antibodies belong to the natural autoimmunity. The upregulation of autoantibodies can be associated with fatal conditions, but several studies demonstrate that natural autoantibodies entail also neuroprotective characteristics and influence the protein expression of neuroretinal cells. A misbalance in the physiological equilibrium may shift from regulatory immunity into a neuroinflammatory degenerative process, what may lead to a predisposition to glaucoma. However, the protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium of natural autoimmunity between autoaggression and neuroprotection offer promising target sites for new therapeutic approaches. Finally, the changes in antibody profiles represent a new opportunity as highly sensitive and specific biomarkers for diagnostics purposes.
Collapse
|
40
|
Retinal and Optic Nerve Damage is Associated with Early Glial Responses in an Experimental Autoimmune Glaucoma Model. J Mol Neurosci 2016; 58:470-82. [PMID: 26746422 DOI: 10.1007/s12031-015-0707-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
It is well established that the immunization with ocular antigens causes a retinal ganglion cell (RGC) decline, which is accompanied by glia alterations. In this study, the degenerative effects of the immunization with an optic nerve homogenate (ONA) and its purified compound S100 were analyzed on retinas and optic nerves. Since a participation of glia cells in cell death mechanisms is currently discussed, rats were immunized with S100 or ONA. At 14 and 28 days, immune-histological and Western blot analyses were performed to investigate the optic nerve structure (SMI-32), retinal ganglion cells (Brn-3a), apoptosis (cleaved caspase 3, FasL), and glial profile (Iba1, ED1, GFAP, vimentin). Neurofilament dissolution in S100 animals was evident at 14 days (p = 0.047) and increased at 28 days (p = 0.01). ONA optic nerves remained intact at early stages and degenerated later on (p = 0.002). In both groups, RGC loss was detected via immune-histology and Western blot at 28 days (ONA: p = 0.02; S100: p = 0.005). Additionally, more Iba1(+) retinal microglia could be detected at early stages (ONA: p = 0.006; S100: p = 0.028). A slight astrocyte response was detected on Western blots only on ONA retinas (p = 0.01). Hence, the RGC and optic nerve decline was partly antigen dependent, while neuronal loss is paralleled by an early microglial response.
Collapse
|
41
|
Grabska-Liberek I, Skonieczna K, Olesińska M, Terelak-Borys B, Kocięcki J, Sikora M, Jamrozy-Witkowska A, Tesla P, Czarnocka B. Levels of antibodies against human heat shock protein (HSP) 60 in patients with glaucoma in Poland. Med Sci Monit 2015; 21:828-32. [PMID: 25786333 PMCID: PMC4378524 DOI: 10.12659/msm.893349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although elevated intraocular pressure is a major risk factor for the development of glaucoma, there is increasing evidence that the immune system may be involved in the development of normal-tension glaucoma (NTG). The aim of this study was to determine if NTG is associated with elevated levels of antibodies against human heat shock protein (HSP) 60. MATERIAL AND METHODS The study was conducted in 139 subjects (35 subjects with NTG [Group 1], 34 subjects with primary open-angle glaucoma /POAG/ [Group 2], 24 subjects with autoimmune rheumatic diseases [Group 3], and 36 healthy controls [Group 4]). All subjects had complete ophthalmologic examination (visual acuity, slit-lamp examination, tonometry, gonioscopy; visual-field examination, and optical coherence tomography /OCT/ of the optic nerve head and the macula). Blood samples were collected for the measurements of serum levels of antibodies against human HSP60. RESULTS The subjects with rheumatic diseases had the highest median serum level of antibodies against HSP60 - 20.49 ng/mL. The values in the subjects with NTG, POAG, and in controls were 18.79 ng/mL, 18.61 ng/mL and 17.61 ng/mL, respectively (p=0.96). CONCLUSIONS This study does not confirm the hypothesis that normal-tension glaucoma is associated with elevated blood levels of antibodies against human heat shock protein (HSP) 60.
Collapse
Affiliation(s)
- Iwona Grabska-Liberek
- Department of Ophthalmology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Katarzyna Skonieczna
- Department of Ophthalmology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marzena Olesińska
- Department of Connective Tissue Diseases, Institute of Rheumatology, Warsaw, Poland
| | - Barbara Terelak-Borys
- Department of Ophthalmology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jarosław Kocięcki
- Department of Ophthalmology, Poznań University of Medical Sciences, Poznań, Poland
| | - Mariusz Sikora
- Department of Connective Tissue Diseases, Institute of Rheumatology, Warsaw, Poland
| | | | - Piotr Tesla
- Department of Ophthalmology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
42
|
|
43
|
Koss MJ, Hoffmann J, Nguyen N, Pfister M, Mischak H, Mullen W, Husi H, Rejdak R, Koch F, Jankowski J, Krueger K, Bertelmann T, Klein J, Schanstra JP, Siwy J. Proteomics of vitreous humor of patients with exudative age-related macular degeneration. PLoS One 2014; 9:e96895. [PMID: 24828575 PMCID: PMC4020801 DOI: 10.1371/journal.pone.0096895] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 04/11/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND There is absence of specific biomarkers and an incomplete understanding of the pathophysiology of exudative age-related macular degeneration (AMD). METHODS AND FINDINGS Eighty-eight vitreous samples (73 from patients with treatment naïve AMD and 15 control samples from patients with idiopathic floaters) were analyzed with capillary electrophoresis coupled to mass spectrometry in this retrospective case series to define potential candidate protein markers of AMD. Nineteen proteins were found to be upregulated in vitreous of AMD patients. Most of the proteins were plasma derived and involved in biological (ion) transport, acute phase inflammatory reaction, and blood coagulation. A number of proteins have not been previously associated to AMD including alpha-1-antitrypsin, fibrinogen alpha chain and prostaglandin H2-D isomerase. Alpha-1-antitrypsin was validated in vitreous of an independent set of AMD patients using Western blot analysis. Further systems biology analysis of the data indicated that the observed proteomic changes may reflect upregulation of immune response and complement activity. CONCLUSIONS Proteome analysis of vitreous samples from patients with AMD, which underwent an intravitreal combination therapy including a core vitrectomy, steroids and bevacizumab, revealed apparent AMD-specific proteomic changes. The identified AMD-associated proteins provide some insight into the pathophysiological changes associated with AMD.
Collapse
Affiliation(s)
- Michael Janusz Koss
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany
- Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, Ruprecht Karls University, Heidelberg, Germany
- * E-mail:
| | | | - Nauke Nguyen
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany
| | - Marcel Pfister
- Doheny Eye Institute, Los Angeles, California, United States of America
| | - Harald Mischak
- Mosaiques Diagnostics, Hannover, Germany
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Holger Husi
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Rejdak
- Department of General Ophthalmology, Lublin University, Poland
| | - Frank Koch
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany
| | - Joachim Jankowski
- Department of Nephrology, Endocrinology, and Transplantation Medicine Charité-Universitaetsmedizin, Berlin, Germany
| | - Katharina Krueger
- Department of Nephrology, Endocrinology, and Transplantation Medicine Charité-Universitaetsmedizin, Berlin, Germany
| | | | | | - Joost P. Schanstra
- Mosaiques Diagnostics, Hannover, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Justyna Siwy
- Mosaiques Diagnostics, Hannover, Germany
- Department of Nephrology, Endocrinology, and Transplantation Medicine Charité-Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
44
|
Tezel G. A decade of proteomics studies of glaucomatous neurodegeneration. Proteomics Clin Appl 2014; 8:154-67. [PMID: 24415558 DOI: 10.1002/prca.201300115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
Glaucoma is a leading cause of blindness; however, limited understanding of the molecular mechanisms involved in optic nerve degeneration hinders the development of improved treatment strategies. Proteomics techniques that combine the protein chemistry, MS, and bioinformatics offer the opportunity to shed light on molecular mechanisms so that new treatment strategies can be developed for immunomodulation, neuroprotection, neurorescue, neuroregeneration, and function gain in glaucoma. The proteomics technologies also hold great promise for biomarker discovery, another important goal of glaucoma research. As much as developing new treatment strategies, molecular biomarkers are strongly needed for early diagnosis of glaucoma, prediction of its prognosis, and monitoring the responses to new treatments. It is now a decade that the proteomics analysis techniques have been using to move glaucoma research forward. This review will focus on valuable applications of proteomics in the field of glaucoma research and highlight the power of this analytical toolbox in translational and clinical research toward better characterization and improved treatment of glaucomatous neurodegeneration and discovery of glaucoma-related molecular biomarkers.
Collapse
Affiliation(s)
- Gülgün Tezel
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
45
|
Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res 2013; 117:126-37. [DOI: 10.1016/j.exer.2013.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022]
|
46
|
Pumphrey SA, Pizzirani S, Pirie CG, Anwer MS, Logvinenko T. Western blot patterns of serum autoantibodies against optic nerve antigens in dogs with goniodysgenesis-related glaucoma. Am J Vet Res 2013; 74:621-8. [PMID: 23531071 DOI: 10.2460/ajvr.74.4.621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate whether differences existed between clinically normal dogs and dogs with goniodysgenesis-related glaucoma (GDRG) in serum autoantibodies against optic nerve antigens. ANIMALS 16 dogs with GDRG, 17 healthy dogs with unremarkable pectinate ligament and iridocorneal angle morphology, and 13 euthanized dogs with no major ocular abnormalities or underlying diseases. PROCEDURES Western blotting was performed with optic nerve extracts from the euthanized dogs as an antigen source and serum from clinically normal dogs and dogs with GDRG as a primary antibody (autoantibody) source. Blots were evaluated for presence and density of bands. RESULTS Multiple bands were identified on western blots from all dogs with GDRG and all clinically normal dogs, with a high degree of variability among individual dogs. Dogs with GDRG were significantly more likely than healthy dogs to have bands present at 38, 40, and 68 kDa. Dogs with GDRG had significant increases in autoreactivity at 40 and 53 kDa and a significant decrease in autoreactivity at 48 kDa. CONCLUSIONS AND CLINICAL RELEVANCE Significant differences in serum autoantibodies against optic nerve antigens were found in dogs with versus without GDRG. Although it remains unclear whether these differences were part of the pathogenesis of disease or were sequelae to glaucomatous changes, these findings provide support for the hypothesis that immune-mediated mechanisms play a role in the development or progression of GDRG. However, the high degree of variability among individual dogs and the considerable overlap between groups suggest that the clinical usefulness of this technique for distinguishing dogs with GDRG from clinically normal dogs is likely limited.
Collapse
Affiliation(s)
- Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | | | | | | | |
Collapse
|
47
|
CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury. Exp Eye Res 2013; 115:131-9. [PMID: 23792169 DOI: 10.1016/j.exer.2013.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
Neuron degeneration is a common pathological process associated with many disease conditions in the central nervous system including retina. Although immune responses have been proposed as one potential element in triggering neural damage, the mechanism of action of specific immune components underlying the pathogenesis is unclear. In this study we focus on adaptive immune activities to evaluate CD4 positive helper cells in the retinal ganglion cell (RGC) degeneration in response to transient retinal ischemic/reperfusion (I/R) injury. Transient retinal ischemia was induced in four mouse strains with different immune backgrounds, including wild type mice from C57BL/6 and BABL/c strains, severe combined immunodeficient (SCID) mice lacking T and B lymphocytes, SCID mice with transferred wild type CD4+ T cells, and the STAT6 deficient mice without T helper 2 (TH2) cells. In SCID mice RGCs showed a strong resistance to cell death in response to I/R injury (89% ± 3% of the survival cells in contralateral eye) compared with C57BL/6 (p = 0.018) and BALB/C (p = 0.038) wild types. By transferring the mature CD4+ T cells from matched wild type into SCID mice, the resistance of RGCs to injury was significantly compromised (p < 0.05). Furthermore a significant resistance of RGCs to cell death (p < 0.05) accompanied with an overexpression of STAT1 and STAT3 was confirmed in STAT6 deficient mice in response to I/R injury compared with the wild type controls, indicating that TH2 cells maturation might be involved in RGC damage. Adaptive immunity carried by CD4 T cells plays an essential role in RGC degeneration.
Collapse
|
48
|
Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199-216. [PMID: 23541978 DOI: 10.1016/j.preteyeres.2013.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutewnberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tezel G. A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration. Prog Retin Eye Res 2013; 35:18-43. [PMID: 23396249 DOI: 10.1016/j.preteyeres.2013.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
50
|
Gramlich OW, Bell K, von Thun Und Hohenstein-Blaul N, Wilding C, Beck S, Pfeiffer N, Grus FH. Autoimmune biomarkers in glaucoma patients. Curr Opin Pharmacol 2013; 13:90-7. [DOI: 10.1016/j.coph.2012.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/16/2023]
|