1
|
Brenna S, Glatzel M, Magnus T, Puig B, Galliciotti G. Neuroserpin and Extracellular Vesicles in Ischemic Stroke: Partners in Neuroprotection? Aging Dis 2024; 15:2191-2204. [PMID: 39191396 PMCID: PMC11346402 DOI: 10.14336/ad.2024.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.
Collapse
Affiliation(s)
- Santra Brenna
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Berta Puig
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Chen Y, Cui H, Han Z, Xu L, Wang L, Zhang Y, Liu L. LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. Neurochem Res 2024; 49:2910-2925. [PMID: 39060766 PMCID: PMC11365926 DOI: 10.1007/s11064-024-04213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, National Center for Mental Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhuanzhuan Han
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lei Xu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Lin Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuefei Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
3
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
5
|
Zhao Q, Chen L, Zhang X, Yang H, Li Y, Li P. β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy. Chin Med 2024; 19:86. [PMID: 38879549 PMCID: PMC11179363 DOI: 10.1186/s13020-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization. METHODS The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro. RESULTS In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia. CONCLUSIONS These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Lu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| |
Collapse
|
6
|
Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: targeting NETs for stroke treatment breakthroughs. Cell Commun Signal 2024; 22:238. [PMID: 38654328 PMCID: PMC11036592 DOI: 10.1186/s12964-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
Stroke is a prevalent global acute cerebrovascular condition, with ischaemic stroke being the most frequently occurring type. After a stroke, neutrophils accumulate in the brain and subsequently generate and release neutrophil extracellular traps (NETs). The accumulation of NETs exacerbates the impairment of the blood‒brain barrier (BBB), hampers neovascularization, induces notable neurological deficits, worsens the prognosis of stroke patients, and can facilitate the occurrence of t-PA-induced cerebral haemorrhage subsequent to ischaemic stroke. Alternative approaches to pharmacological thrombolysis or endovascular thrombectomy are being explored, and targeting NETs is a promising treatment that warrants further investigation.
Collapse
Affiliation(s)
- Huijie Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yunfei Bo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongfei Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
7
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Han X, Li Y, Chen X, Pan D, Mo J, Qiu J, Li Y, Chen Y, Huang Y, Shen Q, Tang Y. Platelet-activating factor antagonist-based intensive antiplatelet strategy in acute ischemic stroke: A propensity score matched with network pharmacology analysis. CNS Neurosci Ther 2023; 29:4082-4092. [PMID: 37435773 PMCID: PMC10651968 DOI: 10.1111/cns.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Diterpene ginkgolides meglumine injection (DGMI) is a platelet-activating factor receptor (PAFR) antagonist that can be used to treat acute ischemic stroke (AIS). This study evaluated the efficacy and safety of an intensive antiplatelet strategy based on PAFR antagonists and explored the underlying mechanisms of PAFR antagonists in AIS treatment. METHODS This is a retrospective study applying propensity score methods to match AIS patients treated with DGMI to nontreated patients. The primary outcome was functional independence (modified Rankin Scale [mRS] 0-2) at 90 days. The safety outcome was bleeding risk. We used McNemar test to compare the efficacy outcome. Subsequently, the network pharmacology analysis was performed. RESULTS 161 AIS patients treated with DGMI in the study were matched with 161 untreated patients. Compared with untreated patients, DGMI-treated patients had a significantly higher rate of mRS ranking 0-2 at 90 days (82.0% vs. 75.8%, p < 0.001), without increased risk of bleeding. The gene enrichment analysis showed that the overlap genes of DGMI targeted and AIS-related enriched in thrombosis and inflammatory-related signaling pathways. CONCLUSIONS An intensive antiplatelet strategy of DGMI plus traditional antiplatelet agents is effective in treating AIS and may work by mediating post-stroke inflammation and thrombosis.
Collapse
Affiliation(s)
- Xiaoyan Han
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Youjia Li
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Xuemin Chen
- Guangdong Medical UniversityZhanjiangPeople's Republic of China
| | - Dong Pan
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Junning Mo
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Jiaming Qiu
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Yi Li
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yan Chen
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Yan Huang
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Qingyu Shen
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
9
|
Liu Q, Shi K, Wang Y, Shi FD. Neurovascular Inflammation and Complications of Thrombolysis Therapy in Stroke. Stroke 2023; 54:2688-2697. [PMID: 37675612 DOI: 10.1161/strokeaha.123.044123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intravenous thrombolysis via tPA (tissue-type plasminogen activator) is the only approved pharmacological treatment for acute ischemic stroke, but its benefits are limited by hemorrhagic transformation. Emerging evidence reveals that tPA swiftly mobilizes immune cells which extravasate into the brain parenchyma via the cerebral vasculature, augmenting neurovascular inflammation, and tissue injury. In this review, we summarize the pronounced alterations of immune cells induced by tPA in patients with stroke and experimental stroke models. We argue that neuroinflammation, triggered by ischemia-induced cell death and exacerbated by tPA, compromises neurovascular integrity and the microcirculation, leading to hemorrhagic transformation. Finally, we discuss current and future approaches to attenuate thrombolysis-associated hemorrhagic transformation via uncoupling immune cells from the neurovascular unit.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
| | - Kaibin Shi
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Yongjun Wang
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| |
Collapse
|
10
|
Tariq MB, Lee J, McCullough LD. Sex differences in the inflammatory response to stroke. Semin Immunopathol 2023; 45:295-313. [PMID: 36355204 PMCID: PMC10924671 DOI: 10.1007/s00281-022-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects women, in part due to their higher longevity. Older women have poorer outcomes after stroke with high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, which activate microglia and other glial cells within the central nervous system, promoting the release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive immune responses also have dual functions after stroke as they can enhance inflammation acutely, but also contribute to suppression of the inflammatory cascade and later repair. In this review, we provide an overview of the current literature on sex-specific inflammatory responses to ischemic stroke. Understanding these differences is critical to identifying therapeutic options for both men and women.
Collapse
Affiliation(s)
- Muhammad Bilal Tariq
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Louise D McCullough
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA.
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Bojrab P, Kimes B, Yu ICI, Yen JHJ. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke. Front Immunol 2023; 14:1148069. [PMID: 37063896 PMCID: PMC10104603 DOI: 10.3389/fimmu.2023.1148069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Paul Bojrab
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Brandon Kimes
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
- *Correspondence: Jui-Hung Jimmy Yen,
| |
Collapse
|
12
|
Behzadifard M, Aboutaleb N, Dolatshahi M, Khorramizadeh M, Mirshekari Jahangiri H, Kord Z, Nazarinia D. Neuroprotective Effects of Conditioned Medium of Mesenchymal Stem Cells (MSC-CM) as a Therapy for Ischemic Stroke Recovery: A Systematic Review. Neurochem Res 2022; 48:1280-1292. [PMID: 36581731 DOI: 10.1007/s11064-022-03848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
It has been reported that the therapeutic potential of stem cells is mainly mediated by their paracrine factors. In order to identify the effects of conditioned medium of mesenchymal stem cells (MSC-CM) against stroke, a systematic review was conducted. We searched PubMed, Scopus, and ISI Web of Science databases for all available articles relevant to the effects of MSC-CM against the middle cerebral artery occlusion (MCAO) model of ischemic stroke until August 2022. The quality of the included studies was evaluated using The STAIR scale. During the systematic search, a total of 356 published articles were found. A total of 15 datasets were included following screening for eligibility. The type of cerebral ischemia was the MCAO model and CM was obtained from MSCs. The results showed that the therapeutic time window can be considered a crucial factor when researchers use MSC-CM for stroke therapy. In addition, MSC-CM therapy contributes to functional recovery and reduces infarct volume after stroke by targeting different cellular signaling pathways. Our findings showed that MSC-CM therapy has the ability to improve functional recovery and attenuate brain infarct volume after ischemic stroke in preclinical studies. We hope our study accelerates needed progress towards clinical trials.
Collapse
Affiliation(s)
- Mahin Behzadifard
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Maryam Khorramizadeh
- Department of Medical Physics, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Zeynab Kord
- Department of Anaesthesiology, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Donya Nazarinia
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran. .,Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
13
|
Li G, Hao Y, Wang C, Wang S, Xiong Y, Zhao X. Association Between Neutrophil-to-Lymphocyte Ratio/Lymphocyte-to-Monocyte Ratio and In-Hospital Clinical Outcomes in Ischemic Stroke Treated with Intravenous Thrombolysis. J Inflamm Res 2022; 15:5567-5578. [PMID: 36185640 PMCID: PMC9518842 DOI: 10.2147/jir.s382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Investigations on neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with ischemic stroke are insufficient. We aimed to investigate the relationship of NLR and LMR with in-hospital clinical outcomes at different time points in ischemic stroke patients treated with intravenous tissues plasminogen activator (IV tPA). Methods We retrospectively enrolled patients who received IV tPA therapy within 4.5 hours from symptoms onset. Demographics, clinical characteristics, imaging measures, and the in-hospital clinical outcomes including early neurological improvement (ENI, defined as NIHSS score reduction within 24 hours ≥4 points or decreased to the baseline) and favorable functional outcome (defined as modified Rankin scale 0–1) were collected. Multivariable logistic regression analyses were performed to test whether NLR or LMR was an independent predictor for the in-hospital clinical outcomes. Results One hundred and two patients treated with IV tPA were included. NLR at 24 hours proved to be an independent predictor of ENI (adjusted OR=0.85, 95% CI=0.75–0.95, P=0.04). NLR at 48 hours and LMR at 48 hours proved to be independent predictors of mRS 0–1 at discharge (NLR at 48 hours: adjusted OR=0.64, 95% CI=0.49–0.83, P=0.01; LMR at 48 hours: adjusted OR=1.50, 95% CI=1.08–2.09, P=0.02). The AUC of NLR at 48 hours to predict favorable functional outcome at discharge was 0.79 (95% CI=0.70–0.88, P<0.001) and the optimal cut-off was 5.69 (sensitivity=0.52, specificity=0.63). Conclusion In our study, NLR at 24 hours was correlated with ENI. Both NLR and LMR at 48 hours were closely associated with favorable functional outcomes at discharge.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yahui Hao
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Chinese Institute of Brain Research, Beijing, People’s Republic of China
- Correspondence: Yunyun Xiong, China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China, Email
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Xingquan Zhao, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, Beijing, 100070, People’s Republic of China, Email
| |
Collapse
|
14
|
Jia H, Qi X, Fu L, Wu H, Shang J, Qu M, Yang C, Wang J. NLRP3
inflammasome inhibitor ameliorates ischemic stroke by reprogramming the phenotype of microglia/macrophage in a murine model of distal middle cerebral artery occlusion. Neuropathology 2022; 42:181-189. [PMID: 35434787 DOI: 10.1111/neup.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Affiliation(s)
- Hongning Jia
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| | - Xiaoyuan Qi
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| | - Lan Fu
- Department of Imaging Cangzhou Central Hospital Cangzhou China
| | - Huijun Wu
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| | - Jinxing Shang
- Department of Neurosurgery Cangzhou Central Hospital Cangzhou China
| | - Mingwei Qu
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| | - Chaoping Yang
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| | - Jianping Wang
- Department of Neurology Cangzhou Central Hospital Cangzhou China
| |
Collapse
|
15
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
16
|
Liu C, Gao W, Zhao L, Cao Y. Progesterone attenuates neurological deficits and exerts a protective effect on damaged axons via the PI3K/AKT/mTOR-dependent pathway in a mouse model of intracerebral hemorrhage. Aging (Albany NY) 2022; 14:2574-2589. [PMID: 35305084 PMCID: PMC9004566 DOI: 10.18632/aging.203954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating event with high disability and fatality rates. However, there is a lack of effective treatments for this condition. We aimed to investigate the neuroprotective and axonal regenerative effects of progesterone after ICH. For this purpose, an ICH model was established in adult mice by injecting type VII collagenase into the striatum; the mice were then treated with progesterone (8 mg/kg). Hematoma absorption, neurological scores, and brain water content were evaluated on days one, three, and seven after the ICH. The effect of progesterone on inflammation and axonal regeneration was examined on day three after the ICH using western blotting, immunohistochemistry, immunofluorescence, as well as hematoxylin-eosin, Nissl, and Luxol fast blue staining. In addition, we combined progesterone with the phosphoinositide 3-kinase/serine/threonine-specific protein kinase (PI3K/AKT) inhibitor, LY294002, to explore its potential neuroprotective mechanisms. Administration of progesterone attenuated the neurological deficits and expression of inflammatory cytokines and promoted axonal regeneration after ICH, this effect was blocked by LY294002. Collectively, these results suggest that progesterone could reduce axonal damage and produced partial neuroprotective effects after ICH through the PI3K/AKT/mTOR pathway, providing a new therapeutic target and basis for the treatment of ICH.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Weina Gao
- Department of Intensive Care Unit, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu 610041, Sichuan Province, P.R. China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637002, Sichuan Province, P.R. China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's Hospital, Chengdu 610021, Sichuan Province, P.R. China
| |
Collapse
|
17
|
Wali B, Sayeed I, Stein DG, Raper J. Prophylactic progesterone prevents adverse behavioural and neurocognitive effects of neonatal anaesthesia exposure in rat. Br J Anaesth 2021; 128:301-310. [PMID: 34920856 DOI: 10.1016/j.bja.2021.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Evidence from animal models and human studies suggests an association between early general anaesthesia exposure and development of long-lasting neurocognitive problems including learning and memory impairments and an anxious phenotype. Because millions of children each year undergo procedures that require anaesthesia, it is important to investigate ways to protect the vulnerable developing brain. We evaluated whether progesterone treatment administered before general anaesthesia exposure could prevent long-term anaesthesia-induced neurocognitive and behavioural changes. METHODS Female and male Long-Evans rat pups were repeatedly exposed to 2 h of sevoflurane or control procedures at postnatal days 7, 10, and 13. Subcutaneous injections of progesterone or vehicle were administered immediately before general anaesthesia exposure or control procedures. Neurobehavioural and cognitive outcomes were evaluated using elevated plus maze and Morris water maze tests. RESULTS Prophylactic progesterone treatment attenuated the chemokine (C-X-C motif) ligand 1 (CXCL1) response to sevoflurane exposure. Rats given vehicle treatment with general anaesthesia exposure exhibited increased anxiety on the elevated plus maze and learning and memory impairments on the Morris water maze. However, rats treated with progesterone before general anaesthesia lacked these impairments and performed in a similar manner to controls on both tasks. CONCLUSIONS Progesterone attenuated the anaesthesia-induced, acute peripheral inflammatory response and prevented cognitive and behavioural alterations associated with early repeated general anaesthesia exposure. Importantly, our results suggest that progesterone treatments given before general anaesthesia may help to protect the developing brain.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience and Behavioral Biology Program, Emory College of Arts and Sciences, Atlanta, GA, USA
| | - Jessica Raper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X, Yu H, Shi MJ, Hu Y, Fan W, Zhao BQ. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138:91-103. [PMID: 33881503 PMCID: PMC8288643 DOI: 10.1182/blood.2020008913] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaofei Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lijing Kang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongliang Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huilin Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei-Juan Shi
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Interferon-β alleviates delayed tPA-induced adverse effects via modulation of MMP3/9 production in ischemic stroke. Blood Adv 2021; 4:4366-4381. [PMID: 32926126 DOI: 10.1182/bloodadvances.2020001443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only US Food and Drug Administration (FDA)-approved drug for ischemic stroke. However, delayed tPA administration is associated with increased risk of blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT). Interferon-β (IFNβ), an FDA-approved drug for the treatment of multiple sclerosis, is a cytokine with immunomodulatory properties. Previous studies, including ours, demonstrated that IFNβ or type I IFN receptor signaling conferred protection against ischemic stroke in preclinical models, suggesting IFNβ might have translational therapeutic potential for the treatment of ischemic stroke. Currently, whether IFNβ could be coadministered with tPA to alleviate delayed tPA-induced adverse effects remains unknown. To elucidate that, IFNβ was coadministered with delayed tPA to ischemic stroke animals, and the severity and pathology of ischemic brain injury were assessed. We found delayed tPA treatment exacerbated ischemic brain injury, manifested by aggravated BBB disruption and HT. Notably, IFNβ ameliorated delayed tPA-exacerbated brain injury and alleviated adverse effects. Mechanistic studies revealed IFNβ suppressed tPA-enhanced neuroinflammation and MMP3/9 production in the ischemic brain. Furthermore, we identified IFNβ suppressed MMP9 production in microglia and attenuated tight junction protein degradation in brain endothelial cells. Moreover, we observed that peripheral immune cells may participate to a lesser extent in delayed tPA-exacerbated brain injury during the early phase of ischemic stroke. In conclusion, we provide the first evidence that IFNβ can be coadministered with tPA to mitigate delayed tPA-induced adverse effects of BBB disruption and HT that could potentially extend the tPA therapeutic window for the treatment of ischemic stroke.
Collapse
|
20
|
Cheng G, Zhao W, Xin Y, Huang G, Liu Y, Li Z, Zhan M, Li Y, Lu L, van Leyen K, Liu Y. Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. J Neurochem 2021; 157:586-598. [PMID: 33481248 DOI: 10.1111/jnc.15308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Thrombolytic stroke therapy with tissue plasminogen activator (tPA) is limited by risks of hemorrhagic transformation (HT). We have reported that a new 12/15-lipoxygenase (12/15-LOX) inhibitor ML351 reduced tPA related HT in mice subjected to experimental stroke under anticoagulation. In this study, we asked whether ML351 can ameliorate tPA induced HT in an embolic stroke model. Rats were subjected to embolic middle cerebral artery occlusion with 2 or 3 hr ischemia and tPA infusion, with or without ML351. Regional cerebral blood flow was monitored 2 hr after ischemia and continuously monitored for 1 hr after treatment for determining reperfusion. Hemoglobin was determined in brain homogenates and infarct volume was quantified at 24 hr after stroke.12/15-LOX, cluster of differentiation 68(CD68), immunoglobulin G (IgG), and tight junction proteins expression was detected by immunohistochemistry. ML351 significantly reduced tPA related hemorrhage after stroke without affecting its thrombolytic efficacy. ML351 also reduced blood-brain barrier disruption and improved preservation of junction proteins. ML351 and tPA combination improved neurological deficit of rats even though ML351 did not further reduce the infarct volume compared to tPA alone treated animals. Pro-inflammatory cytokines were suppressed by ML351 both in vivo and in vitro experiments. We further showed that ML351 suppressed the expression of c-Jun-N-terminal kinase (JNK) in brains and microglia cultures, whereas exogenous 12-HETE attenuated this effect in vitro. In conclusion, ML351 and tPA combination therapy is beneficial in ameliorating HT after ischemic stroke. This protective effect is probably because of 12/15-LOX inhibition and suppression of JNK-mediated microglia/macrophage activation.
Collapse
Affiliation(s)
- Guangsen Cheng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongjie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Guomin Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongkang Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Zhongliang Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yu Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| |
Collapse
|
21
|
Nazarinia D, Sharifi M, Dolatshahi M, Nasseri Maleki S, Madani Neishaboori A, Aboutaleb N. FoxO1 and Wnt/β-catenin signaling pathway: Molecular targets of human amniotic mesenchymal stem cells-derived conditioned medium (hAMSC-CM) in protection against cerebral ischemia/reperfusion injury. J Chem Neuroanat 2021; 112:101918. [PMID: 33421540 DOI: 10.1016/j.jchemneu.2021.101918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023]
Abstract
Ischemia-reperfusion (I/R) injury has weakened the effects of available treatment options for ischemic stroke. Although conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) has been reported to exert protective effect against stroke, detailed knowledge about its possible molecular mechanisms is not still completely available. The present study was designed to investigate whether hAMSC-CM can modulate FoxO1 and Wnt/β-catenin signaling pathway after ischemic stroke to create neuroprotective effects. Middle cerebral artery occlusion (MCAO) model with male Wistar rats was used to evaluate the effects of hAMSC-CM on activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and apoptotic cell death. The results demonstrated that induction of MCAO significantly reduced activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and enhanced apoptotic cell death (P < 0.05). In addition, treatment by hAMSC-CM immediately after cerebral reperfusion resulted in significantly reduced infarct size and increased activities of FoxO1, Wnt/β-catenin signaling pathway, and restoring endogenous antioxidant system and suppressing apoptotic cell death (P < 0.05). Likewise, increased activity of Wnt/β-catenin signaling pathway resulted in suppressing the neuroinflammation by inhibiting the expression of TNF-α and increasing the expression of IL-10. These findings demonstrate that hAMSC-CM can be considered as an excellent candidate in the treatment of acute ischemic stroke in clinical routine.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Solmaz Nasseri Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arian Madani Neishaboori
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Khosravi A, Baharifar H, Darvishi MH, Karimi Zarchi AA. Investigation of chitosan-g-PEG grafted nanoparticles as a half-life enhancer carrier for tissue plasminogen activator delivery. IET Nanobiotechnol 2021; 14:899-907. [PMID: 33399124 DOI: 10.1049/iet-nbt.2019.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half-life is low (4-6 min) and its administration needs a prolonged continuous infusion. Improving tPA half-life could reduce enzyme dosage and enhance patient compliance. Nano-carries could be used as delivery systems for the protection of enzymes physically, enhancing half-life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS-g-PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles' size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half-life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half-life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p-value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS-g-PEG/tPA could increase enzyme half-life during the time and could be used as a non-toxic candidate delivery system for tPA.
Collapse
Affiliation(s)
- Arezoo Khosravi
- Atherosclerosis Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Karimi Zarchi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Otsu Y, Namekawa M, Toriyabe M, Ninomiya I, Hatakeyama M, Uemura M, Onodera O, Shimohata T, Kanazawa M. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J Neurol Sci 2020; 419:117217. [PMID: 33161301 DOI: 10.1016/j.jns.2020.117217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Reperfusion therapies by tissue plasminogen activator (tPA) and mechanical thrombectomy (MT) have ushered in a new era in the treatment of acute ischemic stroke (AIS). However, reperfusion therapy-related HT remains an enigma. AIM To provide a comprehensive review focused on emerging concepts of stroke and therapeutic strategies, including the use of protective agents to prevent HT after reperfusion therapies for AIS. METHODS A literature review was performed using PubMed and the ClinicalTrials.gov database. RESULTS Risk of HT increases with delayed initiation of tPA treatment, higher baseline glucose level, age, stroke severity, episode of transient ischemic attack within 7 days of stroke onset, and hypertension. At a molecular level, HT that develops after thrombolysis is thought to be caused by reactive oxygen species, inflammation, remodeling factor-mediated effects, and tPA toxicity. Modulation of these pathophysiological mechanisms could be a therapeutic strategy to prevent HT after tPA treatment. Clinical mechanisms underlying HT after MT are thought to involve smoking, a low Alberta Stroke Program Early CT Score, use of general anesthesia, unfavorable collaterals, and thromboembolic migration. However, the molecular mechanisms are yet to be fully investigated. Clinical trials with MT and protective agents have also been planned and good outcomes are expected. CONCLUSION To fully utilize the easily accessible drug-tPA-and the high recanalization rate of MT, it is important to reduce bleeding complications after recanalization. A future study direction could be to investigate the recovery of neurological function by combining reperfusion therapies with cell therapies and/or use of pleiotropic protective agents.
Collapse
Affiliation(s)
- Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Namekawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masafumi Toriyabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
24
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
25
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
26
|
Espinosa-Garcia C, Atif F, Yousuf S, Sayeed I, Neigh GN, Stein DG. Progesterone Attenuates Stress-Induced NLRP3 Inflammasome Activation and Enhances Autophagy following Ischemic Brain Injury. Int J Mol Sci 2020; 21:E3740. [PMID: 32466385 PMCID: PMC7312827 DOI: 10.3390/ijms21113740] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome inhibition and autophagy induction attenuate inflammation and improve outcome in rodent models of cerebral ischemia. However, the impact of chronic stress on NLRP3 inflammasome and autophagic response to ischemia remains unknown. Progesterone (PROG), a neuroprotective steroid, shows promise in reducing excessive inflammation associated with poor outcome in ischemic brain injury patients with comorbid conditions, including elevated stress. Stress primes microglia, mainly by the release of alarmins such as high-mobility group box-1 (HMGB1). HMGB1 activates the NLRP3 inflammasome, resulting in pro-inflammatory interleukin (IL)-1β production. In experiment 1, adult male Sprague-Dawley rats were exposed to social defeat stress for 8 days and then subjected to global ischemia by the 4-vessel occlusion model, a clinically relevant brain injury associated with cardiac arrest. PROG was administered 2 and 6 h after occlusion and then daily for 7 days. Animals were killed at 7 or 14 days post-ischemia. Here, we show that stress and global ischemia exert a synergistic effect in HMGB1 release, resulting in exacerbation of NLRP3 inflammasome activation and autophagy impairment in the hippocampus of ischemic animals. In experiment 2, an in vitro inflammasome assay, primary microglia isolated from neonatal brain tissue, were primed with lipopolysaccharide (LPS) and stimulated with adenosine triphosphate (ATP), displaying impaired autophagy and increased IL-1β production. In experiment 3, hippocampal microglia isolated from stressed and unstressed animals, were stimulated ex vivo with LPS, exhibiting similar changes than primary microglia. Treatment with PROG reduced HMGB1 release and NLRP3 inflammasome activation, and enhanced autophagy in stressed and unstressed ischemic animals. Pre-treatment with an autophagy inhibitor blocked Progesterone's (PROG's) beneficial effects in microglia. Our data suggest that modulation of microglial priming is one of the molecular mechanisms by which PROG ameliorates ischemic brain injury under stressful conditions.
Collapse
Affiliation(s)
- Claudia Espinosa-Garcia
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Gretchen N. Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Donald G. Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| |
Collapse
|
27
|
Benefits of progesterone on brain immaturity and white matter injury induced by chronic hypoxia in neonatal rats. J Thorac Cardiovasc Surg 2020; 160:e55-e66. [PMID: 32689704 DOI: 10.1016/j.jtcvs.2020.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aims to evaluate the protective effects of progesterone on white matter injury and brain immaturity in neonatal rats with chronic hypoxia. METHODS Three-day old Sprague-Dawley rats were randomly divided into 3 groups: (1) control (n = 48), rats were exposed to normoxia (fraction of inspired oxygen: 21% ± 0%); (2) chronic hypoxia (n = 48), rats were exposed to hypoxia (fraction of inspired oxygen: 10.5% ± 1.0%); and (3) progesterone (n = 48), rats were exposed to hypoxia and administrated with progesterone (8 mg/kg/d). Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative polymerase chain reaction, and Western blot analyses were compared on postnatal day 14 in different groups. Motor skill and coordination abilities of rats were assessed via rotation experiments. RESULTS Increased brain weights (P < .05), narrowed ventricular sizes (P < .01), and rotarod experiment scores (P < .01) were better in the progesterone group than in the chronic hypoxia group. The number of mature oligodendrocytes and myelin basic protein expression increased in the progesterone group compared with the chronic hypoxia group (P < .01). The polarization of M1 microglia cells in the corpus callosum of chronic hypoxia-induced hypomyelination rats was significantly increased, whereas there were fewer M2 microglia cells. Conversely, progesterone therapy had an opposite effect and caused an increase in M2 microglia polarization versus a reduction in M1 microglia cells. CONCLUSIONS Progesterone could prevent white matter injury and improve brain maturation in a neonatal hypoxic rat model; this may be associated with inducing a switch from M1 to M2 in microglia.
Collapse
|
28
|
Zhang W, Mi Y, Jiao K, Xu J, Guo T, Zhou D, Zhang X, Ni H, Sun Y, Wei K, Li N, Hou Y. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother Res 2020; 34:2258-2274. [DOI: 10.1002/ptr.6676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenqiang Zhang
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Kun Wei
- School of Chemical Science and Technology Yunnan University Kunming China
| | - Ning Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| |
Collapse
|
29
|
Rakkar K, Othman O, Sprigg N, Bath P, Bayraktutan U. Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study. Neural Regen Res 2020; 15:1300-1307. [PMID: 31960816 PMCID: PMC7047808 DOI: 10.4103/1673-5374.269028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a devastating, life altering event which can severely reduce patient quality of life. Despite years of research there have been minimal therapeutic advances. Endothelial progenitor cells (EPCs), stem cells involved in both vasculogenesis and angiogenesis, may be a potential therapeutic target. After a stroke, EPCs migrate to the site of ischemic injury to repair cerebrovascular damage, and their numbers and functional capacity may determine patients’ outcome. This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type (cortical or lacunar) and/or severity of ischemic stroke. The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age. 100 stroke patients (50 lacunar and 50 cortical strokes) will be recruited in this prospective, observational case-controlled study. Blood samples will be taken from stroke patients at baseline (within 48 hours of stroke) and days 7, 30 and 90. EPCs will be counted with flow cytometry. The plasma levels of pro- and anti-angiogenic factors and inflammatory cytokines will also be determined. Outgrowth endothelial cells will be cultured to be used in tube formation, migration and proliferation functional assays. Primary outcome is disability or dependence on day 90 after stroke, assessed by the modified Rankin Scale. Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers, between patient subgroups and between elderly and young healthy volunteers. Recruitment started in February 2017, 167 participants have been recruited. Recruitment will end in November 2019. West Midlands - Coventry & Warwickshire Research Ethics Committee approved this study (REC number: 16/WM/0304) on September 8, 2016. Protocol version: 2.0. The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov (NCT02980354) on November 15, 2016. This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery.
Collapse
Affiliation(s)
- Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Othman Othman
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Nikola Sprigg
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Philip Bath
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| |
Collapse
|
30
|
Li Y, Zhu ZY, Lu BW, Huang TT, Zhang YM, Zhou NY, Xuan W, Chen ZA, Wen DX, Yu WF, Li PY. Rosiglitazone ameliorates tissue plasminogen activator-induced brain hemorrhage after stroke. CNS Neurosci Ther 2019; 25:1343-1352. [PMID: 31756041 PMCID: PMC6887660 DOI: 10.1111/cns.13260] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Delayed thrombolytic therapy with recombinant tissue plasminogen activator (tPA) may exacerbate blood‐brain barrier (BBB) breakdown after ischemic stroke and lead to catastrophic hemorrhagic transformation (HT). Rosiglitazone(RSG), a widely used antidiabetic drug that activates peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), has been shown to protect against cerebral ischemia through promoting poststroke microglial polarization toward the beneficial anti‐inflammatory phenotype. However, whether RSG can alleviate HT after delayed tPA treatment remains unknown. In this study, we sort to examine the role of RSG on tPA‐induced HT after stroke. Methods and results We used the murine suture middle cerebral artery occlusion (MCAO) models of stroke followed by delayed administration of tPA (10 mg/kg, 2 hours after suture occlusion) to investigate the therapeutic potential of RSG against tPA‐induced HT. When RSG(6 mg/kg) was intraperitoneally administered 1 hour before MCAO in tPA‐treated MCAO mice, HT in the ischemic territory was significantly attenuated 1 day after stroke. In the tPA‐treated MCAO mice, we found RSG significantly mitigated BBB disruption and hemorrhage development compared to tPA‐alone‐treated stroke mice. Using flow cytometry and immunostaining, we confirmed that the expression of CD206 was significantly upregulated while the expression of iNOS was down‐regulated in microglia of the RSG‐treated mice. We further found that the expression of Arg‐1 was also upregulated in those tPA and RSG‐treated stroke mice and the protection against tPA‐induced HT and BBB disruption in these mice were abolished in the presence of PPAR‐γ antagonist GW9662 (4 mg/kg, 1 hour before dMCAO through intraperitoneal injection). Conclusions RSG treatment protects against BBB damage and ameliorates HT in delayed tPA‐treated stroke mice by activating PPAR‐γ and favoring microglial polarization toward anti‐inflammatory phenotype.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing-Wei Lu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue-Man Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Na-Ying Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Da-Xiang Wen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
31
|
Yu P, Venkat P, Chopp M, Zacharek A, Shen Y, Liang L, Landschoot-Ward J, Liu Z, Jiang R, Chen J. Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice. Aging Dis 2019; 10:770-783. [PMID: 31440383 PMCID: PMC6675536 DOI: 10.14336/ad.2018.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.
Collapse
Affiliation(s)
- Peng Yu
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,2Neurology, Henry Ford Hospital, Detroit, MI, USA.,3Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | - Michael Chopp
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,4Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Shen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Linlin Liang
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,5Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Julie Landschoot-Ward
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhongwu Liu
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Rongcai Jiang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jieli Chen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
32
|
Chen C, Chu SF, Ai QD, Zhang Z, Guan FF, Wang SS, Dong YX, Zhu J, Jian WX, Chen NH. CKLF1 Aggravates Focal Cerebral Ischemia Injury at Early Stage Partly by Modulating Microglia/Macrophage Toward M1 Polarization Through CCR4. Cell Mol Neurobiol 2019; 39:651-669. [PMID: 30982091 DOI: 10.1007/s10571-019-00669-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
CKLF1 is a chemokine with increased expression in ischemic brain, and targeting CKLF1 has shown therapeutic effects in cerebral ischemia model. Microglia/macrophage polarization is a mechanism involved in poststroke injury expansion. Considering the quick and obvious response of CKLF1 and expeditious evolution of stroke lesions, we focused on the effects of CKLF1 on microglial/macrophage polarization at early stage of ischemic stroke (IS). The present study is to investigate the CKLF1-mediated expression of microglia/macrophage phenotypes in vitro and in vivo, discussing the involved pathway. Primary microglia culture was used in vitro, and mice transient middle cerebral artery occlusion (MCAO) model was adopted to mimic IS. CKLF1 was added to the primary microglia for 24 h, and we found that CKLF1 modulated primary microglia skew toward M1 phenotype. In mice transient IS model, CKLF1 was stereotactically microinjected to the lateral ventricle of ischemic hemisphere. CKLF1 aggravated ischemic injury, accompanied by promoting microglia/macrophage toward M1 phenotypic polarization. Increased expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines were observed in mice subjected to cerebral ischemia and administrated with CKLF1. CKLF1-/- mice were used to confirm the effects of CKLF1. CKLF1-/- mice showed lighter cerebral damage and decreased M1 phenotype of microglia/macrophage compared with the WT control subjected to cerebral ischemia. Moreover, NF-κB activation enhancement was detected in CKLF1 treatment group. Our results demonstrated that CKLF1 is an important mediator that skewing microglia/macrophage toward M1 phenotype at early stage of cerebral ischemic injury, which further deteriorates followed inflammatory response, contributing to early expansion of cerebral ischemia injury. Targeting CKLF1 may be a novel way for IS therapy.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi-Di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, NHFPC, Peking Union Medicine College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jie Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100050, China
| | - Wen-Xuan Jian
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China.
| |
Collapse
|
33
|
Faheem H, Mansour A, Elkordy A, Rashad S, Shebl M, Madi M, Elwy S, Niizuma K, Tominaga T. Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. J Clin Neurosci 2019; 64:206-213. [DOI: 10.1016/j.jocn.2019.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
|
34
|
Chen C, Ai Q, Chu S, Zhang Z, Zhou X, Luo P, Liu Y, Chen N. IMM-H004 protects against oxygen-glucose deprivation/reperfusion injury to BV2 microglia partly by modulating CKLF1 involved in microglia polarization. Int Immunopharmacol 2019; 70:69-79. [PMID: 30785093 DOI: 10.1016/j.intimp.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND IMM-H004 is a novel compound that has been shown to protect against cerebral ischemia/reperfusion injury in our previous works. Chemokine-like factor 1 (CKLF1) is a chemokine that exhibits increased expression in the ischemic brain. Dysregulation of microglia polarization dynamics is a mechanism of injury expansion poststroke. PURPOSES The aim of present study was to investigate the effects of IMM-H004 on cell viability and microglia phenotypes in BV2 microglia suffering from oxygen-glucose deprivation/reperfusion and discussing the involvement of CKLF1 and possible mechanisms. RESULTS IMM-H004 protected BV2 microglia from oxygen-glucose deprivation/reperfusion-induced toxicity. We found that the expression of CKLF1 was increased in BV2 microglia with oxygen-glucose deprivation/reperfusion, and IMM-H004 decreased this specially increased expression. Moreover, oxygen-glucose deprivation/reperfusion induced the BV2 microglia to polarize toward an M1 phenotype, and IMM-H004 modulated the polarization shift from the M1 phenotype and skewed toward the M2 phenotype, followed by suppressing the excessive inflammatory response and improving recovery. CKLF1 modulated BV2 microglia toward M1 polarization and induced an inflammatory response. By using receptor inhibitors, we found that OGD/R induced microglia polarization partly through CC chemokine receptor 4. Furthermore, the Co-IP assay showed that IMM-H004 decreased the amount of CKLF1 binding to CC chemokine receptor 4 in the BV2 microglia oxygen-glucose deprivation/reperfusion model. CONCLUSIONS IMM-H004 protects BV2 microglia against oxygen-glucose deprivation/reperfusion injury partly by modulating microglia polarization and further regulating the inflammatory response. The CKLF1/CCR4 axis may be involved in the protective effects of IMM-H004 modulating microglia polarization.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Piao Luo
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Yingjiao Liu
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
35
|
Guennoun R, Zhu X, Fréchou M, Gaignard P, Slama A, Liere P, Schumacher M. Steroids in Stroke with Special Reference to Progesterone. Cell Mol Neurobiol 2019; 39:551-568. [PMID: 30302630 DOI: 10.1007/s10571-018-0627-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
36
|
Amani H, Habibey R, Shokri F, Hajmiresmail SJ, Akhavan O, Mashaghi A, Pazoki-Toroudi H. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep 2019; 9:6044. [PMID: 30988361 PMCID: PMC6465364 DOI: 10.1038/s41598-019-42633-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
Ischemic cerebral stroke is a major cause of death and morbidity. Currently, no neuroprotective agents have been shown to impact the clinical outcomes in cerebral stroke cases. Here, we report therapeutic effects of Se nanoparticles on ischemic stroke in a murine model. Anti-transferrin receptor monoclonal antibody (OX26)-PEGylated Se nanoparticles (OX26-PEG-Se NPs) were designed and synthesized and their neuroprotective effects were measured using in vitro and in vivo approaches. We demonstrate that administration of the biodegradable nanoparticles leads to resolution of brain edema, protection of axons in hippocampus region, and myelination of hippocampal area after cerebral ischemic stroke. Our nanoparticle design ensures efficient targeting and minimal side effects. Hematological and biochemical analyses revealed no undesired NP-induced changes. To gain mechanistic insights into the therapeutic effects of these particles, we characterized the changes to the relevant inflammatory and metabolic signaling pathways. We assessed metabolic regulator mTOR and related signaling pathways such as hippo, Ubiquitin-proteasome system (ERK5), Tsc1/Tsc2 complex, FoxO1, wnt/β-catenine signaling pathway. Moreover, we examined the activity of jak2/stat3 signaling pathways and Adamts1, which are critically involved in inflammation. Together, our study provides a promising treatment strategy for cerebral stroke based on Se NP induced suppression of excessive inflammation and oxidative metabolism.
Collapse
Affiliation(s)
- Hamed Amani
- Department of medical nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Rouhollah Habibey
- Department of Neuroscience and Brain Technologies-Istituto Italiano di Technologia, Via Morego, Genova, Italy
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, Netherlands.
- Harvard Medical School, Harvard University, Boston, USA.
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Ai Q, Chen C, Chu S, Luo Y, Zhang Z, Zhang S, Yang P, Gao Y, Zhang X, Chen N. IMM-H004 Protects against Cerebral Ischemia Injury and Cardiopulmonary Complications via CKLF1 Mediated Inflammation Pathway in Adult and Aged Rats. Int J Mol Sci 2019; 20:E1661. [PMID: 30987181 PMCID: PMC6480569 DOI: 10.3390/ijms20071661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Chemokine-like factor 1 (CKLF1) is a chemokine with potential to be a target for stroke therapy. Compound IMM-H004 is a novel coumarin derivative screened from a CKLF1/C-C chemokine receptor type 4 (CCR4) system and has been reported to improve cerebral ischemia/reperfusion injury. This study aims to investigate the protective effects of IMM-H004 on cerebral ischemia injury and its infectious cardiopulmonary complications in adult and aged rats from the CKLF1 perspective. (2) Methods: The effects of IMM-H004 on the protection was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, behavior tests, magnetic resonance imaging (MRI) scans, enzyme-linked immunosorbent assay (ELISA), Nissl staining, histo-pathological examination, and cardiopulmonary function detection. Immunohistological staining, immunofluorescence staining, quantitative real-time PCR (qPCR), and western blotting were used to elucidate the underlying mechanisms. (3) Results: IMM-H004 protects against cerebral ischemia induced brain injury and its cardiopulmonary complications, inhibiting injury, and inflammation through CKLF1-dependent anti-inflammation pathway in adult and aged rats. IMM-H004 downregulates the amount of CKLF1, suppressing the followed inflammatory response, and further protects the damaged organs from ischemic injury. (4) Conclusions: The present study suggested that the protective mechanism of IMM-H004 is dependent on CKLF1, which will lead to excessive inflammatory response in cerebral ischemia. IMM-H004 could also be a therapeutic agent in therapy for ischemic stroke and cardiopulmonary complications in the aged population.
Collapse
Affiliation(s)
- Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pengfei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
38
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
39
|
The Traditional Chinese Medicine MLC901 inhibits inflammation processes after focal cerebral ischemia. Sci Rep 2018; 8:18062. [PMID: 30584250 PMCID: PMC6305383 DOI: 10.1038/s41598-018-36138-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is considered as a major contributor to brain injury following cerebral ischemia. The therapeutic potential of both MLC601/MLC901, which are herbal extract preparations derived from Chinese Medicine, has been reported both in advanced stroke clinical trials and also in animal and cellular models. The aim of this study was to investigate the effects of MLC901 on the different steps of post-ischemic inflammation in focal ischemia in mice. In vivo injury was induced by 60 minutes of middle cerebral artery occlusion (MCAO) followed by reperfusion. MLC901 was administered in post-treatment 90 min after the onset of ischemia and once a day during reperfusion. MLC901 treatment resulted in a reduction in infarct volume, a decrease of Blood Brain Barrier leakage and brain swelling, an improvement in neurological scores and a reduction of mortality rate at 24 hours after MCAO. These beneficial effects of MLC901 were accompanied by an inhibition of astrocytes and microglia/macrophage activation, a drastically decreased neutrophil invasion into the ischemic brain as well as by a negative regulation of pro-inflammatory mediator expression (cytokines, chemokines, matrix metalloproteinases). MLC901 significantly inhibited the expression of Prx6 as well as the transcriptional activity of NFκB and the activation of Toll-like receptor 4 (TLR4) signaling, an important pathway in the immune response in the ischemic brain. MLC901 effects on the neuroinflammation cascade induced by cerebral ischemia probably contribute, in a very significant way, in its potential therapeutic value.
Collapse
|
40
|
NK cells in cerebral ischemia. Biomed Pharmacother 2018; 109:547-554. [PMID: 30399590 DOI: 10.1016/j.biopha.2018.10.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
As a vital cell type in immune system and infiltrating cells in ischemic brain, NK cells can bridge the crosstalk between immune system and nervous system in stroke setting. The mechanism of action of NK cells is complicated, involving direct and indirect actions. NK cells are closely associated with poststroke inflammation, immunodepression and infections. The excessive inflammatory response in ischemic brain is one of the important causes for aggravating cerebral ischemic injury. Besides the inflammation induced by ischemia itself, thrombolytic drug tissue plasminogen activator (tPA) administration could also induce deteriorative inflammation, which is unfavorable for stroke control and recovery. Regulating NK cells may has the potential to modulate the immune response, limiting the development of ischemic damage and getting better outcome. In addition, post-stroke immunosuppression may lead to infections which contribute to higher severity and mortality of ischemic stroke (IS). Targeting NK cells may help to find novel pathways for IS therapy, which can both ameliorate the infarction itself, but also reduce the infectious complications. NK cells may also link IS and related diseases, suggesting NK cells can be used as a diagnostic or prognostic biomarker for IS prevention and treatment.
Collapse
|
41
|
Sayeed I, Wali B, Guthrie DB, Saindane MT, Natchus MG, Liotta DC, Stein DG. Development of a novel progesterone analog in the treatment of traumatic brain injury. Neuropharmacology 2018; 145:292-298. [PMID: 30222982 DOI: 10.1016/j.neuropharm.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
Although systemic progesterone (PROG) treatment has been shown to be neuroprotective by many laboratories and in multiple animal models of brain injury including traumatic brain injury (TBI), PROG's poor aqueous solubility limits its potential for use as a therapeutic agent. The problem of solubility presents challenges for an acute intervention for neural injury, when getting a neuroprotectant to the brain quickly is crucial. Native PROG (nPROG) is hydrophobic and does not readily dissolve in an aqueous-based medium, so this makes it harder to give under emergency field conditions. An agent with properties similar to those of PROG but easier to store, transport, formulate, and administer early in emergency trauma situations could lead to better and more consistent clinical outcomes following TBI. At the same time, the engineering of a new molecule designed to treat a complex systemic injury must anticipate a range of translational issues including solubility and bioavailability. Here we describe the development of EIDD-1723, a novel, highly stable PROG analog with >104-fold higher aqueous solubility than that of nPROG. We think that, with further testing, EIDD-1723 could become an attractive candidate use as a field-ready treatment for TBI patients. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105:518-525. [PMID: 29883947 DOI: 10.1016/j.biopha.2018.05.143] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wan
- The Children's Hospital of Soochow, Jiangsu, Hematology and Oncology, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
43
|
Ding Y, Qian J, Li H, Shen H, Li X, Kong Y, Xu Z, Chen G. Effects of SC99 on cerebral ischemia-perfusion injury in rats: Selective modulation of microglia polarization to M2 phenotype via inhibiting JAK2-STAT3 pathway. Neurosci Res 2018; 142:58-68. [PMID: 29763638 DOI: 10.1016/j.neures.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Inhibition of Janus kinases 2-Signal transducers and activators of transcription3 (JAK2-STAT3) pathway has been shown to exert anti-inflammatory actions. SC99, a novel specific inhibitor targeting JAK2-STAT3 pathway, has been verified to negatively modulate platelet activation and aggregation in vitro. In current study, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in Sprague Dawley rats and primary cultured microglia was exposed to oxygen and glucose deprivation (OGD/R) in vitro. Different dosages were employed to detect the effects of SC99 on cerebral ischemia-perfusion (I/R) injury and evaluate the underlying mechanisms. Our results showed that intracerebroventricular injection of SC99 (10 mmol/L, 15 μL) produced an effective inhibitory effect on the phosphorylation of JAK2 and STAT3. Correspondingly, SC99 ameliorated neuronal apoptosis and degeneration, neurobehavioral deficits, inflammatory response and brain edema. And SC99 promoted microglia polarization to an anti-inflammatory M2 phenotype. We concluded that SC99 could alleviate brain damage and play an anti-inflammatory action by promoting microglia polarization to an anti-inflammatory phenotype after I/R injury, which provides an emerging and promising alternative to protect the brain against MCAO/R injury in the future investigations.
Collapse
Affiliation(s)
- Yiping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Jinhong Qian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| |
Collapse
|
44
|
XQ-1H protects against ischemic stroke by regulating microglia polarization through PPARγ pathway in mice. Int Immunopharmacol 2018; 57:72-81. [DOI: 10.1016/j.intimp.2018.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 01/01/2023]
|
45
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
Affiliation(s)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
46
|
Wei CC, Kong YY, Hua X, Li GQ, Zheng SL, Cheng MH, Wang P, Miao CY. NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br J Pharmacol 2017; 174:3823-3836. [PMID: 28812311 DOI: 10.1111/bph.13979] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Tissue plasminogen activator (tPA) is the only approved pharmacological therapy for acute brain ischaemia; however, a major limitation of tPA is the haemorrhagic transformation that follows tPA treatment. Here, we determined whether nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide biosynthesis, affects tPA-induced haemorrhagic transformation. EXPERIMENTAL APPROACH Middle cerebral artery occlusion (MCAO) was achieved in CD1 mice by introducing a filament to the left MCA for 5 h. When the filament was removed for reperfusion, tPA was infused via the tail vein. A single dose of NMN was injected i.p. (300 mg·kg-1 ). Mice were killed at 24 h post ischaemia, and their brains were evaluated for brain infarction, oedema, haemoglobin content, apoptosis, neuroinflammation, blood-brain barrier (BBB) permeability, the expression of tight junction proteins (TJPs) and the activity/expression of MMPs. KEY RESULTS In the mice infused with tPA at 5 h post ischaemia, there were significant increases in mortality, brain infarction, brain oedema, brain haemoglobin level, neural apoptosis, Iba-1 staining (microglia activation) and myeloperoxidase staining (neutrophil infiltration). All these tPA-induced alterations were significantly prevented by NMN administration. Mechanistically, the delayed tPA treatment increased BBB permeability by down-regulating TJPs, including claudin-1, occludin and zonula occludens-1, and enhancing the activities and protein expression of MMP9 and MMP2. Similarly, NMN administration partly blocked these tPA-induced molecular changes. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that NMN ameliorates tPA-induced haemorrhagic transformation in brain ischaemia by maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Chun-Chun Wei
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yuan-Yuan Kong
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Guo-Qiang Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
47
|
Aryanpour R, Pasbakhsh P, Zibara K, Namjoo Z, Beigi Boroujeni F, Shahbeigi S, Kashani IR, Beyer C, Zendehdel A. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int Immunopharmacol 2017; 51:131-139. [PMID: 28830026 DOI: 10.1016/j.intimp.2017.08.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/14/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022]
Abstract
Demyelination of the central nervous system (CNS) has been associated to reactive microglia in neurodegenerative disorders, such as multiple sclerosis (MS). The M1 microglia phenotype plays a pro-inflammatory role while M2 is involved in anti-inflammatory processes in the brain. In this study, CPZ-induced demyelination mouse model was used to investigate the effect of progesterone (PRO) therapy on microglia activation and neuro-inflammation. Results showed that progesterone therapy (CPZ+PRO) decreased neurological behavioral deficits, as demonstrated by significantly decreased escape latencies, in comparison to CPZ mice. In addition, CPZ+PRO caused a significant reduction in the mRNA expression levels of M1-markers (iNOS, CD86, MHC-II and TNF-α) in the corpus callosum region, whereas the expression of M2-markers (Trem-2, CD206, Arg-1 and TGF-β) was significantly increased, in comparison to CPZ mice. Moreover, CPZ+PRO resulted in a significant decrease in the number of iNOS+ and Iba-1+/iNOS+ cells (M1), whereas TREM-2+ and Iba-1+/TREM-2+ cells (M2) significantly increased, in comparison to CPZ group. Furthermore, CPZ+PRO caused a significant decrease in mRNA and protein expression levels of NLRP3 and IL-18 (~2-fold), in comparison to the CPZ group. Finally, CPZ+PRO therapy was accompanied with reduced levels of demyelination, compared to CPZ, as confirmed by immunofluorescence to myelin basic protein (MBP) and Luxol Fast Blue (LFB) staining, as well as transmission electron microscopy (TEM) analysis. In summary, we reported for the first time that PRO therapy causes polarization of M2 microglia, attenuation of M1 phenotype, and suppression of NLRP3 inflammasome in a CPZ-induced demyelination model of MS.
Collapse
Affiliation(s)
- Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Zeinab Namjoo
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fatemeh Beigi Boroujeni
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shahbeigi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Adib Zendehdel
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany; Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
48
|
Li HD, Li M, Shi E, Jin WN, Wood K, Gonzales R, Liu Q. A translocator protein 18 kDa agonist protects against cerebral ischemia/reperfusion injury. J Neuroinflammation 2017; 14:151. [PMID: 28754131 PMCID: PMC5534039 DOI: 10.1186/s12974-017-0921-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral ischemia is a leading cause of death and disability with limited treatment options. Although inflammatory and immune responses participate in ischemic brain injury, the molecular regulators of neuroinflammation after ischemia remain to be defined. Translocator protein 18 kDa (TSPO) mainly localized to the mitochondrial outer membrane is predominantly expressed in glia within the central nervous system during inflammatory conditions. This study investigated the effect of a TSPO agonist, etifoxine, on neuroinflammation and brain injury after ischemia/reperfusion. Methods We used a mouse model of middle cerebral artery occlusion (MCAO) to examine the therapeutic potential and mechanisms of neuroprotection by etifoxine. Results TSPO was upregulated in Iba1+ or CD11b+CD45int cells from mice subjected to MCAO and reperfusion. Etifoxine significantly attenuated neurodeficits and infarct volume after MCAO and reperfusion. The attenuation was pronounced in mice subjected to 30, 60, or 90 min MCAO. Etifoxine reduced production of pro-inflammatory factors in the ischemic brain. In addition, etifoxine treatment led to decreased expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, and inducible nitric oxide synthase by microglia. Notably, the benefit of etifoxine against brain infarction was ablated in mice depleted of microglia using a colony-stimulating factor 1 receptor inhibitor. Conclusions These findings indicate that the TSPO agonist, etifoxine, reduces neuroinflammation and brain injury after ischemia/reperfusion. The therapeutic potential of targeting TSPO requires further investigations in ischemic stroke.
Collapse
Affiliation(s)
- Han-Dong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Elaine Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
49
|
Yang Z, Xie W, Ju F, khan A, Zhang S. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Neuropharmacology 2017; 116:30-37. [DOI: 10.1016/j.neuropharm.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
|
50
|
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia 2017; 65:1043-1058. [PMID: 28317235 DOI: 10.1002/glia.23142] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Middle aged female rats sustain larger stroke infarction and disability than younger female rats. This older group also shows age-related reduction of insulin like growth factor (IGF)-1 in serum and in astrocytes, a cell type necessary for poststroke recovery. To determine the impact of astrocytic IGF-1 for ischemic stroke, these studies tested the hypothesis that gene transfer of IGF-1 to astrocytes will improve stroke outcomes in middle aged female rats. Middle aged (10-12 month old), acyclic female rats were injected with recombinant adeno-associated virus serotype 5 (AAV5) packaged with the coding sequence of the human (h)IGF-1 gene downstream of an astrocyte-specific promoter glial fibrillary acidic protein (GFAP) (AAV5-GFP-hIGF-1) into the striatum and cortex. The AAV5-control consisted of an identical shuttle vector construct without the hIGF-1 gene (AAV5-GFAP-control). Six to eight weeks later, animals underwent transient (90 min) middle cerebral artery occlusion via intraluminal suture. While infarct volume was not altered, AAV5-GFAP-hIGF-1 treatment significantly improved blood pressure and neurological score in the early acute phase of stroke (2 days) and sensory-motor performance at both the early and late (5 days) acute phase of stroke. AAV5-GFAP-hIGF-1 treatment also reduced circulating serum levels of GFAP, a biomarker for blood brain barrier permeability. Flow cytometry analysis of immune cells in the brain at 24 hr poststroke showed that AAV5-GFAP-hIGF-1 altered the type of immune cells trafficked to the ischemic hemisphere, promoting an anti-inflammatory profile. Collectively, these studies show that targeted enhancement of IGF-1 in astrocytes of middle-aged females improves stroke-induced behavioral impairment and neuroinflammation.
Collapse
Affiliation(s)
- Andre K Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| |
Collapse
|