1
|
İş Ö, Wang X, Reddy JS, Min Y, Yilmaz E, Bhattarai P, Patel T, Bergman J, Quicksall Z, Heckman MG, Tutor-New FQ, Can Demirdogen B, White L, Koga S, Krause V, Inoue Y, Kanekiyo T, Cosacak MI, Nelson N, Lee AJ, Vardarajan B, Mayeux R, Kouri N, Deniz K, Carnwath T, Oatman SR, Lewis-Tuffin LJ, Nguyen T, Carrasquillo MM, Graff-Radford J, Petersen RC, Jr Jack CR, Kantarci K, Murray ME, Nho K, Saykin AJ, Dickson DW, Kizil C, Allen M, Ertekin-Taner N. Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction. Nat Commun 2024; 15:4758. [PMID: 38902234 PMCID: PMC11190273 DOI: 10.1038/s41467-024-48926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.
Collapse
Affiliation(s)
- Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tulsi Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Birsen Can Demirdogen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Launia White
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Vincent Krause
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Dresden, Germany
| | - Nastasia Nelson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kaancan Deniz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Laura J Lewis-Tuffin
- Mayo Clinic Florida Cytometry and Cell Imaging Laboratory, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kejal Kantarci
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Jiang H, Zhang M, Wang HQ, Zhang NN, Li XM, Yang XY, Chen AP, Yan X, Zhang Z, Chu SF, Wang ZZ, Chen NH. Inflammation and Connexin 43 profiles in the prefrontal cortex are relevant to stress susceptibility and resilience in mice. Pharmacol Biochem Behav 2024; 239:173757. [PMID: 38574898 DOI: 10.1016/j.pbb.2024.173757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1β, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Qin Wang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Mu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue-Ying Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ai-Ping Chen
- China Three Gorges University College of Medicine and Health Sciences, Yichang 443002, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China.
| |
Collapse
|
3
|
Zahoor SM, Ishaq S, Ahmed T. Neurotoxic effects of metals on blood brain barrier impairment and possible therapeutic approaches. VITAMINS AND HORMONES 2024; 126:1-24. [PMID: 39029969 DOI: 10.1016/bs.vh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Exposure to neurotoxic and heavy metals (Pb2+, As3+, Mn2+, Cd2+, etc) has increased over time and has shown to negatively affect brain health. Heavy metals can cross the blood brain barrier (BBB) in various ways including receptor or carrier-mediated transport, passive diffusion, or transport via gaps in the endothelial cells of the brain. In high concentrations, these metals have been shown to cause structural and functional impairment to the BBB, by inducing oxidative stress, ion dyshomeostasis, tight junction (TJ) loss, astrocyte/pericyte damage and interference of gap junctions. The structural and functional impairment of the BBB results in increased BBB permeability, which ultimately leads to accumulation of these heavy metals in the brain and their subsequent toxicity. As a result of these effects, heavy metals are correlated with various neurological disorders. The pathological effects of these heavy metals can be effectively mitigated via chelation. In addition, it is possible to treat the associated disorders by counteracting the molecular mechanisms associated with the brain and BBB impairment.
Collapse
Affiliation(s)
- Saba Mehak Zahoor
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sara Ishaq
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
4
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
5
|
Forrest SL, Kim JH, Crockford DR, Huynh K, Cheong R, Knott S, Kane MA, Ittner LM, Halliday GM, Kril JJ. Distribution Patterns of Astrocyte Populations in the Human Cortex. Neurochem Res 2023; 48:1222-1232. [PMID: 35930103 PMCID: PMC10030423 DOI: 10.1007/s11064-022-03700-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Astrocytes are a major class of glial cell in the central nervous system that have a diverse range of types and functions thought to be based on their anatomical location, morphology and cellular properties. Recent studies highlight that astrocyte dysfunction contributes to the pathogenesis of neurological conditions. However, few studies have described the pattern, distribution and density of astrocytes in the adult human cortex. This study mapped the distribution and density of astrocytes immunolabelled with a range of cytoskeletal and membrane markers in the human frontal cortex. Distinct and overlapping astrocyte populations were determined. The frontal cortex from ten normal control cases (75 ± 9 years) was immunostained with glial fibrillary acidic protein (GFAP), aldehyde dehydrogenase-1 L1 (ALDH1L1), connexin-43 (Cx43), aquaporin-4 (AQP4), and glutamate transporter 1 (GLT-1). All markers labelled populations of astrocytes in the grey and white matter, separate cortical layers, subpial and perivascular regions. All markers were informative for labelling different cellular properties and cellular compartments of astrocytes. ALDH1L1 labelled the largest population of astrocytes, and Cx43-immunopositive astrocytes were found in all cortical layers. AQP4 and GLT-1 labelled distal astrocytic process and end-feet in the same population of astrocytes (98% of GLT-1-immunopositive astrocytes contained AQP4). In contrast, GFAP, the most widely used marker, predominantly labelled astrocytes in superficial cortical layers. This study highlights the diversity of astrocytes in the human cortex, providing a reference map of the distribution of distinct and overlapping astrocyte populations which can be used for comparative purposes in various disease, inflammatory and injury states involving astrocytes.
Collapse
Affiliation(s)
- Shelley L Forrest
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 13A Research Park Drive, Sydney, NSW, 2109, Australia.
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Jordan Hanxi Kim
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daniel R Crockford
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Katharine Huynh
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Rosie Cheong
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Samantha Knott
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 13A Research Park Drive, Sydney, NSW, 2109, Australia
| | - Madison A Kane
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 13A Research Park Drive, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 13A Research Park Drive, Sydney, NSW, 2109, Australia
| | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jillian J Kril
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 13A Research Park Drive, Sydney, NSW, 2109, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Jiang H, Zhang Y, Wang ZZ, Chen NH. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules 2023; 28:molecules28041820. [PMID: 36838809 PMCID: PMC9961786 DOI: 10.3390/molecules28041820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Major depressive disorder (MDD) is a leading chronic mental illness worldwide, characterized by anhedonia, pessimism and even suicidal thoughts. Connexin 43 (Cx43), mainly distributed in astrocytes of the brain, is by far the most widely and ubiquitously expressed connexin in almost all vital organs. Cx43 forms gap junction channels in the brain, which mediate energy exchange and effectively maintain physiological homeostasis. Increasing evidence suggests the crucial role of Cx43 in the pathogenesis of MDD. Neuroinflammation is one of the most common pathological features of the central nervous system dysfunctions. Inflammatory factors are abnormally elevated in patients with depression and are closely related to nearly all links of depression. After activating the inflammatory pathway in the brain, the release and uptake of glutamate and adenosine triphosphate, through Cx43 in the synaptic cleft, would be affected. In this review, we have summarized the association between Cx43 and neuroinflammation, the cornerstones linking inflammation and depression, and Cx43 abnormalities in depression. We also discuss the significant association of Cx43 in inflammation and depression, which will help to explore new antidepressant drug targets.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| |
Collapse
|
7
|
Fan Y, Huang H, Shao J, Huang W. MicroRNA-mediated regulation of reactive astrocytes in central nervous system diseases. Front Mol Neurosci 2023; 15:1061343. [PMID: 36710937 PMCID: PMC9877358 DOI: 10.3389/fnmol.2022.1061343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Astrocytes (AST) are abundant glial cells in the human brain, accounting for approximately 20-50% percent of mammalian central nervous system (CNS) cells. They display essential functions necessary to sustain the physiological processes of the CNS, including maintaining neuronal structure, forming the blood-brain barrier, coordinating neuronal metabolism, maintaining the extracellular environment, regulating cerebral blood flow, stabilizing intercellular communication, participating in neurotransmitter synthesis, and defending against oxidative stress et al. During the pathological development of brain tumors, stroke, spinal cord injury (SCI), neurodegenerative diseases, and other neurological disorders, astrocytes undergo a series of highly heterogeneous changes, which are called reactive astrocytes, and mediate the corresponding pathophysiological process. However, the pathophysiological mechanisms of reactive astrocytes and their therapeutic relevance remain unclear. The microRNAs (miRNAs) are essential for cell differentiation, proliferation, and survival, which play a crucial role in the pathophysiological development of CNS diseases. In this review, we summarize the regulatory mechanism of miRNAs on reactive astrocytes in CNS diseases, which might provide a theoretical basis for the diagnosis and treatment of CNS diseases.
Collapse
|
8
|
Ardalan M, Chumak T, Quist A, Jabbari Shiadeh SM, Mallard AJ, Rafati AH, Mallard C. Sex dependent glio-vascular interface abnormality in the hippocampus following postnatal immune activation in mice. Dev Neurosci 2022; 44:320-330. [PMID: 35705008 PMCID: PMC9533445 DOI: 10.1159/000525478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
The neuro-gliovascular unit is a crucial structure for providing a balanced well-functioning environment for neurons and their synapses. Activation of the immune system during the developmental period is believed to affect the gliovascular unit, which may trigger neurodevelopmental and neurological/neuropsychiatric diseases. In this study, we hypothesized that vulnerability of the male brain to a neonatal insult was conditioned by sex-dependent differences in the impairment of the hippocampal gliovascular unit. Male and female C57BL/6J pups received lipopolysaccharide (LPS) (1 mg/kg) or saline on postnatal day (P) 5. Brains were collected at P12 and morphological quantifications of hippocampal fibrillary glial acid protein (GFAP<sup>+</sup>) astrocytes and ionized calcium-binding adaptor molecule 1 protein (Iba1+) microglia were performed by using 3-D image analysis together with measuring the length of CD31<sup>+</sup> and aquaporin-4 (AQP4<sup>+</sup>) vessels. We found a significant increase in the length of CD31<sup>+</sup> capillaries in the male LPS group compared to the saline group; however, coverage of capillaries by astrocytic end-feet (AQP4<sup>+</sup>) was significantly reduced. In contrast, there was a significant increase in AQP4<sup>+</sup> capillary length in female pups 1 week after LPS injection. GFAP<sup>+</sup> astrocytes via morphological changes in the hippocampus showed significant enhancement in the activity 1 week following LPS injection in male mice. We propose that neonatal inflammation could induce susceptibility to neurodevelopmental disorders through modification of hippocampal gliovascular interface in a sex-dependent manner.
Collapse
Affiliation(s)
- Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Maryam Ardalan,
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Quist
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna-Jean Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Hoseinpoor Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
10
|
Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol 2022; 13:796288. [PMID: 35464431 PMCID: PMC9021448 DOI: 10.3389/fimmu.2022.796288] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
It has been noticed in recent years that the unfavorable effects of the gut microbiota could exhaust host vigor and life, yet knowledge and theory are just beginning to be established. Increasing documentation suggests that the microbiota-gut-brain axis not only impacts brain cognition and psychiatric symptoms but also precipitates neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). How the blood-brain barrier (BBB), a machinery protecting the central nervous system (CNS) from the systemic circulation, allows the risky factors derived from the gut to be translocated into the brain seems paradoxical. For the unique anatomical, histological, and immunological properties underpinning its permeable dynamics, the BBB has been regarded as a biomarker associated with neural pathogenesis. The BBB permeability of mice and rats caused by GM dysbiosis raises the question of how the GM and its metabolites change BBB permeability and causes the brain pathophysiology of neuroinflammation and neurodegeneration (NF&ND) and brain aging, a pivotal multidisciplinary field tightly associated with immune and chronic systemic inflammation. If not all, gut microbiota-induced systemic chronic inflammation (GM-SCI) mainly refers to excessive gut inflammation caused by gut mucosal immunity dysregulation, which is often influenced by dietary components and age, is produced at the interface of the intestinal barrier (IB) or exacerbated after IB disruption, initiates various common chronic diseases along its dispersal routes, and eventually impairs BBB integrity to cause NF&ND and brain aging. To illustrate the immune roles of the BBB in pathophysiology affected by inflammatory or "leaky" IB resulting from GM and their metabolites, we reviewed the selected publications, including the role of the BBB as the immune barrier, systemic chronic inflammation and inflammation influences on BBB permeability, NF&ND, and brain aging. To add depth to the bridging role of systemic chronic inflammation, a plausible mechanism indispensable for BBB corruption was highlighted; namely, BBB maintenance cues are affected by inflammatory cytokines, which may help to understand how GM and its metabolites play a major role in NF&ND and aging.
Collapse
Affiliation(s)
- Yi Mou
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yu Du
- Department of Emergency and Critical Care Medicine, The Fourth West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Zhou
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jirong Yue
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xianliang Hu
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yixin Liu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Sao Chen
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Xiufang Lin
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Gongchang Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH. Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder. Front Psychiatry 2022; 13:856867. [PMID: 35401278 PMCID: PMC8989729 DOI: 10.3389/fpsyt.2022.856867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES To examine serum concentrations of aquaporin-4 (AQP4), connexin-30 (CX30), connexin-43 (CX43), and their correlations with cognitive function in the patients with chronic insomnia disorder (CID). METHODS We enrolled 76 subjects with CID and 32 healthy controls (HCs). Serum levels of AQP4, CX30, and CX43 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated with 17-item Hamilton Depression Rating Scale and 14-item Hamilton Anxiety Rating Scale. Cognitive function was evaluated by the Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test. RESULTS The serum levels of AQP4, CX43, and CX30 were significantly reduced in the CID group compared to the HCs. Partial correlation analysis showed that the biomarkers showed no significant correlations with PSQI score, AHI, ODI and TS90, but AQP4, CX43, and CX30 were positively associated with the percentage and total time of slow wave sleep in the CID group. Serum concentrations of AQP4 and CX30 were positively associated with MoCA-C score in the CID group, and AQP4 level negatively correlated with spatial working memory errors. CONCLUSIONS Subjects with CID patients have decreased serum levels of AQP4, CX30, and CX43 indicating astrocyte dysfunction, which could be related to poor objective sleep quality and/or cognition dysfunction.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ting Hu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Shuo He
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ping Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Liu G, Wang Y, Keyal K, Feng L, Zhang C, Wang H, Wang F. Identification of connexin43 in diabetic retinopathy and its downregulation by O-GlcNAcylation to inhibit the activation of glial cells. Biochim Biophys Acta Gen Subj 2021; 1865:129955. [PMID: 34229069 DOI: 10.1016/j.bbagen.2021.129955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite advances in the treatments of diabetic complications, proliferative diabetic retinopathy (PDR) still remains a major cause leading to visual loss, mainly because of the lack of pathological mechanisms and complicated protein expressions in vivo. Current study aimed to investigate the patterns of connexin43 (Cx43) changes and the possible interactions with O-GlcNAcylation in DR. METHODS Clinical samples of vitreous and fibrovascular membranes were acquired from PDR patients during pars plana vitrectomy. Brown Norway rats were used to build diabetic animal models; to investigate the effects of O-GlcNAcylation on Cx43 expressions, total retinal O-GlcNAcylation was changed by intravitreal injections. Levels of protein expressions were examined by immunofluorescence staining and western blot. RESULTS Our results revealed increased Cx43 expressions in a vessel-shape pattern followed by the distribution of glial fibrillary acidic protein (GFAP) in diabetic fibrovascular membranes. Similarly, Cx43 and GFAP expressions were elevated in PDR vitreous and diabetic animal retinas. Retinal O-GlcNAcylation was effectively regulated by intravitreal injections, and the increase of Cx43 and GFAP was significantly suppressed by O-GlcNAcylation inhibition under hyperglycemia conditions. CONCLUSIONS We systemically proved the changes of Cx43 with different retinal cells, and reported the effective methods to regulate retinal O-GlcNAcylation by intravitreal injections, and clearly illustrated the downregulated effects of O-GlcNAcylation inhibition on Cx43 and GFAP expressions. GENERAL SIGNIFICANCE Targeting connexin43 in glial cells reveals a novel mechanism to understand the formation of diabetic fibrovascular membranes and offers a potential therapeutic strategy to interfere the development of PDR.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Yanliang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Khusbu Keyal
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Le Feng
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Conghui Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Hao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai 200072, PR China.
| |
Collapse
|
13
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
González-Molina LA, Villar-Vesga J, Henao-Restrepo J, Villegas A, Lopera F, Cardona-Gómez GP, Posada-Duque R. Extracellular Vesicles From 3xTg-AD Mouse and Alzheimer's Disease Patient Astrocytes Impair Neuroglial and Vascular Components. Front Aging Neurosci 2021; 13:593927. [PMID: 33679370 PMCID: PMC7933224 DOI: 10.3389/fnagi.2021.593927] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are specialized glial cells that are essential components of the neurovascular unit (NVU) and are involved in neurodevelopment, brain maintenance and repair, and neurodegeneration. Astrocytes mediate these processes by releasing cellular mediators such as extracellular vesicles (EVs). EVs are vehicles of cell-cell communication and have been proposed as mediators of damage in AD. However, the transcellular mechanism by which Alzheimer disease (AD) astrocytes impair the function of NVU components is poorly understood. Therefore, we evaluated the effects of adult PS1-KI and 3xTg-AD astrocyte conditioned media (CM) and EVs on NVU components (neuroglia and endothelium) in vitro. Additionally, SAD and FAD astrocyte-derived EVs (A-EVs) were characterized, and we evaluated their effects on NVU in cocultured cells in vitro and on intrahippocampal CA1 cells in vivo. Surprisingly, cultured 3xTg-AD astrocytes showed increased glial fibrillary acidic protein (GFAP) reactivity compared to PS1-KI astrocytes, which denotes astrocytic hyperreactivity. CM from adult mice 3xTg-AD astrocytes increased cell-cell gaps between endothelial cells, filopodia-like dendritic protrusions in neurons and neuronal and endothelial cell death. 3xTg-AD A-EVs induced neurotoxicity and increased astrocyte GFAP reactivity. Cultured human postmortem astrocytes from AD patients also increased GFAP reactivity and EVs release. No differences in the size or number of A-EVs were detected between AD and control samples; however, both SAD and FAD A-EVs showed increased expression of the surface marker aquaporin 4. A-EVs induced cytotoxicity and astrocyte hyperactivation: specifically, FAD A-EVs induced neuroglial cytotoxicity and increased gaps between the endothelium, while SAD A-EVs mainly altered the endothelium. Similarly, both AD A-EVs increased astrocyte GS reactivity and vascular deterioration in vivo. We associated this finding with perivascular reactive astrocytes and vascular deterioration in the human AD brain. In summary, these results suggest that AD A-EVs impair neuroglial and vascular components.
Collapse
Affiliation(s)
- Luis Alfonso González-Molina
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.,Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellin, Colombia
| | - Juan Villar-Vesga
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.,Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellin, Colombia
| | - Julián Henao-Restrepo
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.,Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellin, Colombia
| | - Andrés Villegas
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellin, Colombia
| | - Francisco Lopera
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Rafael Posada-Duque
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.,Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
15
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
16
|
Role of astroglial Connexin 43 in pneumolysin cytotoxicity and during pneumococcal meningitis. PLoS Pathog 2020; 16:e1009152. [PMID: 33370401 PMCID: PMC7793270 DOI: 10.1371/journal.ppat.1009152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae or pneumococcus (PN) is a major causative agent of bacterial meningitis with high mortality in young infants and elderly people worldwide. The mechanism underlying PN crossing of the blood brain barrier (BBB) and specifically, the role of non-endothelial cells of the neurovascular unit that control the BBB function, remains poorly understood. Here, we show that the astroglial connexin 43 (aCx43), a major gap junctional component expressed in astrocytes, plays a predominant role during PN meningitis. Following intravenous PN challenge, mice deficient for aCx43 developed milder symptoms and showed severely reduced bacterial counts in the brain. Immunofluorescence analysis of brain slices indicated that PN induces the aCx43–dependent destruction of the network of glial fibrillary acid protein (GFAP), an intermediate filament protein specifically expressed in astrocytes and up-regulated in response to brain injury. PN also induced nuclear shrinkage in astrocytes associated with the loss of BBB integrity, bacterial translocation across endothelial vessels and replication in the brain cortex. We found that aCx4-dependent astrocyte damages could be recapitulated using in vitro cultured cells upon challenge with wild-type PN but not with a ply mutant deficient for the pore-forming toxin pneumolysin (Ply). Consistently, we showed that purified Ply requires Cx43 to promote host cell plasma membrane permeabilization in a process involving the Cx43-dependent release of extracellular ATP and prolonged increase of cytosolic Ca2+ in host cells. These results point to a critical role for astrocytes during PN meningitis and suggest that the cytolytic activity of the major virulence factor Ply at concentrations relevant to bacterial infection requires co-opting of connexin plasma membrane channels. The role of non-endothelial cells constituting the neurovascular unit during infectious meningitis is poorly appreciated despite their key regulatory functions on the blood-brain barrier integrity. Here, we show that Streptococcus pneumoniae or pneumococcus, a major causative agent of bacterial meningitis, targets astroglial cells to translocate across brain endothelial vessels. We found that astroglial connexin 43, a gap junctional component, played a major role during PN meningitis in mice. PN translocation and replication in the brain cortex were associated with connexin-dependent fragmentation of astrocytic the GFAP network, a process associated with brain injury. These findings were recapitulated and extended in vitro using cultured primary astrocytes and the major PN virulence determinant Pneumolysin. Ply-mediated cytotoxicity was linked to Ca2+ increase and required aCx43, arguing against a direct toxin activity. The results reveal a key role for astroglial signaling during PN crossing of the BBB and shed light on the mechanism of Ply-mediated cytotoxicity during meningitis.
Collapse
|
17
|
Yang TT, Qian F, Liu L, Peng XC, Huang JR, Ren BX, Tang FR. Astroglial connexins in epileptogenesis. Seizure 2020; 84:122-128. [PMID: 33348235 DOI: 10.1016/j.seizure.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng Qian
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China.
| | - Lian Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Xiao-Chun Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Jiang-Rong Huang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Bo-Xu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol 2020; 199:101963. [PMID: 33249091 DOI: 10.1016/j.pneurobio.2020.101963] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023]
Abstract
The role of astrocytes in dysregulation of blood-brain barrier (BBB) function following ischemic stroke is not well understood. Here, we investigate the effects of restoring the repair properties of astrocytes on the BBB after ischemic stroke. Mice deficient for NHE1, a pH-sensitive Na+/H+ exchanger 1, in astrocytes have reduced BBB permeability after ischemic stroke, increased angiogenesis and cerebral blood flow perfusion, in contrast to wild-type mice. Bulk RNA-sequencing transcriptome analysis of purified astrocytes revealed that ∼177 genes were differentially upregulated in mutant astrocytes, with Wnt7a mRNA among the top genes. Using a Wnt reporter line, we confirmed that the pathway was upregulated in cerebral vessels of mutant mice after ischemic stroke. However, administration of the Wnt/β-catenin inhibitor, XAV-939, blocked the reparative effects of Nhe1-deficient astrocytes. Thus, astrocytes lacking pH-sensitive NHE1 protein are transformed from injurious to "protective" by inducing Wnt production to promote BBB repair after ischemic stroke.
Collapse
|
19
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
20
|
Zhang J, Wang X, Hou Z, Neng L, Cai J, Zhang Y, Shi X. Suppression of Connexin 43 Leads to Strial Vascular Hyper-Permeability, Decrease in Endocochlear Potential, and Mild Hearing Loss. Front Physiol 2020; 11:974. [PMID: 32922309 PMCID: PMC7457066 DOI: 10.3389/fphys.2020.00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Connexin 43 (Cx43) is a protein constituent of gap junctions (GJs) in various barrier cells, especially astrocytes and microglia of the blood-brain-barrier (BBB), where it plays an important role in intercellular communication and regulation of the barrier. Despite the importance of Cx43 in other blood barriers, not much attention has been paid to expression and function of Cx43 in the blood-labyrinth-barrier (BLB) of the stria vascularis in the cochlea. Methods: We used multiple research approaches, including immunocytochemical staining, patch-clamp dye loading technique, real-time quantitative reverse transcription (RT)-PCR, western blot, measurement of endocochlear potential (EP) with an electrode through the scala media, and auditory brainstem response to test hearing function. Results: We found Cx43 expressed in vascular endothelial cells (ECs) and perivascular resident macrophages (PVMs) in the stria vascularis of adult C57BL/6 mouse cochleae. In particular, we found Cx43 expressed in foot processes of PVMs at points of contact with the endothelium. Consistent with Cx43 expression in vivo, we also found Cx43 expressed in EC-EC and EC-PVM interfaces in a co-cultured cell line model. Using a patch-clamp dye loading technique, we demonstrated that Alexa Fluor® 568 dye injected into PVMs diffuses to connected neighboring ECs. The functional coupling between the ECs and PVMs is blocked by 18α-Glycyrrhetinic acid (18α-GA), a GJ blocker. Suppression of Cx43 with small interfering RNA (siRNA) in vivo significantly elevated hearing threshold and caused the EP to drop and the blood barrier to become more permeable. In further study, using in vitro primary EC cell line models, we demonstrated that suppression of Cx43 disrupts intercellular tight junctions (TJs) in the EC monolayer and increases endothelial monolayer permeability. Conculsion: Taken together, these findings underscore the importance of Cx43 expression in the normal ear for maintaining BLB integrity, normal EP, and hearing function.
Collapse
Affiliation(s)
- Jinhui Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaohan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Lingling Neng
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jing Cai
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Yunpei Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
21
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Oudart M, Tortuyaux R, Mailly P, Mazaré N, Boulay AC, Cohen-Salmon M. AstroDot - a new method for studying the spatial distribution of mRNA in astrocytes. J Cell Sci 2020; 133:jcs239756. [PMID: 32079659 DOI: 10.1242/jcs.239756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/09/2020] [Indexed: 08/31/2023] Open
Abstract
Astrocytes are morphologically complex and use local translation to regulate distal functions. To study the distribution of mRNA in astrocytes, we combined mRNA detection via in situ hybridization with immunostaining of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-immunolabelled astrocyte somata, and large and fine processes were analysed using AstroDot, an ImageJ plug-in and the R package AstroStat. Taking the characterization of mRNAs encoding GFAP-α and GFAP-δ isoforms as a proof of concept, we showed that they mainly localized on GFAP processes. In the APPswe/PS1dE9 mouse model of Alzheimer's disease, the density and distribution of both α and δ forms of Gfap mRNA changed as a function of the region of the hippocampus and the astrocyte's proximity to amyloid plaques. To validate our method, we confirmed that the ubiquitous Rpl4 (large subunit ribosomal protein 4) mRNA was present in astrocyte processes as well as in microglia processes immunolabelled for ionized calcium binding adaptor molecule 1 (Iba1; also known as IAF1). In summary, this novel set of tools allows the characterization of mRNA distribution in astrocytes and microglia in physiological or pathological settings.
Collapse
Affiliation(s)
- Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Romain Tortuyaux
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
- Orion Imaging Facility, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris 75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris 75005, France
| |
Collapse
|
23
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|
24
|
Vignal N, Boulay AC, San C, Cohen-Salmon M, Rizzo-Padoin N, Sarda-Mantel L, Declèves X, Cisternino S, Hosten B. Astroglial Connexin 43 Deficiency Protects against LPS-Induced Neuroinflammation: A TSPO Brain µPET Study with [ 18F]FEPPA. Cells 2020; 9:cells9020389. [PMID: 32046185 PMCID: PMC7072124 DOI: 10.3390/cells9020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Astroglial connexin 43 (Cx43) has been recognized as a crucial immunoregulating factor in the brain. Its inactivation leads to a continuous immune recruitment, cytokine expression modification and a specific humoral autoimmune response against the astrocytic extracellular matrix but without brain lesions or cell lysis. To assess the impact of Cx43 deletion on the brain’s inflammatory response, TSPO expression was studied by positron emission tomography (PET) imaging with a specific radioligand, [18F]FEPPA, in basal conditions or upon Lipopolysaccharides (LPS)-induced inflammatory challenge. Astroglial Cx43-deleted mice underwent [18F]FEPPA PET/CT dynamic imaging with or without LPS injection (5 mg/kg) 24 h before imaging. Quantification and pharmacokinetic data modelling with a 2TCM-1K compartment model were performed. After collecting the mice brains, TSPO expression was quantified and localized by Western blot and FISH analysis. We found that astroglial Cx43 deficiency does not significantly alter TSPO expression in the basal state as observed with [18F]FEPPA PET imaging, FISH and Western blot analysis. However, deletion of astrocyte Cx43 abolishes the LPS-induced TSPO increase. Autoimmune encephalopathy observed in astroglial Cx43-deleted mice does not involve TSPO overexpression. Consistent with previous studies showing a unique inflammatory status in the absence of astrocyte Cx43, we show that a deficient expression of astrocytic Cx43 protects the animals from LPS-induced neuroinflammation as addressed by TSPO expression.
Collapse
Affiliation(s)
- Nicolas Vignal
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Lariboisière: Service de médecine nucléaire, Assistance Publique–Hôpitaux de Paris, 75010 Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France; (A.-C.B.); (M.C.-S.)
| | - Carine San
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France; (A.-C.B.); (M.C.-S.)
| | - Nathalie Rizzo-Padoin
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
| | - Laure Sarda-Mantel
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Hôpital Lariboisière: Service de médecine nucléaire, Assistance Publique–Hôpitaux de Paris, 75010 Paris, France
| | - Xavier Declèves
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Faculté de Santé, Université de Paris, 75005 Paris, France
- Hôpital Cochin: Service de biologie du médicament et de toxicologie, Assistance Publique–Hôpitaux de Paris, 75014 Paris, France
| | - Salvatore Cisternino
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Faculté de Santé, Université de Paris, 75005 Paris, France
- Hôpital Necker–Enfants Malades: Service de pharmacie, Assistance Publique–Hôpitaux de Paris, 75015 Paris, France
| | - Benoît Hosten
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
- Correspondence: ; Tel.: +33-142-385-105
| |
Collapse
|
25
|
Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab 2019; 39:610-632. [PMID: 29251523 PMCID: PMC6446417 DOI: 10.1177/0271678x17747188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
26
|
van Pel DM, Harada K, Song D, Naus CC, Sin WC. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture. J Cell Commun Signal 2018; 12:723-730. [PMID: 29909492 DOI: 10.1007/s12079-018-0469-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Glioma is a highly aggressive form of brain cancer, with some subtypes having 5-year survival rates of less than 5%. Tumour cell invasion into the surrounding parenchyma seems to be the primary driver of these poor outcomes, as most gliomas recur within 2 cm of the original surgically-resected tumour. Many current approaches to the development of anticancer therapy attempt to target genetic weaknesses in a particular cancer, but may not take into account the microenvironment experienced by a tumour and the patient-specific genetic differences in susceptibility to treatment. Here we demonstrate the use of complementary approaches, 3D bioprinting and scaffold-free 3D tissue culture, to examine the invasion of glioma cells into neural-like tissue with 3D confocal microscopy. We found that, while both approaches were successful, the use of 3D tissue culture for organoid development offers the advantage of broad accessibility. As a proof-of-concept of our approach, we developed a system in which we could model the invasion of human glioma cells into mouse neural progenitor cell-derived spheroids. We show that we can follow invasion of human tumour cells using cell-tracking dyes and 3D laser scanning confocal microscopy, both in real time and in fixed samples. We validated these results using conventional cryosectioning. Our scaffold-free 3D approach has broad applicability, as we were easily able to examine invasion using different neural progenitor cell lines, thus mimicking differences that might be observed in patient brain tissue. These results, once applied to iPSC-derived cerebral organoids that incorporate the somatic genetic variability of patients, offer the promise of truly personalized treatments for brain cancer.
Collapse
Affiliation(s)
- Derek M van Pel
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kaori Harada
- Cyfuse Biomedical K.K, University of Tokyo Entrepreneur Plaza, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Dandan Song
- Cyfuse Biomedical K.K, University of Tokyo Entrepreneur Plaza, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
27
|
Yang Y, Ren J, Sun Y, Xue Y, Zhang Z, Gong A, Wang B, Zhong Z, Cui Z, Xi Z, Yang GY, Sun Q, Bian L. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ 2018; 25:1870-1884. [PMID: 29880858 DOI: 10.1038/s41418-018-0137-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023] Open
Abstract
Reactive astrogliosis is a common response to insults to the central nervous system, but the mechanism remains unknown. In this study, we found the temporal and spatial differential expression of glial fibrillary acidic protein (GFAP) and Vimentin in the intracerebral hemorrhage (ICH) mouse brain, indicating that the de-differentiation and astroglial-mesenchymal transition (AMT) of astrocytes might be an early event in reactive astrogliosis. Further we verified the AMT finding in purified astrocyte cultures exposed to hemoglobin (Hb). Additionally, Connexin 43 (Cx43) downregulation and YAP nuclear translocation were observed in Hb-activated astrocytes. Knocking down Cx43 by siRNA triggered YAP nuclear translocation. Cx43 and YAP were physically associated as determined by immunofluorescence and co-immunoprecipitation. We propose that astrocytes undergo AMT during Hb-induced activation where Cx43 downregulation facilitates YAP nuclear translocation is a novel mechanism involved in this process. Cx43-YAP interaction may represent a potential therapeutic target for modulating astrocyte activation.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212000, China
| | - Zhijian Zhang
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Aihua Gong
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
28
|
Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, Declèves X, Sarda-Mantel L, Hosten B. [ 18F]FEPPA a TSPO Radioligand: Optimized Radiosynthesis and Evaluation as a PET Radiotracer for Brain Inflammation in a Peripheral LPS-Injected Mouse Model. Molecules 2018; 23:molecules23061375. [PMID: 29875332 PMCID: PMC6099542 DOI: 10.3390/molecules23061375] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
[18F]FEPPA is a specific ligand for the translocator protein of 18 kDa (TSPO) used as a positron emission tomography (PET) biomarker for glial activation and neuroinflammation. [18F]FEPPA radiosynthesis was optimized to assess in a mouse model the cerebral inflammation induced by an intraperitoneal injection of Salmonella enterica serovar Typhimurium lipopolysaccharides (LPS; 5 mg/kg) 24 h before PET imaging. [18F]FEPPA was synthesized by nucleophilic substitution (90 °C, 10 min) with tosylated precursor, followed by improved semi-preparative HPLC purification (retention time 14 min). [18F]FEPPA radiosynthesis were carried out in 55 min (from EOB). The non-decay corrected radiochemical yield were 34 ± 2% (n = 17), and the radiochemical purity greater than 99%, with a molar activity of 198 ± 125 GBq/µmol at the end of synthesis. Western blot analysis demonstrated a 2.2-fold increase in TSPO brain expression in the LPS treated mice compared to controls. This was consistent with the significant increase of [18F]FEPPA brain total volume of distribution (VT) estimated with pharmacokinetic modelling. In conclusion, [18F]FEPPA radiosynthesis was implemented with high yields. The new purification/formulation with only class 3 solvents is more suitable for in vivo studies.
Collapse
Affiliation(s)
- Nicolas Vignal
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| | - Salvatore Cisternino
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France.
| | - Nathalie Rizzo-Padoin
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| | - Carine San
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
| | - Fortune Hontonnou
- Institut Universitaire d'Hématologie, Université Paris Diderot, 75013 Paris, France.
| | - Thibaut Gelé
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
| | - Xavier Declèves
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France.
| | - Laure Sarda-Mantel
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Médecine Nucléaire, 75010 Paris, France.
- Inserm UMR-S 942, Université Paris Diderot, 75013 Paris, France.
| | - Benoît Hosten
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
29
|
Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype. Brain Sci 2018; 8:brainsci8040050. [PMID: 29565275 PMCID: PMC5924386 DOI: 10.3390/brainsci8040050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023] Open
Abstract
Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.
Collapse
|
30
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
31
|
Kovacs GG, Yousef A, Kaindl S, Lee VM, Trojanowski JQ. Connexin-43 and aquaporin-4 are markers of ageing-related tau astrogliopathy (ARTAG)-related astroglial response. Neuropathol Appl Neurobiol 2017; 44:491-505. [PMID: 28755467 DOI: 10.1111/nan.12427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
AIMS Ageing-related tau astrogliopathy (ARTAG) appears in subependymal, subpial, perivascular, white matter (WM) and grey matter (GM) locations. Physical effects, blood-brain barrier dysfunction and blood- or vessel-related factors have been considered as aetiology. As connexin-43 (Cx43) and aquaporin-4 (AQP4) are related to these, we hypothesized that their immunoreactivity (IR) varies with ARTAG in a location-specific manner. METHODS We performed a morphometric immunohistochemical study measuring the densities of IR of Cx43, AQP4, AT8 (phospho-tau) and glial fibrillar acidic protein (GFAP). We analysed the amygdala and hippocampus in age-matched cases with (n = 19) and without (n = 20) ARTAG in each of the locations it aggregates. RESULTS We show a dramatic increase (>6-fold; P < 0.01) of Cx43 density of IR in ARTAG cases correlating strongly with AT8 density of IR, irrespective of the presence of neuronal tau pathology or reactive gliosis measured by GFAP density of IR, in the GM. In contrast, AQP4 density of IR was increased only in the WM and GM, and was associated with increased AT8 density of IR only in WM and perivascular areas. DISCUSSION Our study reveals distinctive astroglial responses in each of the locations associated with ARTAG. Our observations support the concept that factors related to brain-fluid interfaces and water-ion imbalances most likely play a role in the generation of ARTAG. As Cx43 is crucial for maintaining neuronal homeostasis, the ARTAG-dependent increase of Cx43 density of IR suggests that the development of ARTAG in the GM most likely indicates an early response to the degeneration of neurons.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - A Yousef
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - S Kaindl
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - V M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 2017; 3:17005. [PMID: 28377822 PMCID: PMC5368712 DOI: 10.1038/celldisc.2017.5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Astrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface.
Collapse
|
33
|
Diaz R, Miguel PM, Deniz BF, Confortim HD, Barbosa S, Mendonça MCP, Cruz‐Höfling MA, Pereira LO. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia‐ischemia. Int J Dev Neurosci 2016; 53:35-45. [DOI: 10.1016/j.ijdevneu.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ramiro Diaz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Patrícia Maidana Miguel
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bruna Ferrary Deniz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Heloísa Deola Confortim
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Sílvia Barbosa
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Monique Culturato Padilha Mendonça
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Maria Alice Cruz‐Höfling
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Lenir Orlandi Pereira
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|