1
|
Whalen S, Inoue F, Ryu H, Fair T, Markenscoff-Papadimitriou E, Keough K, Kircher M, Martin B, Alvarado B, Elor O, Laboy Cintron D, Williams A, Hassan Samee MA, Thomas S, Krencik R, Ullian EM, Kriegstein A, Rubenstein JL, Shendure J, Pollen AA, Ahituv N, Pollard KS. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron 2023; 111:857-873.e8. [PMID: 36640767 PMCID: PMC10023452 DOI: 10.1016/j.neuron.2022.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023]
Abstract
Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hane Ryu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Kathleen Keough
- Gladstone Institutes, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Orry Elor
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dianne Laboy Cintron
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Sean Thomas
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robert Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alex A Pollen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X, Cai YS, Cheng Y. Exosome Transplantation From Patients With Schizophrenia Causes Schizophrenia-Relevant Behaviors in Mice: An Integrative Multi-omics Data Analysis. Schizophr Bull 2021; 47:1288-1299. [PMID: 33837780 PMCID: PMC8379541 DOI: 10.1093/schbul/sbab039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are involved in the pathophysiology of neuropsychiatric diseases, but the role of exosomes in schizophrenia (SCZ) is unclear. Here, we demonstrate that transplantation of serum exosomes from SCZ patients into mice caused behavioral abnormalities such as deficits in prepulse inhibition and sociability, hyperactivity, and anxiogenesis. A comparative bioinformatics analysis suggested shared and distinct differentially expressed genes (DEGs) and enriched molecular pathways in the brains of SCZ exosome-recipient mice, methylazoxymethanol acetate-treated rats, and SCZ patients, which correlates evidence of altered prefrontal-hippocampal functional coherence in SCZ. A large proportion of SCZ-relevant DEGs in the exosome-recipient mice were targets of DE exosomal miRNAs in SCZ patients. Furthermore, we identified 20 hub genes for SCZ risk genes, including BDNF and NRG1, which were DE miRNA targets in SCZ. Collectively, our study suggests that SCZ exosome transplantation caused SCZ-relevant behaviors in mice, and epigenetic regulation may contribute to the phenotypes in the SCZ exosome-recipient mice. Our results may provide a potential animal model and novel therapeutic targets for SCZ.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Long Tan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zi-Meng Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- The Third People’s Hospital of Foshan, Foshan, China
| | - Xiong Xue
- The Third People’s Hospital of Foshan, Foshan, China
| | - Yan-Shan Cai
- The Third People’s Hospital of Foshan, Foshan, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China,College of Life and Environmental Sciences, Minzu University of China, Beijing, China,NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health-Care Hospital, Changsha, China,To whom correspondence should be addressed; 27 South Zhongguancun Avenue, Beijing 100081, China; tel: 86-10-68931383, fax: 86-10-68936927, e-mail:
| |
Collapse
|