1
|
Wang T, He W, Chen Y, Gou Y, Ma Y, Du X, Wang Y, Yan W, Zhou H. Differential One-Carbon Metabolites among Children with Autism Spectrum Disorder: A Case-Control Study. J Nutr 2024; 154:3346-3352. [PMID: 39270851 DOI: 10.1016/j.tjnut.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wennan He
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Chen
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China
| | - Yuxun Gou
- Guizhou Medical University, Guiyang, China
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Hao Zhou
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China; Department of Rehabilitation, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Siegler Lathrop T, Perego S, Bastiaanssen TFS, van Hemert S, Chronakis IS, Diaz Heijtz R. Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention. Brain Behav Immun 2024; 122:547-554. [PMID: 39197545 DOI: 10.1016/j.bbi.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
Collapse
Affiliation(s)
- Tatiana Siegler Lathrop
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | - Sarah Perego
- Department of Neuroscience, Karolinska Institutet, Stockholm Sweden
| | | | - Saskia van Hemert
- Wageningen Bioveterinary Research, Wageningen University & Research, the Netherlands
| | - Ioannis S Chronakis
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | | |
Collapse
|
3
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Djouina M, Ollivier A, Waxin C, Kervoaze G, Pichavant M, Caboche S, Achour D, Grare C, Beury D, Hot D, Anthérieu S, Lo-Guidice JM, Dubuquoy L, Launay D, Vignal C, Gosset P, Body-Malapel M. Chronic Exposure to Both Electronic and Conventional Cigarettes Alters Ileum and Colon Turnover, Immune Function, and Barrier Integrity in Mice. J Xenobiot 2024; 14:950-969. [PMID: 39051349 PMCID: PMC11270428 DOI: 10.3390/jox14030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Anaïs Ollivier
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Gwenola Kervoaze
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Muriel Pichavant
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Philippe Gosset
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| |
Collapse
|
6
|
Watanangura A, Meller S, Farhat N, Suchodolski JS, Pilla R, Khattab MR, Lopes BC, Bathen-Nöthen A, Fischer A, Busch-Hahn K, Flieshardt C, Gramer M, Richter F, Zamansky A, Volk HA. Behavioral comorbidities treatment by fecal microbiota transplantation in canine epilepsy: a pilot study of a novel therapeutic approach. Front Vet Sci 2024; 11:1385469. [PMID: 38978633 PMCID: PMC11229054 DOI: 10.3389/fvets.2024.1385469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Anxiety and cognitive dysfunction are frequent, difficult to treat and burdensome comorbidities in human and canine epilepsy. Fecal microbiota transplantation (FMT) has been shown to modulate behavior in rodent models by altering the gastrointestinal microbiota (GIM). This study aims to investigate the beneficial effects of FMT on behavioral comorbidities in a canine translational model of epilepsy. Methods Nine dogs with drug-resistant epilepsy (DRE) and behavioral comorbidities were recruited. The fecal donor had epilepsy with unremarkable behavior, which exhibited a complete response to phenobarbital, resulting in it being seizure-free long term. FMTs were performed three times, two weeks apart, and the dogs had follow-up visits at three and six months after FMTs. Comprehensive behavioral analysis, including formerly validated questionnaires and behavioral tests for attention deficit hyperactivity disorder (ADHD)- and fear- and anxiety-like behavior, as well as cognitive dysfunction, were conducted, followed by objective computational analysis. Blood samples were taken for the analysis of antiseizure drug (ASD) concentrations, hematology, and biochemistry. Urine neurotransmitter concentrations were measured. Fecal samples were subjected to analysis using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based Dysbiosis Index (DI) assessment, and short-chain fatty acid (SCFA) quantification. Results Following FMT, the patients showed improvement in ADHD-like behavior, fear- and anxiety-like behavior, and quality of life. The excitatory neurotransmitters aspartate and glutamate were decreased, while the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and GABA/glutamate ratio were increased compared to baseline. Only minor taxonomic changes were observed, with a decrease in Firmicutes and a Blautia_A species, while a Ruminococcus species increased. Functional gene analysis, SCFA concentration, blood parameters, and ASD concentrations remained unchanged. Discussion Behavioral comorbidities in canine IE could be alleviated by FMT. This study highlights FMT's potential as a novel approach to improving behavioral comorbidities and enhancing the quality of life in canine patients with epilepsy.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nareed Farhat
- Tech4Animals Lab, Information Systems Department, University of Haifa, Haifa, Israel
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | - Mohammad R. Khattab
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bruna C. Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, United States
| | | | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Busch-Hahn
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna Zamansky
- Tech4Animals Lab, Information Systems Department, University of Haifa, Haifa, Israel
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
7
|
Murakami A, Yamaguchi H, Namai F, Sato T, Yamazaki M, Uehara H, Fujii T, Tochio T, Shiomi K, Shimosato T. Ad libitum feeding of silkworm larvae powder-containing diets specifically influences metabolism-related and short-chain fatty acid-producing gut bacteria in mice. Front Cell Infect Microbiol 2024; 14:1383774. [PMID: 38947126 PMCID: PMC11211269 DOI: 10.3389/fcimb.2024.1383774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Silkworm (Bombyx mori) larvae are expected to be useful as an ingredient in entomophagy. They are full of nutrients, including indigestible proteins; however, there have been few studies on the effects of the consumption of the entire body of silkworms on the intestinal microflora. We prepared a customized diet containing silkworm larval powder (SLP), and investigated the effects of ad libitum feeding of the SLP diet on the intestinal microbiota and the amount of short-chain fatty acids (SCFAs) in mice. We found that the diversity of the cecal and fecal microbiota increased in the mice fed the SLP diet (SLP group), and that the composition of their intestinal microbiota differed from that of the control mice. Furthermore, a genus-level microbiota analysis showed that in the SLP group, the proportions of Alistipes, Lachnospiraceae A2, and RF39, which are associated with the prevention of obesity, were significantly increased, while the proportions of Helicobacter and Anaerotruncus, which are associated with obesity, were significantly decreased. Additionally, the level of butyrate was increased in the SLP group, and Clostridia UCG 014 and Lachnospiraceae FCS020 were found to be associated with the level of butyrate, one of the major SCFAs. These findings indicated that silkworm powder may be useful as an insect food that might also improve obesity.
Collapse
Affiliation(s)
- Aito Murakami
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
| | - Haruka Yamaguchi
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | - Hiroshi Uehara
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
- Morus Inc., Higashigotanda, Shinagawa-ku, Tokyo, Japan
| | - Tadashi Fujii
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Kamiina, Nagano, Japan
| |
Collapse
|
8
|
Renga G, Nunzi E, Stincardini C, Pariano M, Puccetti M, Pieraccini G, Di Serio C, Fraziano M, Poerio N, Oikonomou V, Mosci P, Garaci E, Fianchi L, Pagano L, Romani L. CPX-351 exploits the gut microbiota to promote mucosal barrier function, colonization resistance, and immune homeostasis. Blood 2024; 143:1628-1645. [PMID: 38227935 DOI: 10.1182/blood.2023021380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Claudia Di Serio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Noemi Poerio
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | | | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luana Fianchi
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Livio Pagano
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Sulmona, Sulmona, Italy
| |
Collapse
|
9
|
Zhou L, Jiang P, Zhao L, Fei X, Tang Y, Luo Y, Gong H, Wang X, Li X, Li S, Zhang C, Yang H, Fan X. Ligustilide inhibits Purkinje cell ferritinophagy via the ULK1/NCOA4 pathway to attenuate valproic acid-induced autistic features. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155443. [PMID: 38394737 DOI: 10.1016/j.phymed.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which social impairment is the core symptom. Presently, there are no definitive medications to cure core symptoms of ASD, and most therapeutic strategies ameliorate ASD symptoms. Treatments with proven efficacy in autism are imminent. Ligustilide (LIG), an herbal monomer extracted from Angelica Sinensis and Chuanxiong, is mainly distributed in the cerebellum and widely used in treating neurological disorders. However, there are no studies on its effect on autistic-like phenotypes and its mechanism of action. PURPOSE Investigate the efficacy and mechanism of LIG in treating ASD using two Valproic acid(VPA)-exposed and BTBR T + Itpr3tf/J (BTBR) mouse models of autism. METHODS VPA-exposed mice and BTBR mice were given LIG for treatment, and its effect on autistic-like phenotype was detected by behavioral experiments, which included a three-chamber social test. Subsequently, RNA-Sequence(RNA-Seq) of the cerebellum was performed to observe the biological changes to search target pathways. The autophagy and ferroptosis pathways screened were verified by WB(Western Blot) assay, and the cerebellum was stained by immunofluorescence and examined by electron microscopy. To further explore the therapeutic mechanism, ULK1 agonist BL-918 was used to block the therapeutic effect of LIG to verify its target effect. RESULTS Our work demonstrates that LIG administration from P12-P14 improved autism-related behaviors and motor dysfunction in VPA-exposed mice. Similarly, BTBR mice showed the same improvement. RNA-Seq data identified ULK1 as the target of LIG in regulating ferritinophagy in the cerebellum of VPA-exposed mice, as evidenced by activated autophagy, increased ferritin degradation, iron overload, and lipid peroxidation. We found that VPA exposure-induced ferritinophagy occurred in the Purkinje cells, with enhanced NCOA4 and Lc3B expressions. Notably, the therapeutic effect of LIG disappeared when ULK1 was activated. CONCLUSION LIG treatment inhibits ferritinophagy in Purkinje cells via the ULK1/NCOA4-dependent pathway. Our study reveals for the first time that LIG treatment ameliorates autism symptoms in VPA-exposed mice by reducing aberrant Purkinje ferritinophagy. At the same time, our study complements the pathogenic mechanisms of autism and introduces new possibilities for its therapeutic options.
Collapse
Affiliation(s)
- Lianyu Zhou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Peiyan Jiang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yexi Tang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xiaqing Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Fu Y, Zhang YL, Liu RQ, Xu MM, Xie JL, Zhang XL, Xie GM, Han YT, Zhang XM, Zhang WT, Zhang J, Zhang J. Exosome lncRNA IFNG-AS1 derived from mesenchymal stem cells of human adipose ameliorates neurogenesis and ASD-like behavior in BTBR mice. J Nanobiotechnology 2024; 22:66. [PMID: 38368393 PMCID: PMC10874555 DOI: 10.1186/s12951-024-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The transplantation of exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs) has emerged as a prospective cellular-free therapeutic intervention for the treatment of neurodevelopmental disorders (NDDs), as well as autism spectrum disorder (ASD). Nevertheless, the efficacy of hADSC exosome transplantation for ASD treatment remains to be verified, and the underlying mechanism of action remains unclear. RESULTS The exosomal long non-coding RNAs (lncRNAs) from hADSC and human umbilical cord mesenchymal stem cells (hUCMSC) were sequenced and 13,915 and 729 lncRNAs were obtained, respectively. The lncRNAs present in hADSC-Exos encompass those found in hUCMSC-Exos and are associated with neurogenesis. The biodistribution of hADSC-Exos in mouse brain ventricles and organoids was tracked, and the cellular uptake of hADSC-Exos was evaluated both in vivo and in vitro. hADSC-Exos promote neurogenesis in brain organoid and ameliorate social deficits in ASD mouse model BTBR T + tf/J (BTBR). Fluorescence in situ hybridization (FISH) confirmed lncRNA Ifngas1 significantly increased in the prefrontal cortex (PFC) of adult mice after hADSC-Exos intraventricular injection. The lncRNA Ifngas1 can act as a molecular sponge for miR-21a-3p to play a regulatory role and promote neurogenesis through the miR-21a-3p/PI3K/AKT axis. CONCLUSION We demonstrated hADSC-Exos have the ability to confer neuroprotection through functional restoration, attenuation of neuroinflammation, inhibition of neuronal apoptosis, and promotion of neurogenesis both in vitro and in vivo. The hADSC-Exos-derived lncRNA IFNG-AS1 acts as a molecular sponge and facilitates neurogenesis via the miR-21a-3p/PI3K/AKT signaling pathway, thereby exerting a regulatory effect. Our findings suggest a potential therapeutic avenue for individuals with ASD.
Collapse
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Yuan-Lin Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
- Department of Pathology, Air Force Medical Center, Beijing, 100142, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Meng-Meng Xu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Xing-Liao Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Yao-Ting Han
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Xin-Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Wan-Ting Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, China.
| |
Collapse
|
12
|
Kashyap Y, Wang ZJ. Gut microbiota dysbiosis alters chronic pain behaviors in a humanized transgenic mouse model of sickle cell disease. Pain 2024; 165:423-439. [PMID: 37733476 PMCID: PMC10843763 DOI: 10.1097/j.pain.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. However, the role of gut microbiota in SCD pain is yet to be explored. We sought to evaluate the compositional differences in the gut microbiota of transgenic mice with SCD and nonsickle control mice and investigate the role of gut microbiota in SCD pain by using antibiotic-mediated gut microbiota depletion and fecal material transplantation (FMT). The antibiotic-mediated gut microbiota depletion did not affect evoked pain but significantly attenuated ongoing spontaneous pain in mice with SCD. Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
| | - Zaijie Jim Wang
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
- Department of Neurology & Rehabilitation, and Sickle Cell Center, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
13
|
Yegin Z, Sudagidan M. A medical and molecular approach to kefir as a therapeutic agent of human microbiota. INT J VITAM NUTR RES 2024; 94:71-80. [PMID: 36068959 DOI: 10.1024/0300-9831/a000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The imbalanced microbial composition called dysbiosis constitutes a tendency related to different kind of human diseases. To overcome the disadvantages of dysbiosis, the consumption of probiotics is an emerging and promising topic of the last decade. Kefir is a probiotic fermented beverage produced from the fermentation of kefir grains with changing varieties of milk and displays a symbiotic association of bacteria and yeast. The discovery of the concept that fermented foods/beverages such as kefir could modify gut microbiota in humans has widened the borders of precision medicine and now microbiome therapeutics can be considered as a significant part of this field. Kefir seems to have potential to guide and manipulate future replacement/complementary therapies with a variety of beneficial biological/medical properties it has. The aim of this review was a comprehensive recapitulation of probiotic beverage kefir's significant properties mainly focusing of antioxidative, immunomodulatory, apoptotic, antitumor and neuroprotective properties. Apoptotic/antimetastatic effects are regulated at the molecular level by increases in TGF-β1, caspase-3, p53, Bax, Bax:Bcl-2 ratio, p21 and decreases in TGF-α, Bcl-2 and MMP polarization. Neuroprotective effects are revealed upon upregulation of SOD/catalase and anti-inflammatory Treg cells, decreases in repetitive behavior and modulation of apoptotic genes. Besides these significant features that may offer advantages in supplementary cancer therapies, the scope was also extended to recent emerging medical topics and also discussed and evaluated the concept of "psychobiotics". The therapeutic potential of psychobiotic effect is majorly attributed to the increased ratios of Clostridium butyricum, Lactobacillus and Bifidobacterium.
Collapse
Affiliation(s)
- Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Turkey
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, Turkey
| |
Collapse
|
14
|
Wan Y, Wong OW, Tun HM, Su Q, Xu Z, Tang W, Ma SL, Chan S, Chan FKL, Ng SC. Fecal microbial marker panel for aiding diagnosis of autism spectrum disorders. Gut Microbes 2024; 16:2418984. [PMID: 39468837 PMCID: PMC11540074 DOI: 10.1080/19490976.2024.2418984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Accumulating evidence suggests that gut microbiota alterations influence brain function and could serve as diagnostic biomarkers and therapeutic targets. The potential of using fecal microbiota signatures to aid autism spectrum disorder (ASD) detection is still not fully explored. Here, we assessed the potential of different levels of microbial markers (taxonomy and genome) in distinguishing children with ASD from age and gender-matched typically developing peers (n = 598, ASD vs TD = 273 vs 325). A combined microbial taxa and metagenome-assembled genome (MAG) markers showed a better performance than either microbial taxa or microbial MAGs alone for detecting ASD. A machine-learning model comprising 5 bacterial taxa and 44 microbial MAG markers (2 viral MAGs and 42 bacterial MAGs) achieved an area under the receiving operator curve (AUROC) of 0.886 in the discovery cohort and 0.734 in an independent validation cohort. Furthermore, the identified biomarkers and predicted ASD risk score also significantly correlated with the core symptoms measured by the Social Responsiveness Scale-2 (SRS-2). The microbiome panel showed a superior classification performance in younger children (≤6 years old) with an AUROC of 0.845 than older children (>6 years). The model was broadly applicable to subjects across genders, with or without gastrointestinal tract symptoms (constipation and diarrhea) and with or without psychiatric comorbidities (attention deficit and hyperactivity disorder and anxiety). This study highlights the potential clinical validity of fecal microbiome to aid in ASD diagnosis and will facilitate studies to understand the association of disturbance of human gut microbiota and ASD symptom severity.
Collapse
Affiliation(s)
- Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W.H. Wong
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Suk Ling Ma
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Fu Y, Yu B, Wang Q, Lu Z, Zhang H, Zhang D, Luo F, Liu R, Wang L, Chu Y. Oxidative stress-initiated one-carbon metabolism drives the generation of interleukin-10-producing B cells to resolve pneumonia. Cell Mol Immunol 2024; 21:19-32. [PMID: 38082147 PMCID: PMC10757717 DOI: 10.1038/s41423-023-01109-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/07/2023] [Indexed: 01/01/2024] Open
Abstract
The metabolic reprogramming underlying the generation of regulatory B cells during infectious diseases remains unknown. Using a Pseudomonas aeruginosa-induced pneumonia model, we reported that IL-10-producing B cells (IL-10+ B cells) play a key role in spontaneously resolving infection-mediated inflammation. Accumulated cytosolic reactive oxygen species (ROS) during inflammation were shown to drive IL-10+ B-cell generation by remodeling one-carbon metabolism. Depletion of the enzyme serine hydroxymethyltransferase 1 (Shmt1) led to inadequate one-carbon metabolism and decreased IL-10+ B-cell production. Furthermore, increased one-carbon flux elevated the levels of the methyl donor S-adenosylmethionine (SAM), altering histone H3 lysine 4 methylation (H3K4me) at the Il10 gene to promote chromatin accessibility and upregulate Il10 expression in B cells. Therefore, the one-carbon metabolism-associated compound ethacrynic acid (EA) was screened and found to potentially treat infectious pneumonia by boosting IL-10+ B-cell generation. Overall, these findings reveal that ROS serve as modulators to resolve inflammation by reprogramming one-carbon metabolism pathways in B cells.
Collapse
Affiliation(s)
- Ying Fu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhou Lu
- Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Shanghai, China
| | - Hushan Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang S, Lv S, Li Y, Wei D, Zhou X, Niu X, Yang Z, Song W, Zhang Z, Peng D. Prebiotics modulate the microbiota-gut-brain axis and ameliorate cognitive impairment in APP/PS1 mice. Eur J Nutr 2023; 62:2991-3007. [PMID: 37460822 DOI: 10.1007/s00394-023-03208-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Prebiotics, including fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), stimulate beneficial gut bacteria and may be helpful for patients with Alzheimer's disease (AD). This study aimed to compare the effects of FOS and GOS, alone or in combination, on AD mice and to identify their underlying mechanisms. METHODS Six-month-old APP/PS1 mice and wild-type mice were orally administered FOS, GOS, FOS + GOS or water by gavage for 6 weeks and then subjected to relative assays, including behavioral tests, biochemical assays and 16S rRNA sequencing. RESULTS Through behavioral tests, we found that GOS had the best effect on reversing cognitive impairment in APP/PS1 mice, followed by FOS + GOS, while FOS had no effect. Through biochemical techniques, we found that GOS and FOS + GOS had effects on multiple targets, including diminishing Aβ burden and proinflammatory IL-1β and IL-6 levels, and changing the concentrations of neurotransmitters GABA and 5-HT in the brain. In contrast, FOS had only a slight anti-inflammatory effect. Moreover, through 16S rRNA sequencing, we found that prebiotics changed composition of gut microbiota. Notably, GOS increased relative abundance of Lactobacillus, FOS increased that of Bifidobacterium, and FOS + GOS increased that of both. Furthermore, prebiotics downregulated the expression levels of proteins of the TLR4-Myd88-NF-κB pathway in the colons and cortexes, suggesting the involvement of gut-brain mechanism in alleviating neuroinflammation. CONCLUSION Among the three prebiotics, GOS was the optimal one to alleviate cognitive impairment in APP/PS1 mice and the mechanism was attributed to its multi-target role in alleviating Aβ pathology and neuroinflammation, changing neurotransmitter concentrations, and modulating gut microbiota.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Shuang Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
- Department of Rheumatology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Yiming Li
- Department of Cardiovasology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Zhou
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqian Niu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Ziyuan Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China.
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
17
|
Zhao Y, Wang Y, Meng F, Chen X, Chang T, Huang H, He F, Zheng Y. Altered gut microbiota as potential biomarker biomarkers for autism spectrum disorder in early childhood. Neuroscience 2023:S0306-4522(23)00202-6. [PMID: 37271221 DOI: 10.1016/j.neuroscience.2023.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Gastrointestinal (GI) disorders are widely recorded in autism spectrum disorder (ASD), and ASD with GI symptoms is a vital subtype of this disease. Growing evidence suggests altered gut microbiota biomarkers in ASD, but little is known about the gut microbiota of individuals with ASD with GI Symptoms, particularly in early childhood. In our study, the gut microbiota of 36 individuals with ASD along with GI symptoms and 40 typically developing (TD) children were compared using 16S rRNA gene sequencing. The microbial diversity and composition were found to differ between the two groups. Compared to TD, the gut microbiota of ASD patients with GI symptoms exhibited decreased alpha diversity and depletion of butyrate-producing bacteria (e.g., Faecalibacterium and Coprococcus). In addition, microbial functional analysis showed abnormality in several gut metabolic models and gut brain models of ASD with GI symptoms, including SCFAshort-chain fatty acid (SCFA) synthesis/degradation and neurotoxin-related p-cresol degradation, which are closely associated with ASD-related behaviors in animal models. Furthermore, we constructed a Support Vector Machine classification model, which robustly discriminated individuals with ASD and GI symptoms from TD individuals in a validation set (AUC = 0.88). Our findings provide a deep insight into the roles of the disturbed gut ecosystem in individuals with ASD and GI symptoms aged 3-6 years. Our classification model supports gut microbiota as a potential biomarker for the early identification of ASD and interventions targeting particular gut-beneficial microbiota.
Collapse
Affiliation(s)
- Yingxin Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Yaping Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Fanchao Meng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Tianyi Chang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Huanhuan Huang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Fan He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China.
| | - Yi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
18
|
Vinderola G, Cotter PD, Freitas M, Gueimonde M, Holscher HD, Ruas-Madiedo P, Salminen S, Swanson KS, Sanders ME, Cifelli CJ. Fermented foods: a perspective on their role in delivering biotics. Front Microbiol 2023; 14:1196239. [PMID: 37250040 PMCID: PMC10213265 DOI: 10.3389/fmicb.2023.1196239] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Fermented foods are often erroneously equated with probiotics. Although they might act as delivery vehicles for probiotics, or other 'biotic' substances, including prebiotics, synbiotics, and postbiotics, stringent criteria must be met for a fermented food to be considered a 'biotic'. Those criteria include documented health benefit, sufficient product characterization (for probiotics to the strain level) and testing. Similar to other functional ingredients, the health benefits must go beyond that of the product's nutritional components and food matrix. Therefore, the 'fermented food' and 'probiotic' terms may not be used interchangeably. This concept would apply to the other biotics as well. In this context, the capacity of fermented foods to deliver one, several, or all biotics defined so far will depend on the microbiological and chemical level of characterization, the reproducibility of the technological process used to produce the fermented foods, the evidence for health benefits conferred by the biotics, as well as the type and amount of testing carried out to show the probiotic, prebiotic, synbiotic, and postbiotic capacity of that fermented food.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark and APC Microbiome Ireland, Cork, Ireland
| | - Miguel Freitas
- Health and Scientific Affairs, Danone North America, White Plains, NY, United States
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Hannah D. Holscher
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, 260 Edward R. Madigan Laboratory, University of Illinois, Urbana, IL, United States
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, United States
| | | |
Collapse
|
19
|
Fecal Microbiota Composition as a Metagenomic Biomarker of Dietary Intake. Int J Mol Sci 2023; 24:ijms24054918. [PMID: 36902349 PMCID: PMC10003228 DOI: 10.3390/ijms24054918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota encompasses the set of microorganisms that colonize the gastrointestinal tract with mutual relationships that are key for host homeostasis. Increasing evidence supports cross intercommunication between the intestinal microbiome and the eubiosis-dysbiosis binomial, indicating a networking role of gut bacteria as potential metabolic health surrogate markers. The abundance and diversity of the fecal microbial community are already recognized to be associated with several disorders, such as obesity, cardiometabolic events, gastrointestinal alterations, and mental diseases, which suggests that intestinal microbes may be a valuable tool as causal or as consequence biomarkers. In this context, the fecal microbiota could also be used as an adequate and informative proxy of the nutritional composition of the food intake and about the adherence to dietary patterns, such as the Mediterranean or Western diets, by displaying specific fecal microbiome signatures. The aim of this review was to discuss the potential use of gut microbial composition as a putative biomarker of food intake and to screen the sensitivity value of fecal microbiota in the evaluation of dietary interventions as a reliable and precise alternative to subjective questionnaires.
Collapse
|
20
|
Zhang Z, Li J, Jiang S, Xu M, Ma T, Sun Z, Zhang J. Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114543. [PMID: 36640575 DOI: 10.1016/j.ecoenv.2023.114543] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lead exposure is a global public health safety issue that severely disrupts brain development and causes damage to the nervous system in early life. Probiotics and gut microbes have been highlighted for their critical roles in mitigating lead toxicity. However, the underlying mechanisms by which they work yet to be fully explored. Here, we designed a two-stage experiment using the probiotic Lactobacillus fermentum HNU312 (Lf312) to uncover how probiotics alleviate lead toxicity to the brain during early life. First, we explored the tolerance and adsorption of Lf312 to lead in vitro. Second, the adsorption capacity of the strain was determined and confirmed in vivo. The shotgun metagenome sequencing showed lead exposure-induced imbalance and dysfunction of the gut microbiome. In contrast, Lf312 intake significantly modulated the structure of the microbiome, increased the abundance of beneficial bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and upregulated function-related metabolic pathways such as antioxidants. Notably, Lf312 enhanced the integrity of the blood-brain barrier by increasing the levels of SCFAs in the gut, alleviated inflammation in the brain, and ultimately improved anxiety-like and depression-like behaviours induced by lead exposure in mice. Subsequently, the effective mechanism was confirmed, highlighting that Lf312 worked through integrated strategies, including ionic adsorption and microbiota-gut-brain axis regulation. Collectively, this work elucidated the mechanism by which the gut microbiota mitigates the toxic effects of lead in the brain and provides preventive measures and intervention measures for brain damage due to mass lead poisoning in children.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiahe Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Meng Xu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
21
|
The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav Immun 2022; 106:115-126. [PMID: 35995237 DOI: 10.1016/j.bbi.2022.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.
Collapse
|
22
|
|
23
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Determination of bacterial community structure of Turkish kefir beverages via metagenomic approach. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Abstract
PURPOSE OF REVIEW The gut microbiota has emerged as a key conduit in mental health and is a promising target for interventions. This review provides an update on recent advances in using microbiota-targeted approaches for the management of mental health. RECENT FINDINGS Approaches that have emerged as microbiota-targeted interventions in the management of mental health include probiotics, prebiotics, synbiotics, fecal microbiota transplant as well as diet. Among these approaches, probiotic supplementation has been investigated most prominently, providing promising evidence for its use in improving mood and anxiety. There is also growing interest in the use of multistrain probiotics, whole dietary interventions or combined approaches, with encouraging results emerging from recent studies. SUMMARY Although the current literature preliminarily supports targeting the microbiota to manage mental health and use as adjuvant therapies for certain brain disorders, large gaps remain and especially data including clinical cohorts remains scarce. Research studies including larger cohorts, well-characterized clinical populations and defined duration and dosage of the intervention are required to develop evidence-based guidelines for microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - John F. Cryan
- APC Microbiome Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Li Y, Wang Y, Zhang T. Fecal Microbiota Transplantation in Autism Spectrum Disorder. Neuropsychiatr Dis Treat 2022; 18:2905-2915. [PMID: 36544550 PMCID: PMC9762410 DOI: 10.2147/ndt.s382571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that begin in infancy. In recent years, the incidence of ASD in the world is increasing year by year. At present, the etiology and pathogenesis of ASD are not clear, and effective treatments are still lacking. In addition to neurobehavioral symptoms, children with ASD often have obvious gastrointestinal symptoms. Gut microbiota is a large microbial community in the human gut, which is closely related to the nervous system and can affect brain development and behavior through the neuroendocrine, neuroimmune and autonomic nervous systems, forming a microbiota-gut-brain axis connection. Recent studies have shown that children with ASD have significant gut microbiota and metabolic disorders, and fecal microbiota transplantation (FMT) is expected to improve ASD-related symptoms by regulating gut microbiota and metabolism. This review paper will therefore focus on FMT in the treatment of ASD, and FMT is effective in improving gastrointestinal and neurobehavioral symptoms in children with ASD.
Collapse
Affiliation(s)
- Youran Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|