1
|
Cao ZL, Zhu LX, Wang HM, Zhu LJ. Microglial Regulation of Neural Networks in Neuropsychiatric Disorders. Neuroscientist 2025:10738584251316558. [PMID: 39932233 DOI: 10.1177/10738584251316558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Microglia serve as vital innate immune cells in the central nervous system, playing crucial roles in the generation and development of brain neurons, as well as mediating a series of immune and inflammatory responses. The morphologic transitions of microglia are closely linked to their function. With the advent of single-cell sequencing technology, the diversity of microglial subtypes is increasingly recognized. The intricate interactions between microglia and neuronal networks have significant implications for psychiatric disorders and neurodegenerative diseases. A deeper investigation of microglia in neurologic diseases such as Alzheimer disease, depression, and epilepsy can provide valuable insights in understanding the pathogenesis of diseases and exploring novel therapeutic strategies, thereby addressing issues related to central nervous system disorders.
Collapse
Affiliation(s)
- Zi-Lin Cao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Xia Zhu
- Patent Examination Cooperation (JIANGSU) Center of the Patent Office, China National Intellectual Property Administration (CNIPA), Suzhou, China
| | - Hong-Mei Wang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Bisharat G, Kaganovski E, Sapir H, Temnogorod A, Levy T, Resnik J. Repeated stress gradually impairs auditory processing and perception. PLoS Biol 2025; 23:e3003012. [PMID: 39932893 PMCID: PMC11813133 DOI: 10.1371/journal.pbio.3003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Repetitive stress, a common feature of modern life, is a major risk factor for psychiatric and sensory disorders. Despite the prevalence of perceptual abnormalities in these disorders, little is known about how repetitive stress affects sensory processing and perception. Here, we combine repetitive stress in mice, longitudinal measurement of cortical activity, and auditory-guided behaviors to test if sound processing and perception of neutral sounds in adults are modulated by repetitive stress. We found that repetitive stress alters sound processing, increasing spontaneous cortical activity while dampening sound-evoked responses in pyramidal and PV cells and heightening sound-evoked responses in SST cells. These alterations in auditory processing culminated in perceptual shifts, particularly a reduction in loudness perception. Additionally, our work reveals that the impact of stress on perception evolves gradually as the stressor persists over time, emphasizing the dynamic and evolving nature of this mechanism. Our findings provide insight into a possible mechanism by which repetitive stress alters sensory processing and behavior, challenging the idea that stress primarily modulates emotionally charged stimuli.
Collapse
Affiliation(s)
- Ghattas Bisharat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Zelman Center for Brian Science Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Kaganovski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Zelman Center for Brian Science Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hila Sapir
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Zelman Center for Brian Science Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anita Temnogorod
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Zelman Center for Brian Science Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jennifer Resnik
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Zelman Center for Brian Science Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
4
|
Gupta A, Agarwal V. Inflammation as a shared mechanism of chronic stress related disorders with potential novel therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8383-8394. [PMID: 38850304 DOI: 10.1007/s00210-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Stress is a subjective experience that varies across individuals depending on their sensitivity, resilience, and length of exposure to stressors. Stress may be categorised as acute (positive stress) or chronic (negative stress). Acute stress is advantageous for the human body, but chronic stress results in changes in cardiovascular, neuroendocrine, autonomic, and immunological functions, eventually causing different illnesses. The specific process relating stress to chronic stress associated diseases is still a topic of continuing debate. Inflammation has been recognised as a new and fascinating physiological mechanism that connects chronic stress and its associated illnesses. This article explored the relationships between chronic stress, inflammation, and chronic illnesses, including depression, cancer, and cardiovascular disease. This article also emphasises on various possible therapeutic targets for the management of chronic stress related illnesses by targeting inflammation, namely lipoxins and alpha7 nicotinic receptors. These therapeutic targets may be useful in developing new and safe therapies for the management of chronic stress related dysfunctions.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, Madhya Pradesh, India
| | - Vipul Agarwal
- Ankerite College of Pharmacy, Sausheer Khera, Parvar Purab, Mohanlalganj, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
5
|
Lanters LR, Öhlmann H, Langhorst J, Theysohn N, Engler H, Icenhour A, Elsenbruch S. Disease-specific alterations in central fear network engagement during acquisition and extinction of conditioned interoceptive fear in inflammatory bowel disease. Mol Psychiatry 2024; 29:3527-3536. [PMID: 38802508 PMCID: PMC11541002 DOI: 10.1038/s41380-024-02612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Interoceptive fear, which is shaped by associative threat learning and memory processes, plays a central role in abnormal interoception and psychiatric comorbidity in conditions of the gut-brain axis. Although animal and human studies support that acute inflammation induces brain alterations in the central fear network, mechanistic knowledge in patients with chronic inflammatory conditions remains sparse. We implemented a translational fear conditioning paradigm to elucidate central fear network reactivity in patients with quiescent inflammatory bowel disease (IBD), compared to patients with irritable bowel syndrome (IBS) and healthy controls (HC). Using functional magnetic resonance imaging, conditioned differential neural responses within regions of the fear network were analyzed during acquisition and extinction learning. In contrast to HC and IBS, IBD patients demonstrated distinctly altered engagement of key regions of the central fear network, including amygdala and hippocampus, during differential interoceptive fear learning, with more pronounced responses to conditioned safety relative to pain-predictive cues. Aberrant hippocampal responses correlated with chronic stress exclusively in IBD. During extinction, differential engagement was observed in IBD compared to IBS patients within amygdala, ventral anterior insula, and thalamus. No group differences were found in changes of cue valence as a behavioral measure of fear acquisition and extinction. Together, the disease-specific alterations in neural responses during interoceptive fear conditioning in quiescent IBD suggest persisting effects of recurring intestinal inflammation on central fear network reactivity. Given the crucial role of interoceptive fear in abnormal interoception, these findings point towards inflammation-related brain alterations as one trajectory to bodily symptom chronicity and psychiatric comorbidity. Patients with inflammatory conditions of the gut-brain axis may benefit from tailored treatment approaches targeting maladaptive interoceptive fear.
Collapse
Affiliation(s)
- Laura R Lanters
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hanna Öhlmann
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department for Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Nina Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
6
|
Ding R, Tang Y, Cao G, Mai Y, Fu Y, Ren Z, Li W, Hou J, Sun S, Chen B, Han X, He Z, Ye JH, Zhou L, Fu R. Lateral habenula IL-10 controls GABA A receptor trafficking and modulates depression susceptibility after maternal separation. Brain Behav Immun 2024; 122:122-136. [PMID: 39128573 DOI: 10.1016/j.bbi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Maternal separation (MS), a form of early life adversity, increases the risk of psychiatric disorders in adulthood by intricately linking cytokines and mood-regulating brain circuits. The Lateral Habenula (LHb) encodes aversive experiences, contributes to negative moods, and is pivotal in depression development. However, the precise impact of MS on LHb cytokine signaling and synaptic plasticity remains unclear. We reported that adolescent MS offspring mice displayed susceptibility to depression behavioral phylotypes, with neuronal hyperactivity and an imbalance in pro-inflammatory and anti-inflammatory cytokines in the LHb. Moreover, the decreased IL-10 level negatively correlated with depressive-like behaviors in susceptible mice. Functionally, LHb IL-10 overexpression restored decreased levels of PI3K, phosphorylated AKT (pAKT), gephyrin, and membrane GABAA receptor proteins while reducing abnormally elevated GSK3β and Fos expression, rescuing the MS-induced depression. Conversely, LHb neuronal IL-10 receptor knockdown in naive mice increased Fos expression and elicited depression-like symptoms, potentially through impaired membrane GABAA receptor trafficking by suppressing the PI3K/pAKT/gephyrin cascades. Hence, this work establishes a mechanism by which MS promotes susceptibility to adolescent depression by impeding the critical role of IL-10 signaling on neuronal GABAA receptor function.
Collapse
Affiliation(s)
- Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Ying Tang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, PR China
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Shizhu Sun
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, PR China
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Xiaojiao Han
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Zelei He
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518106, PR China.
| |
Collapse
|
7
|
Benatti BM, Adiletta A, Sgadò P, Malgaroli A, Ferro M, Lamanna J. Epigenetic Modifications and Neuroplasticity in the Pathogenesis of Depression: A Focus on Early Life Stress. Behav Sci (Basel) 2024; 14:882. [PMID: 39457754 PMCID: PMC11504006 DOI: 10.3390/bs14100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness, and it is considered to be one of the leading causes of disability globally. The etiology of MDD is multifactorial, involving an interplay between biological, psychological, and social factors. Early life represents a critical period for development. Exposure to adverse childhood experiences is a major contributor to the global burden of disease and disability, doubling the risk of developing MDD later in life. Evidence suggests that stressful events experienced during that timeframe play a major role in the emergence of MDD, leading to epigenetic modifications, which might, in turn, influence brain structure, function, and behavior. Neuroplasticity seems to be a primary pathogenetic mechanism of MDD, and, similarly to epigenetic mechanisms, it is particularly sensitive to stress in the early postnatal period. In this review, we will collect and discuss recent studies supporting the role of epigenetics and neuroplasticity in the pathogenesis of MDD, with a focus on early life stress (ELS). We believe that understanding the epigenetic mechanisms by which ELS affects neuroplasticity offers potential pathways for identifying novel therapeutic targets for MDD, ultimately aiming to improve treatment outcomes for this debilitating disorder.
Collapse
Affiliation(s)
- Bianca Maria Benatti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
| | - Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Department of Psychology, Sigmund Freud Private University, 20143 Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| |
Collapse
|
8
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Yang JC, Zhao J, Chen YH, Wang R, Rong Z, Wang SY, Wu YM, Wang HN, Yang L, Liu R. miR-29a-5p rescues depressive-like behaviors in a CUMS-induced mouse model by facilitating microglia M2-polarization in the prefrontal cortex via TMEM33 suppression. J Affect Disord 2024; 360:188-197. [PMID: 38821373 DOI: 10.1016/j.jad.2024.05.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Depression accounts for a high proportion of neuropsychiatric disorders and is associated with abnormal states of neurons in specific brain regions. Microglia play a pivotal role in the inflammatory state during depression development; however, the exact mechanism underlying chronic mood states remains unknown. Thus, the present study aimed to determine whether microRNAs (miRNAs) alleviate stress-induced depression-like behavior in mice by regulating the expression levels of their target genes, explore the role of neuroinflammation induced by microglial activation in the pathogenesis and progression of depression, and determine whether the role of the miR-29a-5p/transmembrane protein 33 (TMEM33) axis. METHODS In this study, chronic unpredictable mild stress (CUMS) mouse depression model, various behavioral tests, western blotting, dual-luciferase reporter assay, enzyme-linked immunosorbent assay, real-time quantitative reverse transcription PCR, immunofluorescence and lentivirus-mediated gene transfer were used. RESULTS After exposure to the CUMS paradigm, miR-29a-5p was significantly down-regulated. This downregulation subsequently promoted the polarization of microglia M1 by upregulating the expression of TMEM33, resulting in enhanced inflammatory chemokines affecting neurons. Conversely, the upregulation of miR-29a-5p within the prefrontal cortex (PFC) suppressed TMEM33 expression, facilitated microglia M2-polarization, and ameliorated depressive-like behavior. LIMITATIONS Only rodent models of depression were used, and human samples were not included. CONCLUSIONS The results of this study suggest that miR-29a-5p deficits within the PFC mediate microglial anomalies and contribute to depressive-like behaviors. miR-29a-5p and TMEM33 may, therefore, serve as potential therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Jing-Cheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Jun Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Rui Wang
- Department of Military Medical Center, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Sai-Ying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yu-Mei Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| |
Collapse
|
10
|
Jiang ZM, Wang FF, Zhao YY, Lu LF, Jiang XY, Huang TQ, Lin Y, Guo L, Weng ZB, Liu EH. Hypericum perforatum L. attenuates depression by regulating Akkermansia muciniphila, tryptophan metabolism and NFκB-NLRP2-Caspase1-IL1β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155847. [PMID: 38996505 DOI: 10.1016/j.phymed.2024.155847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1β pathway and increased proinflammatory IL1β in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1β pathway. CONCLUSIONS The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1β pathway, specifically by targeting AKK and tryptophan metabolites.
Collapse
Affiliation(s)
- Zheng-Meng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang-Fang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin-Feng Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Long Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.
| | - Ze-Bin Weng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Wang X, Xia Y, Yan R, Sun H, Huang Y, Xia Q, Sheng J, You W, Hua L, Tang H, Yao Z, Lu Q. Sex differences in anhedonia in bipolar depression: a resting-state fMRI study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01765-4. [PMID: 38558145 DOI: 10.1007/s00406-024-01765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/13/2024] [Indexed: 04/04/2024]
Abstract
Previous studies about anhedonia symptoms in bipolar depression (BD) ignored the unique role of gender on brain function. This study aims to explore the regional brain neuroimaging features of BD with anhedonia and the sex differences in these patients. The resting-fMRI by applying fractional amplitude of low-frequency fluctuation (fALFF) method was estimated in 263 patients with BD (174 high anhedonia [HA], 89 low anhedonia [LA]) and 213 healthy controls. The effects of two different factors in patients with BD were analyzed using a 3 (group: HA, LA, HC) × 2 (sex: male, female) ANOVA. The fALFF values were higher in the HA group than in the LA group in the right medial cingulate gyrus and supplementary motor area. For the sex-by-group interaction, the fALFF values of the right hippocampus, left medial occipital gyrus, right insula, and bilateral medial cingulate gyrus were significantly higher in HA males than in LA males but not females. These results suggested that the pattern of high activation could be a marker of anhedonia symptoms in BD males, and the sex differences should be considered in future studies of BD with anhedonia symptoms.
Collapse
Affiliation(s)
- Xiaoqin Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Yi Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Rui Yan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Hao Sun
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yinghong Huang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Qiudong Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Junling Sheng
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Wei You
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Lingling Hua
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Hao Tang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Zhijian Yao
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing, 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China.
| |
Collapse
|
12
|
Zhang T, Wang J, Wang Y, He L, Lv S, Wang Y, Li W. Wenyang-Tianjing-Jieyu Decoction Improves Depression Rats of Kidney Yang Deficiency Pattern by Regulating T Cell Homeostasis and Inflammation Level. Neuropsychiatr Dis Treat 2024; 20:631-647. [PMID: 38545129 PMCID: PMC10966763 DOI: 10.2147/ndt.s445636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose Chronic inflammation is one of the key mechanisms of depression. Wenyang-Tianjin-Jie Decoction (WTJD) is an effective antidepressant found in the course of diagnosis and treatment, but the mechanism of therapeutic effect is not clear. The study aimed to evaluate the efficacy of WTJD in the kidney yang deficiency (KYD) type of depression rats and reveal its mechanisms. Materials and Methods We selected forty 6-week-old male Sprague-Dawley rats for the study. We established a KYD [Phellodendron amurense Rupr (Huangbai) solution oral gavage and 4°C environments; 8 weeks] type of depression (chronic unpredictable mild stimulus; 6 weeks) rat model first. After successful modeling, we used WTJD or fluoxetine on rats for 3 weeks. Then we evaluated the depression and KYD behavior. Finally, we observed the expression of key inflammatory factors and proteins in peripheral blood and hippocampus, and further investigated the immune balance of Th17/Treg and Th1/Th2 cells and the activity of their main regulatory pathways JAK2/STAT3 and TLR4/TRAF6/NF-κB. Results The imbalance of Th17/Treg and Th1/Th2 cells in rats were related to KYD and depressive symptoms. Through this study, we found that WTJD can inhibit the activity of JAK2/STAT3 and TLR4/TRAF6/NF-κB pathways, balance Th17/Treg and Th1/Th2 cell homeostasis, regulate the levels of inflammatory factors in the hippocampus and peripheral blood, and reverse KYD and depression. Conclusion This study confirmed that WTJD had a reliable effect on depression rats with KYD, and its mechanism was to regulate the immune homeostasis of hippocampal T cells and related inflammatory factors to improve KYD and depression symptoms in rats.
Collapse
Affiliation(s)
- Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yiran Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
13
|
Zhao C, Shi R, Lu X, Yang R, Chen Z, Chen B, Hu W, Ren J, Peng J, Zhu T, Zhu H, Huang C. Obligatory role of microglia-mobilized hippocampal CREB-BDNF signaling in the prophylactic effect of β-glucan on chronic stress-induced depression-like behaviors in mice. Eur J Pharmacol 2024; 964:176288. [PMID: 38142848 DOI: 10.1016/j.ejphar.2023.176288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Our previous studies have reported that pre-stimulation of microglia before stress stimulation is a possible strategy to prevent depression-like phenotypes; however, the molecular mechanisms underlying this effect are still unclear. Here, we used β-glucan, a polysaccharide from Saccharomyces cerevisiae with immunomodulatory activities that cannot elicit pro-inflammatory responses in microglia, to address this issue. Our results showed that a single injection of β-glucan one day before stress exposure dose-dependently prevented the depression-like behaviors triggered by chronic unpredictable stress (CUS), which peaked at 20 mg/kg and prevented the impairment of hippocampal brain-derived neurotrophic factor (BDNF) signaling, a pathological process critical for the progression of depression-like phenotypes. Inhibition of BDNF signaling by infusion of an anti-BDNF antibody into the hippocampus, knock-in of the mutant BDNF Val68Met allele, or blockade of the BDNF receptor in the hippocampus abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors. Further analysis showed that cAMP-response element binding protein (CREB)-mediated increase of BDNF expression in the hippocampus was essential for the prevention of depression-like phenotypes by β-glucan. Pretreatment with minocycline or PLX3397 before β-glucan injection to suppress microglia abolished the preventive effect of β-glucan on impaired CREB-BDNF signaling in the hippocampus and depression-like behaviors in CUS mice. These results suggest that an increase in hippocampal BDNF following CREB activation triggered by β-glucan-induced microglia stimulation and subsequent TrkB signaling mediates the preventive effect of β-glucan on depression. β-Glucan may be a more suitable immunostimulant for the prevention of depression due to its inability to promote pro-inflammatory responses in microglia.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Pharmacy, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Macau, Taipa, 999078, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhuo Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong 226007, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
14
|
Ren J, Zhang Y, Pan H, Shi R, Zhu H, Yang R, Zhang L, Chen B, Zhu T, Lu X, Huang C. Mobilization of the innate immune response by a specific immunostimulant β-glucan confers resistance to chronic stress-induced depression-like behavior by preventing neuroinflammatory responses. Int Immunopharmacol 2024; 127:111405. [PMID: 38118316 DOI: 10.1016/j.intimp.2023.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Pre-stimulation of the innate immune response is an effective strategy to prevent depression-like phenotypes in animals. However, the use of conventional immunostimulants may cause adverse effects. Therefore, the search for agents that stimulate the innate immune response but do not induce a pro-inflammatory response could be a new research direction for the prevention of depression. β-glucan is a polysaccharide from Saccharomyces cerevisiae with unique immunomodulatory activity in microglia without eliciting a pro-inflammatory response that could lead to tissue damage. This suggests that β-glucan may be a suitable drug that can be used to prevent depression-like phenotypes. Our results showed that a single injection of β-glucan 1 day before stress exposure at a dose of 10 or 20 mg/kg, but notat a dose of 5 mg/kg, prevented depression-like behavior in mice treated with chronic unpredictable stress (CUS). This effect of β-glucan disappeared when the time interval between β-glucan and stress was extended from 1 day or 5 days to 10 days, which was rescued by a second injection 10 days after the first injection or by a repeated injection (4×, once daily) 10 days before stress exposure. A single β-glucan injection (20 mg/kg) 1 day before stress exposure prevented the CUS-induced increase in brain pro-inflammatory cytokines, and inhibition of the innate immune response by minocycline (40 mg/kg) abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors and neuroinflammatory responses. These results suggest that β-glucan may prevent chronic stress-induced depression-like phenotypes and neuroinflammatory responses by stimulating the innate immune response.
Collapse
Affiliation(s)
- Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Taipa 999078, Macau
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shiji Dadao, Nantong 226007, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Chen B, Zhao C, Zhu H, Lu X, Liu H, Lu Q, Zhu T, Huang C. β-glucan, a specific immuno-stimulant, produces rapid antidepressant effects by stimulating ERK1/2-dependent synthesis of BDNF in the hippocampus. Eur J Pharmacol 2023; 961:176161. [PMID: 37939990 DOI: 10.1016/j.ejphar.2023.176161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
A decline in microglia in the dentate gyrus of the hippocampus has recently been described as an important mechanism for the progression of depression. Reversal of this decline by innate immune system stimulants may represent a novel strategy to ameliorate the depressive phenotype in chronically stressed animals. β-glucan is a polysaccharide from Saccharomyces cerevisiae. It can efficiently stimulate microglia without inducing the production of pro-inflammatory cytokines. Therefore, β-glucan could be an ideal drug to ameliorate depressive phenotypes. In the present study, we found that a single injection of β-glucan reversed depression-like behaviors in mice induced by chronic unpredictable stress (CUS) in a dose-dependent manner, which was accompanied by a reversal of the CUS-induced decrease in brain-derived neurotrophic factor (BDNF) protein levels in the dentate gyrus. The crucial role of BDNF signaling in the antidepressant effect of β-glucan was demonstrated by experiments showing that infusion of an anti-BDNF antibody into dentate gyrus, construction of BDNF-Val68Met allele knock-in mice, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of β-glucan. The increased BDNF signaling induced by β-glucan was mediated by extracellular signal-regulated kinase1/2 (ERK1/2)-mediated BDNF synthesis, and inhibition of ERK1/2 by SL327 was able to abolish the antidepressant effect of β-glucan. Moreover, inhibition or depletion of microglia by minocycline or PLX3397 abolished the reversal effect of β-glucan on CUS-induced depression-like behaviors and CUS-induced impairment of ERK1/2-BDNF signaling. These results suggest that β-glucan exhibits antidepressant effects by stimulating microglia-mediated activation of ERK1/2 and synthesis of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Cheng Zhao
- Department of Pharmacy, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, #66 Renmin South Road, Yancheng, 224006, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong, 226006, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
He H, Xie X, Kang X, Zhang J, Wang L, Hu N, Xie L, Peng C, You Z. Ginsenoside Rg1 ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in mice exposed to chronic stress. Eur J Pharmacol 2023; 960:176120. [PMID: 37863415 DOI: 10.1016/j.ejphar.2023.176120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Microglia-mediated inflammatory process is recognized as a target in the treatment of depression. Ginsenoside Rg1 (GRg1), the active ingredient of traditional ginseng, regulates microglial phenotypes to resist stress-induced inflammatory responses. Here we used a mouse model of stress-induced depression to investigate the involvement of microglial Nod-like receptor protein 3 (NLRP3) in the antidepressant effects of GRg1. Male C57BL/6J mice were exposed to chronic mild stress (CMS) for three weeks, followed by intraperitoneal injection of GRg1 (20 mg/kg) or the antidepressant imipramine (20 mg/kg) for another three weeks. Depressive-like behaviors were assessed by sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes were assessed in terms of morphological features and cytokine profiles; inflammasome activity, in terms of levels of complexes containing NLRP3, apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1; and neurogenesis, in terms of numbers of proliferating, differentiating, and mature neurons identified by immunostaining. GRg1 reduced abnormal animal behaviors caused by CMS, such as anhedonia and desperate behaviors, without affecting locomotor behaviors. GRg1 also reduced the number of ASC-specks, implying inhibition of inflammasome activation, which was associated with weaker activation of pro-inflammatory microglia. At the same time, GRg1 rescued impairment of hippocampal neurogenesis in vivo and in vitro, which correlated with modulation of microglial phenotypes. GRg1 exert antidepressant effects by preventing stress from activating the NLRP3 inflammasome in microglia, promoting a proneurogenic phenotype and allowing adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xixi Kang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu, 610036, China
| | - Nan Hu
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Xie
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
17
|
Lu JJ, Wu PF, He JG, Li YK, Long LH, Yao XP, Yang JH, Chen HS, Zhang XN, Hu ZL, Chen Z, Wang F, Chen JG. BNIP3L/NIX-mediated mitophagy alleviates passive stress-coping behaviors induced by tumor necrosis factor-α. Mol Psychiatry 2023; 28:5062-5076. [PMID: 36914810 DOI: 10.1038/s41380-023-02008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hao Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| |
Collapse
|
18
|
Wang X, Xia Y, Yan R, Sun H, Huang Y, Zou H, Du Y, Hua L, Tang H, Zhou H, Yao Z, Lu Q. The sex differences in anhedonia in major depressive disorder: A resting-state fMRI study. J Affect Disord 2023; 340:555-566. [PMID: 37591350 DOI: 10.1016/j.jad.2023.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/23/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE The external behavioural manifestations and internal neural mechanisms of anhedonia are sexually dimorphic. This study aimed to explore the sex differences in the regional brain neuroimaging features of anhedonia in the context of major depressive disorder (MDD). METHOD The resting-fMRI by applying amplitude of low-frequency fluctuation (ALFF) method was estimated in 414 patients with MDD (281 high anhedonia [HA], 133 low anhedonia [LA]) and 213 healthy controls (HC). The effects of two factors in patients with MDD were analysed using a 2 (sex: male, female) × 2 (group: HA, LA) ANOVA concerning the brain regions in which statistical differences were identified between patients with MDD and HC. We followed up with patients with HA at baseline, and 43 patients completed a second fMRI scan in remission. Paired t-test was performed to compare the ALFF values of anhedonia-related brain regions between the baseline and remission periods. RESULTS For the sex-by-group interaction, the bilateral insula, right hippocampus, right post cingulum cortex, and left putamen showed significant differences. Furthermore, the abnormally elevated ALFF values in anhedonia-related brain regions at baseline decreased in remission. CONCLUSION Our findings point to the fact that the females showed unique patterns of anhedonia-related brain activity compared to males, which may have clinical implications for interfering with the anhedonia symptoms in MDD. Using task fMRI, we can further examine the distinct characteristics between consumption anhedonia and anticipation anhedonia in MDD.
Collapse
Affiliation(s)
- Xiaoqin Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Yi Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Rui Yan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Hao Sun
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yinghong Huang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Haowen Zou
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yishan Du
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Lingling Hua
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Hao Tang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Hongliang Zhou
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Zhijian Yao
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China; School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
19
|
Brás JP, Pinto S, von Doellinger O, Prata J, Coelho R, Barbosa MA, Almeida MI, Santos SG. Combining inflammatory miRNA molecules as diagnostic biomarkers for depression: a clinical study. Front Psychiatry 2023; 14:1227618. [PMID: 37575572 PMCID: PMC10413105 DOI: 10.3389/fpsyt.2023.1227618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Inflammation has been implicated in core features of depression pathophysiology and treatment resistance. Therefore, new challenges in the discovery of inflammatory mediators implicated in depression have emerged. MicroRNAs (miRNAs) have been found aberrantly expressed in several pathologies, increasing their potential as biomarkers and therapeutical targets. In this study, the aim was to assess the changes and biomarker potential of inflammation-related miRNAs in depression patients. Methods Depression diagnosis was performed according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). 40 healthy controls and 32 depression patients were included in the study. The levels of inflammatory cytokines were measured in plasma, and expression levels of cytokines and inflammation-related miRNAs were evaluated in peripheral blood mononuclear cells (PBMCs). Results Depression patients were found to have a pro-inflammatory profile in plasma, with significantly higher levels of TNF-α and CCL2 compared with controls. In PBMCs of depression patients, TNF-α and IL-6 expression levels were significantly up and downregulated, respectively. Moreover, miR-342 levels were found upregulated, while miR-146a and miR-155 were significantly downregulated. miR-342 expression levels were positively correlated with TNF-α. Importantly, when analyzed as a diagnostic panel, receiver operating characteristics (ROC) analysis of miR-342, miR-146a, miR-155 in combination, showed to be highly specific and sensitive in distinguishing between depression patients and healthy controls. Conclusion In summary, these findings suggest that inflammation-related miRNAs are aberrantly expressed in depression patients. Moreover, we show evidences on the potential of the combination of dysregulated miRNAs as a powerful diagnostic tool for depression.
Collapse
Affiliation(s)
- João Paulo Brás
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Orlando von Doellinger
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departmento de Psiquiatria e Saúde Mental, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal
| | - Joana Prata
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Rui Coelho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departmento de Neurociências Clínicas e Saúde Mental, Centro Hospitalar São João, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Zhang J, Li L, Liu Q, Zhao Z, Su D, Xiao C, Jin T, Chen L, Xu C, You Z, Zhou T. Gastrodin programs an Arg-1 + microglial phenotype in hippocampus to ameliorate depression- and anxiety-like behaviors via the Nrf2 pathway in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154725. [PMID: 36867963 DOI: 10.1016/j.phymed.2023.154725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Regulating the microglial phenotype is an attractive strategy for treating diseases of the central nervous system such as depression and anxiety. Gastrodin can quickly cross the blood-brain barrier and mitigate microglia-mediated inflammation, which widely used to treat a variety of central nervous system diseases associated with microglial dysfunction. However, the molecular mechanism by which gastrodin regulates the functional phenotype of microglia remains unclear. PURPOSE Since the transcription factor "nuclear factor erythroid 2-related factor 2″ (Nrf2) is associated with the anti-inflammatory effects of gastrodin, we hypothesized that gastrodin induces Nrf2 expression in microglia and thereby programs an anti-inflammatory phenotype. STUDY DESIGN Male C57BL/6 mice, treated or not with gastrodin, were given lipopolysaccharide (LPS) at 0.25 mg/kg/d for 10 days to induce chronic neuroinflammation. The effects of gastrodin on microglial phenotypes, neuroinflammation and depression- and anxiety-like behaviors were evaluated. In another experiment, animals were treated with Nrf2 inhibitor ML385 throughout the 13-day gastrodin intervention period. METHODS The effects of gastrodin on depression- and anxiety-like behaviors were evaluated through the sucrose preference test, forced swimming test, open field test and elevated plus-maze test; as well as its effects on morphology and molecular and functional phenotypes of hippocampal microglia through immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assays. RESULTS Chronic exposure to LPS caused hippocampal microglia to secrete inflammatory cytokines, their somata to enlarge, and their dendrites to lose branches. These changes were associated with depression- and anxiety-like behaviors. Gastrodin blocked these LPS-induced alterations and promoted an Arg-1+ microglial phenotype that protected neurons from injury. The effects of gastrodin were associated with Nrf2 activation, whereas blockade of Nrf2 antagonized gastrodin. CONCLUSION These results suggest that gastrodin acts via Nrf2 to promote an Arg-1+ microglial phenotype, which buffers the harmful effects of LPS-induced neuroinflammation. Gastrodin may be a promising drug against central nervous system diseases that involve microglial dysfunction.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhihuang Zhao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ting Jin
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Chen
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chunyun Xu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
21
|
Xiong M, Wu Z, Zhao Y, Zhao D, Pan Z, Wu X, Liu W, Hu K. Intermittent hypoxia exacerbated depressive and anxiety-like behaviors in the bleomycin-induced pulmonary fibrosis mice. Brain Res Bull 2023; 198:55-64. [PMID: 37094614 DOI: 10.1016/j.brainresbull.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Depression and anxiety are prevalent in patients with idiopathic pulmonary fibrosis (IPF). Recent researchers reveal that intermittent hypoxia (IH) increases the severity of bleomycin (BLM)-induced lung injury. However, experimental studies dealing with anxiety- and depression-like behavior in animal models of BLM-induced pulmonary fibrosis in a combination of IH are lacking, hence, this study aimed to investigate that. In this study, 80 C57BL/6J male mice were intratracheally injected with BLM or normal saline at day0 and then exposed to IH (alternating cycles of FiO2 21% for 60s and FiO2 10% for 30s, 40 cycles/hour, 8hours/day) or intermittent air (IA) for 21 days. Behavioral tests, including open field test (OFT), sucrose preference test (SPT) and tail suspension test (TST), were detected from day22 to day26. This study found that pulmonary fibrosis developed and lung inflammation were activated in BLM-induced mice, which were potentiated by IH. Significant less time in center and less frequency of entries in the centre arena in OFT were observed in BLM treated mice, and IH exposure further decreased that. Marked decreased percent of sucrose preference in SPT, and significant increased immobility time of the TST were detected in BLM treated mice and IH widen the gaps. The expression of ionized calcium-binding adaptor molecule (Iba1) was activated in the hippocampus of BLM instillation mice and IH enlarged it. Moreover, a positive correlation between hippocampal microglia activation and inflammatory factors was observed. Our results demonstrated that IH exacerbated depressive and anxiety-like behaviors in the BLM-induced pulmonary fibrosis mice. The changes in pulmonary inflammation-hippocampal microglia activation may be a potential mechanism in this phenomenon, which can be researched in future.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
22
|
Song Y, Wang X, Ma W, Yang Y, Yan S, Sun J, Zhu X, Tang Y. Graves' disease as a driver of depression: a mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1162445. [PMID: 37152963 PMCID: PMC10157224 DOI: 10.3389/fendo.2023.1162445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.
Collapse
Affiliation(s)
- Yifei Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinying Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yang
- Tongling Municipal hospital, Anhui, China
| | - Shuxin Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Wang Y, Hu Z, Liu H, Gu Y, Ye M, Lu Q, Lu X, Huang C. Adolescent microglia stimulation produces long-lasting protection against chronic stress-induced behavioral abnormalities in adult male mice. Brain Behav Immun 2022; 105:44-66. [PMID: 35781008 DOI: 10.1016/j.bbi.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Our previous studies had reported that microglia activation one day before stress exposure prevented the behavioral abnormalities induced by chronic stress in adult mice, and a 10-day interval between microglia stimulation and stress exposure can abolish the prophylactic effect of LPS preinjection on the behavioral abnormalities induced by chronic stress, which, however, could be rescued by repeated LPS injection. This suggests that increased stimulation of microglia results in animals developing a strong ability to prevent deleterious stress stimuli. Because microglia in the adolescent brain exhibit flexible immunological plasticity, we hypothesize that a single low-dose LPS injection during adolescence may provide long-lasting protection against behavioral abnormalities induced by chronic stress in adult mice. As expected, our results showed that a single injection of LPS (100 μg/kg) at post-natal day 28 (PND 28) prevented the development of abnormal behaviors and shifted neuroinflammatory responses toward an anti-inflammatory phenotype in adult mice treated with CSDS at their different stages of the age (PND 56, 140, and 252). Moreover, pretreatment with minocycline or PLX3397 to inhibit microglial activation abolished the prophylactic effect of LPS preinjection after PND 28 on behavioral abnormalities and neuroinflammatory responses induced by CSDS in adult mice at their different stages of the age, PND 56, 140, and 252. These results indicate that stimulation of microglia in adolescence may confer long-lasting protection against neuroinflammatory responses and behavioral abnormalities induced by chronic stress in adult mice. This may offer the potential for the development of a "vaccine-like strategy" to prevent mental disorders.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
24
|
Muscone with Attenuation of Neuroinflammation and Oxidative Stress Exerts Antidepressant-Like Effect in Mouse Model of Chronic Restraint Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3322535. [PMID: 36211814 PMCID: PMC9546698 DOI: 10.1155/2022/3322535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder with high morbidity. Stress negatively affects for MDD development, whereby transport of stress-induced inflammatory mediators to the central nervous system (CNS) is associated with the etiology of mood disorders. Muscone is a pharmacologically active ingredient isolated from musk, with anti-inflammatory and neuroprotective effects. We hypothesized that muscone may ameliorate depression-like behavior by regulating inflammatory responses. To test this hypothesis, we used the chronic restraint stress (CRS) depression model, and CRS mice were treated with muscone (10 mg/kg, i.g., respectively) for 14 days. The effects of the drug on depressive-like behaviors were evaluated via the open field test (OFT), novelty-suppressed feeding test (NSFT), tail suspension test (TST), and forced swimming test (FST). Quantitative reverse transcription-PCR (qRT-PCR) was utilized to assess levels of proinflammatory cytokines (IL-6, TNF-α, COX2, and IL-1) and the anti-inflammatory cytokines (IL-4 and IL-10). We also determined levels of oxidative stress factors (malondialdehyde, superoxide dismutase, and glutathione peroxidase), as well as doublecortin (DCX) expression by immunofluorescence. The results showed that depression-like behavior and inflammatory levels were improved after muscone treatment. Muscone also significantly improved neurogenesis in the CRS mouse hippocampus and decreased oxidative stress in both the central and peripheral nervous systems. In conclusion, this work is the first to demonstrate that muscone has an antidepressant effect using a CRS model. Oxidative stress, neurogenesis, and inflammatory pathways are key factors affected by the drug and may represent new therapeutic targets to treat MDD, in this impact. These results may represent a new therapeutic target for MDD.
Collapse
|
25
|
Xu K, Li H, Zhang B, Le M, Huang Q, Fu R, Croppi G, Qian G, Zhang J, Zhang G, Lu Y. Integrated transcriptomics and metabolomics analysis of the hippocampus reveals altered neuroinflammation, downregulated metabolism and synapse in sepsis-associated encephalopathy. Front Pharmacol 2022; 13:1004745. [PMID: 36147346 PMCID: PMC9486403 DOI: 10.3389/fphar.2022.1004745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an intricated complication of sepsis that brings abnormal emotional and memory dysfunction and increases patients’ mortality. Patients’ alterations and abnormal function seen in SAE occur in the hippocampus, the primary brain region responsible for memory and emotional control, but the underlying pathophysiological mechanisms remain unclear. In the current study, we employed an integrative analysis combining the RNA-seq-based transcriptomics and liquid chromatography/mass spectrometry (LC-MS)-based metabolomics to comprehensively obtain the enriched genes and metabolites and their core network pathways in the endotoxin (LPS)-injected SAE mice model. As a result, SAE mice exhibited behavioral changes, and their hippocampus showed upregulated inflammatory cytokines and morphological alterations. The omics analysis identified 81 differentially expressed metabolites (variable importance in projection [VIP] > 1 and p < 0.05) and 1747 differentially expressed genes (Foldchange >2 and p < 0.05) were detected in SAE-grouped hippocampus. Moreover, 31 compounds and 100 potential target genes were employed for the Kyoto Encyclopedia of Genes and Genomes (KEGG) Markup Language (KGML) network analysis to explore the core signaling pathways for the progression of SAE. The integrative pathway analysis showed that various dysregulated metabolism pathways, including lipids metabolism, amino acids, glucose and nucleotides, inflammation-related pathways, and deregulated synapses, were tightly associated with hippocampus dysfunction at early SAE. These findings provide a landscape for understanding the pathophysiological mechanisms of the hippocampus in the progression of SAE and pave the way to identify therapeutic targets in future studies.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meini Le
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| |
Collapse
|
26
|
Canonica T, Zalachoras I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:940672. [PMID: 36051635 PMCID: PMC9426724 DOI: 10.3389/fnbeh.2022.940672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Motivated behavior is integral to the survival of individuals, continuously directing actions toward rewards or away from punishments. The orchestration of motivated behavior depends on interactions among different brain circuits, primarily within the dopaminergic system, that subserve the analysis of factors such as the effort necessary for obtaining the reward and the desirability of the reward. Impairments in motivated behavior accompany a wide range of neuropsychiatric disorders, decreasing the patients’ quality of life. Despite its importance, motivation is often overlooked as a parameter in neuropsychiatric disorders. Here, we review motivational impairments in rodent models of schizophrenia, depression, and Parkinson’s disease, focusing on studies investigating effort-related behavior in operant conditioning tasks and on pharmacological interventions targeting the dopaminergic system. Similar motivational disturbances accompany these conditions, suggesting that treatments aimed at ameliorating motivation levels may be beneficial for various neuropsychiatric disorders.
Collapse
|
27
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
28
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
29
|
Xie Y, Wu Z, Sun L, Zhou L, Xiao L, Wang H, Wang G. Swimming exercise reverses chronic unpredictable mild stress-induced depression-like behaviors and alleviates neuroinflammation and collapsing response mediator protein-2-mediated neuroplasticity injury in adult male mice. Neuroreport 2022; 33:272-282. [PMID: 35383656 PMCID: PMC9354724 DOI: 10.1097/wnr.0000000000001779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Impaired neuroplasticity and neuroinflammation are vital in the mechanisms of depression. Exercise alleviates depressive symptoms and ameliorates body functions. Swimming is one of the most common exercises; however, whether swimming alters depressive behaviors and the underlying mechanism has not been fully elucidated. METHODS Male C57/BL6J mice were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks and then were subjected to a 5-week swimming program. Behavioral test, including sucrose preference test (SPT), open field test (OFT), elevated plus-maze (EPM) test, and tail suspension test (TST), was conducted to assess the anxiety-like and depressive behaviors. Western blotting and immunofluorescence staining were carried out after tissue collection. RESULTS This study showed that CUMS-induced depressive behaviors but swimming exercise increased sucrose preference in SPT, increased time and velocity in the center on OFT, decreased time in the closed arm, increased time in the open arm in EPM, and decreased immobility time in TST. We further found swimming exercise increased hippocampal collapsing response mediator protein-2 (CRMP2) expression and decreased p-CRMP2 expression in CUMS mice. CUMS inhibited the levels of α-tubulin and CRMP2, and the expression of ionized calcium-binding adaptor molecule 1 and caspase-1, whereas swimming reversed them in CUMS-exercised mice. CONCLUSION Our study confirmed that swimming exercise reverses CUMS-induced depressive behaviors, and neuroinflammation and CRMP2-mediated neuroplasticity are involved, which may provide a new insight into the antidepression therapy of exercise.
Collapse
Affiliation(s)
- Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei, PR China
| |
Collapse
|
30
|
Morató L, Astori S, Zalachoras I, Rodrigues J, Ghosal S, Huang W, Guillot de Suduiraut I, Grosse J, Zanoletti O, Cao L, Auwerx J, Sandi C. eNAMPT actions through nucleus accumbens NAD +/SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress. SCIENCE ADVANCES 2022; 8:eabj9109. [PMID: 35235362 PMCID: PMC8890725 DOI: 10.1126/sciadv.abj9109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 05/15/2023]
Abstract
Obesity is frequently associated with impairments in the social domain, and stress at puberty can lead to long-lasting changes in visceral fat deposition and in social behaviors. However, whether stress-induced changes in adipose tissue can affect fat-to-brain signaling, thereby orchestrating behavioral changes, remains unknown. We found that peripubertally stressed male-but not female-mice exhibit concomitant increased adiposity and sociability deficits. We show that reduced levels of the adipokine nicotinamide phosphoribosyltransferase (NAMPT) in fat and its extracellular form eNAMPT in blood contribute to lifelong reductions in sociability induced by peripubertal stress. By using a series of adipose tissue and brain region-specific loss- and gain-of-function approaches, we implicate impaired nicotinamide adenine dinucleotide (NAD+)/SIRT1 pathway in the nucleus accumbens. Impairments in sociability and accumbal neuronal excitability are prevented by normalization of eNAMPT levels or treatment with nicotinamide mononucleotide (NMN), a NAD+-boosting compound. We propose NAD+ boosters to treat social deficits of early life stress origin.
Collapse
Affiliation(s)
- Laia Morató
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joao Rodrigues
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wei Huang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lei Cao
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Cai W, Wang XF, Wei XF, Zhang JR, Hu C, Ma W, Shen WD. Does urinary metabolite signature act as a biomarker of post-stroke depression? Front Psychiatry 2022; 13:928076. [PMID: 36090365 PMCID: PMC9448878 DOI: 10.3389/fpsyt.2022.928076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND It is difficult to conduct the precise diagnosis of post-stroke depression (PSD) in clinical practice due to the complex psychopathology of depressive disorder. Several studies showed that gas chromatography-mass spectrometry (GC-MS)-identified urinary metabolite biomarkers could significantly discriminate PSD from stroke survivors. METHODS A systematic review was performed for the keywords of "urinary metabolite" and "PSD" using Medline, Cochrane Library, Embase, Web of Science, PsycINFO, Wanfang, CNKI, CBM, and VIP database from inception to 31 March 2022. RESULTS Four related studies were included in the review. Differential urinary metabolites including lactic acid, palmitic acid, azelaic acid, and tyrosine were identified in all the included studies. As a significant deviation in the metabolite biomarker panel, glyceric acid, azelaic acid, phenylalanine, palmitic acid, pseudouridine, and tyrosine were found in at least 2 included studies, which indicated good potential for the differentiation of PSD. CONCLUSION The systematic review provided evidence that differential urinary metabolites analyzed by the GC-MS-based approach might be used as a biomarker for the diagnosis and prognosis of PSD.
Collapse
Affiliation(s)
- Wa Cai
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia-Fei Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Fang Wei
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Ruo Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Hu
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Ma
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Dong Shen
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|