1
|
Xu ZX, Zhang JL, Li FZ, Xu B, Xia J, Wang P, Xie GJ. AnMei decoction ameliorates cognitive impairment in rats with chronic sleep deprivation by mitigating hippocampal neuroinflammation and restoring synaptic architecture. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119101. [PMID: 39537118 DOI: 10.1016/j.jep.2024.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE OF ETHNOPHARMACOLOGY AnMei Decoction (AMD) is a renowned herbal prescription that has been widely demonstrated to have positive therapeutic effects on sleep disorders, depression, and cognitive impairments. However, the molecular mechanisms underlying AMD's resistance to sleep deprivation-induced cognitive impairment remain to be further investigated. RESEARCH OBJECTIVE To clarify whether AMD may alleviate neuroinflammation by inhibiting NLRP3/Caspase1 signaling pathway and repair neuronal damage by regulating BDNF/TrkB pathway, thereby improving cognitive dysfunction in rats with chronic sleep deprivation. MATERIALS AND METHODS LC-MS/MS was used to detect the active components in AMD. After behavioral tests, HE staining, Nissl staining, immunofluorescence, immunohistochemistry, transmission electron microscopy, and Golgi staining were performed to assess the effects of AMD on chronic sleep deprivation. Western blot was used to detect the expression of hippocampal proteins NLRP3, Caspase-1, BDNF, p-TrkB, TrkB, Bax, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2. Hippocampal transcriptome sequencing was employed to observe differentially expressed genes after AMD intervention. RESULTS A total of 15 active components were identified from the AMD extract. AMD effectively improved the exploration and learning and memory abilities of sleep-deprived rats. AMD reduced neuroinflammation by inhibiting the NLRP3/Caspase-1 pathway and repaired neuronal damage by regulating the BDNF/TrkB pathway. Simultaneously, AMD upregulated the expression of BDNF, p-TrkB, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2 proteins and inhibited the expression of NLRP3, Caspase-1, and Bax proteins. Analysis of GO and KEGG pathway enrichment for the differentially expressed inflammation-related pathways may be involved in the therapeutic mechanism of AMD on sleep deprivation. CONCLUSION AMD can effectively inhibit the NLRP3/Caspase1 signaling pathway to alleviate neuroinflammation, regulate the BDNF/TrkB pathway to maintain hippocampal neuronal viability, repair synaptic structural damage, and improve cognitive impairment in the sleep deprivation model.
Collapse
Affiliation(s)
- Zi-Xuan Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Jun-Lu Zhang
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Fei-Zhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430006, China.
| | - Bo Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Jing Xia
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Ping Wang
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Guang-Jing Xie
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China; College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Wu Y, Miao Y, Cao Y, Gong Z. Gastrodin prevents myocardial injury in sleep-deprived mice by suppressing ferroptosis through SIRT6. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9111-9121. [PMID: 38896272 DOI: 10.1007/s00210-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Gastrodin (GAS), a bioactive compound derived from the orchid plant Gastrodia elata, exhibits numerous pharmacological effects. However, its effect on sleep deprivation (SD)-induced cardiac injury and the mechanisms are unknown. This study established SD mice model using a modified multiple platform water method and induced ferroptosis model in H9c2 cells using Erastin. The heart rate of mice was measured, and myocardial and mitochondrial structures were visualized using hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). Myocardial injury, oxidative stress indicators, and Fe2+ levels were detected by the kit method. The reactive oxygen species (ROS) levels were detected by immunofluorescence, and SIRT6 and ferroptosis-associated protein expression levels were detected by Western blot. Reduced heart rate and abnormalities in myocardial tissue and mitochondrial structure were ameliorated in the SD group of mice after GAS treatment. GAS treatment reduced ROS levels in Erastin-induced H9c2 cells. GAS treatment reduced atrial natriuretic peptide (ANP), creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MAD), and Fe2+ levels, and increased superoxide dismutase (SOD) and glutathione (GSH) levels in the SD and Erastin groups. Western blot showed that GAS treatment increased the expression of sirtuin 6 (SIRT6), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) and decreased the expression of P53 in SD and Erastin groups. The SIRT6 inhibitor OSS_128167 (OSS) reversed GAS treatment of Erastin-induced ferroptosis in H9c2 cells. These observations propose that GAS prevents myocardial injury in sleep-deprived mice by suppressing ferroptosis through SIRT6.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Yuping Miao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China
| | - Yin Cao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan Area, Hefei, 230012, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550014, Guizhou Province, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550014, Guizhou Province, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Liu YE, Zhao Z, He H, Li L, Xiao C, Zhou T, You Z, Zhang J. Stress-induced obesity in mice causes cognitive decline associated with inhibition of hippocampal neurogenesis and dysfunctional gut microbiota. Front Microbiol 2024; 15:1381423. [PMID: 39539712 PMCID: PMC11557545 DOI: 10.3389/fmicb.2024.1381423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Effects of stress on obesity have been thoroughly studied in high-fat diet fed mice, but not in normal diet fed mice, which is important to clarify because even on a normal diet, some individuals will become obese under stress conditions. Here we compared mice that showed substantial weight gain or loss under chronic mild stress while on a normal diet; we compared the two groups in terms of cognitive function, hypothalamic-pituitary-adrenal signaling, neurogenesis and activation of microglia in hippocampus, gene expression and composition of the gut microbiome. Chronic mild stress induced diet-independent obesity in approximately 20% of animals, and it involved inflammatory responses in peripheral and central nervous system as well as hyperactivation of the hypothalamic-pituitary-adrenal signaling and of microglia in the hippocampus, which were associated with cognitive deficits and impaired hippocampal neurogenesis. It significantly increased in relative abundance at the phylum level (Firmicutes), at the family level (Prevotellaceae ucg - 001 and Lachnospiraceae NK4a136), at the genus level (Dubosiella and Turicibacter) for some enteric flora, while reducing the relative abundance at the family level (Lactobacillaceae and Erysipelotrichaceae), at the genus level (Bacteroidota, Alistipes, Alloprevotella, Bifidobacterium and Desulfovibrio) for some enteric flora. These results suggest that stress, independently of diet, can induce obesity and cognitive decline that involve dysfunctional gut microbiota. These insights imply that mitigation of hypothalamic-pituitary-adrenal signaling and microglial activation as well as remodeling of gut microbiota may reverse stress-induced obesity and associated cognitive decline.
Collapse
Affiliation(s)
- Yu-e Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liangyuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
He L, Yin R, Hang W, Han J, Chen J, Wen B, Chen L. Oxygen Glucose Deprivation-Induced Lactylation of H3K9 Contributes to M1 Polarization and Inflammation of Microglia Through TNF Pathway. Biomedicines 2024; 12:2371. [PMID: 39457683 PMCID: PMC11504212 DOI: 10.3390/biomedicines12102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia-induced M1 polarization of microglia and resultant inflammation take part in the damage caused by hypoxic-ischemic encephalopathy (HIE). Histone lactylation, a novel epigenetic modification where lactate is added to lysine residues, may play a role in HIE pathogenesis. This study investigates the role of histone lactylation in hypoxia-induced M1 microglial polarization and inflammation, aiming to provide insights for HIE treatment. METHODS In this study, we assessed the effects of hypoxia on microglial polarization using both an HIE animal model and an oxygen-glucose deprivation cell model. Histone lactylation at various lysine residues was detected by Western blotting. Microglial polarization and inflammatory cytokines were analyzed by immunofluorescence, qPCR, and Western blotting. RNA sequencing, ChIP-qPCR, and siRNA were used to elucidate mechanisms of H3K9 lactylation. RESULTS H3K9 lactylation increased due to cytoplasmic lactate during M1 polarization. Inhibiting P300 or reducing lactate dehydrogenase A expression decreased H3K9 lactylation, suppressing M1 polarization. Transcriptomic analysis indicated that H3K9 lactylation regulated M1 polarization via the TNF signaling pathway. ChIP-qPCR confirmed H3K9 lactylation enrichment at the TNFα locus, promoting OGD-induced M1 polarization and inflammation. CONCLUSIONS H3K9 lactylation promotes M1 polarization and inflammation via the TNF pathway, identifying it as a potential therapeutic target for neonatal HIE.
Collapse
Affiliation(s)
- Lu He
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Rui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.Y.); (J.C.)
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Jinli Han
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.Y.); (J.C.)
| | - Bin Wen
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ling Chen
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| |
Collapse
|
5
|
Wu W, Wen F, Hu J, Li L. Overexpression of ATF4 Inhibits Ferroptosis to Alleviate Anxiety Disorders by Activating the TGF-β Signaling Pathway. Neuropsychiatr Dis Treat 2024; 20:1969-1983. [PMID: 39430656 PMCID: PMC11491069 DOI: 10.2147/ndt.s480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anxiety disorders seriously impair patients' mental health and quality of life, with limited effectiveness of current treatments. Dysregulation of activating transcription factor 4 (ATF4) is involved in various mental diseases, but the research on its potential roles in alleviating anxiety disorders remains limited. Methods ATF4 was screened out by bioinformatic analysis and its expression was verified in vivo. Mice were treated with 21 d of chronic restraint stress to establish the anxiety mice model. The anxiolytic effect of ATF4 was assessed by a battery of behavior tests and evaluation of hippocampal tissue damage after overexpressing ATF4. Ferroptosis-related indicators were detected by enzyme-linked immunosorbent assay and Western blotting. Then the transforming growth factor beta (TGF-β) signaling pathway was predicted as the downstream regulatory pathway of ATF4 by bioinformatic methods. Western blotting was conducted to detect the protein expression level of TGF-β1, small mothers against decapentaplegic 3 (Smad3), and phospho-Smad3 (p-Smad3). Results ATF4 was screened out as a ferroptosis-related anxiolytic gene after bioinformatics analysis and was down-regulated in the anxiety mice model. Mice with ATF4 overexpression spent more time in the open arms in the elevated plus-maze test, appeared more frequently in the central area in the open-field test, and decreased the immobility time in the forced swimming and tail suspension tests. Hippocampal tissue damage was alleviated, ferroptosis was suppressed, and the levels of TGF-β1 and p-Smad3/Smad3 were increased by AFT4 overexpression. Conclusion ATF4 overexpression can repress ferroptosis to improve anxiety disorders by activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Fei Wen
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jiaxin Hu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Leijun Li
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|
6
|
Spencer KD, Bline H, Chen HJ, Verosky BG, Hilt ME, Jaggers RM, Gur TL, Mathé EA, Bailey MT. Modulation of anxiety-like behavior in galactooligosaccharide-fed mice: A potential role for bacterial tryptophan metabolites and reduced microglial reactivity. Brain Behav Immun 2024; 121:229-243. [PMID: 39067620 DOI: 10.1016/j.bbi.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
Prebiotic galactooligosaccharides (GOS) reduce anxiety-like behaviors in mice and humans. However, the biological pathways behind these behavioral changes are not well understood. To begin to study these pathways, we utilized C57BL/6 mice that were fed a standard diet with or without GOS supplementation for 3 weeks prior to testing on the open field. After behavioral testing, colonic contents and serum were collected for bacteriome (16S rRNA gene sequencing, colonic contents only) and metabolome (UPLC-MS, colonic contents and serum data) analyses. As expected, GOS significantly reduced anxiety-like behavior (i.e., increased time in the center) and decreased cytokine gene expression (Tnfa and Ccl2) in the prefrontal cortex. Notably, time in the center of the open field was significantly correlated with serum methyl-indole-3-acetic acid (methyl-IAA). This metabolite is a methylated form of indole-3-acetic acid (IAA) that is derived from bacterial metabolism of tryptophan. Sequencing analyses showed that GOS significantly increased Lachnospiraceae UCG006 and Akkermansia; these taxa are known to metabolize both GOS and tryptophan. To determine the extent to which methyl-IAA can affect anxiety-like behavior, mice were intraperitoneally injected with methyl-IAA. Mice given methyl-IAA had a reduction in anxiety-like behavior in the open field, along with lower Tnfa in the prefrontal cortex. Methyl-IAA was also found to reduce TNF-α (as well as CCL2) production by LPS-stimulated BV2 microglia. Together, these data support a novel pathway through which GOS reduces anxiety-like behaviors in mice and suggests that the bacterial metabolite methyl-IAA reduces microglial cytokine and chemokine production, which in turn reduces anxiety-like behavior.
Collapse
Affiliation(s)
- Kyle D Spencer
- Graduate Partnership Program, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Heather Bline
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Helen J Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Branden G Verosky
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Miranda E Hilt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tamar L Gur
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
7
|
Zhou D, Wang LK, Wu HY, Gao L, Yang XD. Early-stage postoperative depression and anxiety following orthognathic surgery: a cross-sectional study. BMC Anesthesiol 2024; 24:338. [PMID: 39342085 PMCID: PMC11438367 DOI: 10.1186/s12871-024-02726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The objective of this study was to observe the incidence and potential risk factors of postoperative depression and anxiety in patients during the early period after undergoing orthognathic surgery. METHODS From March 7 to September 7, 2023, patients ≥ 18 years of age who were scheduled for elective orthognathic surgery under general anesthesia in Peking University School and Hospital of Stomatology were included in this study. We prospectively evaluated their degrees of pre- and postoperative depression and anxiety using the Patient Health Questionnaire-9 and the State Trait Anxiety Inventory. Associations between the perioperative factors and occurrences of postoperative anxiety and depression were evaluated using a multivariate logistic regression model. RESULTS A total of 371 patients were included in the analysis. Within five days after surgery, we observed the occurrence of depression in 32% (116) of the patients and anxiety in 72.8% (270) of them. Their preoperative depression score on the Pain Catastrophizing Scale and intraoperative urine output were significantly associated with a higher risk of postoperative depression. The presence of preoperative anxiety, postoperative moderate-to-severe pain, postoperative nausea and vomiting and postoperative insomnia were significantly associated with a higher risk of postoperative anxiety. Furthermore, a monthly income ≥ ¥10000 was found to be significantly associated with a lower risk of postoperative anxiety. CONCLUSIONS Postoperative depression and anxiety are common among patients who undergo orthognathic surgery. Moreover, preoperative psychological status and incidence of postoperative adverse events were associated with an increased risk of depression and anxiety after surgery. The results of the present study suggest that careful psychological assessment and appropriate management are necessary to improve patients' recovery following orthognathic surgery.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Anesthesiology, Peking University Hospital of Stomatology, No.22, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Li-Kuan Wang
- Department of Anesthesiology, Peking University Hospital of Stomatology, No.22, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hai-Yin Wu
- Department of Anesthesiology, Peking University Hospital of Stomatology, No.22, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Ling Gao
- Department of Anesthesiology, Peking University Hospital of Stomatology, No.22, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xu-Dong Yang
- Department of Anesthesiology, Peking University Hospital of Stomatology, No.22, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
8
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Peng A, Ji S, Lai W, Hu D, Wang M, Zhao X, Chen L. The bidirectional relationship between sleep disturbance and anxiety: Sleep disturbance is a stronger predictor of anxiety. Sleep Med 2024; 121:63-68. [PMID: 38924831 DOI: 10.1016/j.sleep.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Both sleep disturbance and anxiety are common problems that significantly affect human health, but little is known about their causal relationship. The aim of this study was to explore the causal relationship between them with a large sample of community-dwelling adults included. METHODS Data for this study were extracted from the baseline survey of West China Natural Population Cohort Study (WCNPCS) and follow-up in the following year. The sleep quality was assessed using Pittsburgh Sleep Quality Index (PSQI), and anxiety was screened using the Generalized Anxiety Disorder Scale (GAD-7). Age, gender, educational level, marital status, smoking status, drinking status, depressive symptoms, loneliness and chronic diseases were taken as covariant factors. Logistic regression and cross-lagged models were used for data analyses. RESULTS A total of 16699 participants (67.5 % females) were enrolled, with the average age of participants being 57.3 ± 12.7 years. A total of 40.50 % of participants experienced poor sleep quality at baseline and 40.52 % at follow-up. The prevalence of anxiety was 7.58 % at baseline and 4.62 % at follow-up. The results showed that the risk of developing anxiety in individuals with sleep disturbance at baseline was 1.89 times higher than those without (95%CI = 1.43-2.48). Similarly, anxiety increased the risk of developing sleep disturbance by 1.20-fold (95%CI = 1.03-1.39). These results were further supported by the cross-lagged panel models. CONCLUSION Sleep disturbance and anxiety are mutually causal, and the effect of poor sleep on anxiety seems to be more significant. Timely interventions targeting sleep may help to break the vicious circle between sleep disturbance and anxiety symptoms, and improve the quality of life.
Collapse
Affiliation(s)
- Anjiao Peng
- Department of Neurology and Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shuming Ji
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Wanlin Lai
- Department of Neurology and Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Hu
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Mingda Wang
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Xia Zhao
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Lei Chen
- Department of Neurology and Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Ma J, Li M, Bao Y, Huang W, He X, Hong Y, Wei W, Liu Z, Gao X, Yang Y, Cui Z, Wang W, Wang J, Zhu W, Zheng N, Pan L, Wang D, Ke Z, Zhou B, Sheng L, Li H. Gut microbiota-brain bile acid axis orchestrates aging-related neuroinflammation and behavior impairment in mice. Pharmacol Res 2024; 208:107361. [PMID: 39159729 DOI: 10.1016/j.phrs.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Emerging evidence shows that disrupted gut microbiota-bile acid (BA) axis is critically involved in the development of neurodegenerative diseases. However, the alterations in spatial distribution of BAs among different brain regions that command important functions during aging and their exact roles in aging-related neurodegenerative diseases are poorly understood. Here, we analyzed the BA profiles in cerebral cortex, hippocampus, and hypothalamus of young and natural aging mice of both sexes. The results showed that aging altered brain BA profiles sex- and region- dependently, in which TβMCA was consistently elevated in aging mice of both sexes, particularly in the hippocampus and hypothalamus. Furthermore, we found that aging accumulated-TβMCA stimulated microglia inflammation in vitro and shortened the lifespan of C. elegans, as well as behavioral impairment and neuroinflammation in mice. In addition, metagenomic analysis suggested that the accumulation of brain TβMCA during aging was partially attributed to reduction in BSH-carrying bacteria. Finally, rejuvenation of gut microbiota by co-housing aged mice with young mice restored brain BA homeostasis and improved neurological dysfunctions in natural aging mice. In conclusion, our current study highlighted the potential of improving aging-related neuro-impairment by targeting gut microbiota-brain BA axis.
Collapse
Affiliation(s)
- Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wantao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ben Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Isochlorogenic acid A ameliorated lead-induced anxiety-like behaviors in mice by inhibiting ferroptosis-mediated neuroinflammation via the BDNF/Nrf2/GPX4 pathways. Food Chem Toxicol 2024; 190:114814. [PMID: 38876379 DOI: 10.1016/j.fct.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
12
|
Li X, Kong Z, Cai K, Qi F, Zhu S. Neopterin mediates sleep deprivation-induced microglial activation resulting in neuronal damage by affecting YY1/HDAC1/TOP1/IL-6 signaling. J Adv Res 2024:S2090-1232(24)00301-1. [PMID: 39029901 DOI: 10.1016/j.jare.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION Sleep deprivation (SD) is a common disorder in modern society. Hippocampus is an important region of the brain for learning, memory, and emotions. Dysfunction of hippocampus can lead to severe learning and memory disorder, significantly affecting quality of life. SD is accompanied by hippocampal microglia activation and a surge in inflammatory factors, but the precise mechanism remains unclear. Moreover, the ongoing unknown persists regarding how activated microglia in SD lead to neuronal damage. Topoisomerase 1 (TOP1) plays an essential role in the inflammatory process, including the tumor system and viral infection. In this study, we observed a significant elevation in TOP1 levels in the hippocampus of mice subjected to SD. Therefore, we hypothesize that TOP1 may be implicated in SD-induced microglia activation and neuronal damage. OBJECTIVES To investigate the role of TOP1 in SD-induced microglial activation, neuronal damage, and neurobehavioral impairments, and the molecular basis of SD-induced elevated TOP1 levels. METHODS TOP1-specific knockout mice in microglia were used to study the effects of TOP1 on microglial activation and neuronal damage. Transcription factor prediction, RNA interference, ChIP-qPCR, ChIP-seq database analysis, and luciferase reporter assays were performed to explore the molecular mechanisms of YY1 transcriptional activation. Untargeted metabolic profiling was employed to investigate the material basis of YY1 transcriptional activation. RESULTS Knockdown of TOP1 in hippocampal microglia ameliorates SD-induced microglial activation, inflammatory response, and neuronal damage. Mechanistically, TOP1 mediates the release of IL-6 from microglia, which consequently leads to neuronal dysfunction. Moreover, elevated TOP1 due to SD were associated with neopterin, which was attributed to its promotion of elevated levels of H3K27ac in the TOP1 promoter region by disrupting the binding of YY1 and HDAC1. CONCLUSION The present study reveals that TOP1-mediated microglial activation is critical for SD induced hippocampal neuronal damage and behavioral impairments.
Collapse
Affiliation(s)
- Xuan Li
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Ziyu Kong
- School of Basic Medicine, Wuhan University, Wuhan 430071, China
| | - Ke Cai
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Fujian Qi
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China; The First Affiliated Hospital of Medical College, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
13
|
Hu Y, Wang Y, Wang Y, Zhang Y, Wang Z, Xu X, Zhang T, Zhang T, Zhang S, Hu R, Shi L, Wang X, Li J, Shen H, Liu J, Noda M, Peng Y, Long J. Sleep Deprivation Triggers Mitochondrial DNA Release in Microglia to Induce Neural Inflammation: Preventative Effect of Hydroxytyrosol Butyrate. Antioxidants (Basel) 2024; 13:833. [PMID: 39061901 PMCID: PMC11273532 DOI: 10.3390/antiox13070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sleep deprivation (SD) triggers mitochondrial dysfunction and neural inflammation, leading to cognitive impairment and mental issues. However, the mechanism involving mitochondrial dysfunction and neural inflammation still remains unclear. Here, we report that SD rats exhibited multiple behavioral disorders, brain oxidative stress, and robust brain mitochondrial DNA (mtDNA) oxidation. In particular, SD activated microglia and microglial mtDNA efflux to the cytosol and provoked brain pro-inflammatory cytokines. We observed that the mtDNA efflux and pro-inflammatory cytokines significantly reduced with the suppression of the mtDNA oxidation. With the treatment of a novel mitochondrial nutrient, hydroxytyrosol butyrate (HTHB), the SD-induced behavioral disorders were significantly ameliorated while mtDNA oxidation, mtDNA release, and NF-κB activation were remarkably alleviated in both the rat brain and the N9 microglial cell line. Together, these results indicate that microglial mtDNA oxidation and the resultant release induced by SD mediate neural inflammation and HTHB prevents mtDNA oxidation and efflux, providing a potential treatment for SD-induced mental issues.
Collapse
Affiliation(s)
- Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yifang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yuxia Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Xiaohong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (X.X.); (T.Z.)
| | - Tinghua Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (X.X.); (T.Z.)
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Xudong Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Mami Noda
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
- Research and Educational Resource Center for Immunophenotyping, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| |
Collapse
|
14
|
Jiang Y, Xu L, Cao Y, Meng F, Jiang S, Yang M, Zheng Z, Zhang Y, Yang L, Wang M, Sun G, Liu J, Li C, Cui M. Effects of Interleukin-19 overexpression in the medial prefrontal cortex on anxiety-related behaviors, BDNF expression and p38/JNK/ERK pathways. Brain Res Bull 2024; 212:110952. [PMID: 38636611 DOI: 10.1016/j.brainresbull.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Anxiety is a prevalent mental illness known for its high incidence, comorbidity, and tendency to recur, posing significant societal and individual burdens. Studies have highlighted Interleukin-19 (IL-19) as having potential relevance in neuropsychiatric disorders. Our previous research revealed that IL-19 overexpression in colonies exacerbated anxiety-related behaviors induced by dextran sodium sulfate/stress. However, the precise role and molecular mechanisms of IL-19 in anxiety regulation remain uncertain. In this study, we initiated an acute restraint stress (ARS)-induced anxious mouse model and identified heightened expression of IL-19 and IL-20Rα in the medial prefrontal cortex (mPFC) of ARS mice. Notably, IL-19 and IL-20Rα were predominantly present in the excitatory pyramidal neurons of the mPFC under both basal and ARS conditions. Utilizing the adeno-associated virus (AAV) strategy, we demonstrated that IL-19 overexpression in the mPFC induced anxiety-related behaviors and elevated stress susceptibility. Additionally, we observed decreased protein levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the mPFC of IL-19 overexpression mice, accompanied by reduced phosphorylation of in the p38, JNK, and Erk signaling pathways. These findings emphasize the role of IL-19 in modulating anxiety-related behaviors within the mPFC and suggest its potential as a pathological gene and therapeutic target for anxiety.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yifan Cao
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Mengyu Yang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ziteng Zheng
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yi Zhang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lu Yang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Meiqin Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Physiology, Binzhou Medical University, Shandong, China
| | - Guizhi Sun
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
15
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide Attenuates Neurobehavioral Deficits and EEG Irregularities in the Chronic Sleep Deprivation Rats: The Role of Oxidative Stress and Neuroinflammation. Neurochem Res 2024; 49:1541-1555. [PMID: 37966567 DOI: 10.1007/s11064-023-04054-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Sleep deprivation increases stress, anxiety, and depression by altering the endocannabinoid system's function. In the present study, we aimed to investigate the anti-anxiety and anti-depressant effects of the endocannabinoid anandamide (AEA) in the chronic sleep deprivation (SD) model in rats. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation + 20 mg/kg AEA (SD + A). The rats were kept in a sleep deprivation device for 18 h (7 to 1 a.m.) daily for 21 days. Open-field (OFT), elevated plus maze, and forced swimming tests (FST) were used to assess anxiety and depression-like behavior. As well as the cortical EEG, CB1R mRNA expression, TNF-α, IL-6, IL-4 levels, and antioxidant activity in the brain were examined following SD induction. AEA administration significantly increased the time spent (p < 0.01), the distance traveled in the central zone (p < 0.001), and the number of climbing (p < 0.05) in the OFT; it also increased the duration and number of entries into the open arms (p < 0.01 and p < 0.05 respectively), and did not reduce immobility time in the FST (p > 0.05), AEA increased CB1R mRNA expression in the anterior and medial parts of the brain (p < 0.01), and IL-4 levels (p < 0.05). AEA also reduced IL-6 and TNF-α (p < 0.05) and modulated cortical EEG. AEA induced anxiolytic-like effects but not anti-depressant effects in the SD model in rats by modulating CB1R mRNA expression, cortical EEG, and inflammatory response.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Zhang N, Gao X, Li D, Xu L, Zhou G, Xu M, Peng L, Sun G, Pan F, Li Y, Ren R, Huang R, Yang Y, Wang Z. Sleep deprivation-induced anxiety-like behaviors are associated with alterations in the gut microbiota and metabolites. Microbiol Spectr 2024; 12:e0143723. [PMID: 38421192 PMCID: PMC10986621 DOI: 10.1128/spectrum.01437-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The present study aimed to characterize the gut microbiota and serum metabolome changes associated with sleep deprivation (SD) as well as to explore the potential benefits of multi-probiotic supplementation in alleviating SD-related mental health disorders. Rats were subjected to 7 days of SD, followed by 14 days of multi-probiotics or saline administration. Open-field tests were conducted at baseline, end of SD (day 7), and after 14 days of saline or multi-probiotic gavage (day 21). Metagenomic sequencing was conducted on fecal samples, and serum metabolites were measured by untargeted liquid chromatography tandem-mass spectrometry. At day 7, anxiety-like behaviors, including significant decreases in total movement distance (P = 0.0002) and staying time in the central zone (P = 0.021), were observed. In addition, increased levels of lipopolysaccharide (LPS; P = 0.028) and decreased levels of uridine (P = 0.018) and tryptophan (P = 0.01) were detected in rats after 7 days of SD. After SD, the richness of the gut bacterial community increased, and the levels of Akkermansia muciniphila, Muribaculum intestinale, and Bacteroides caecimuris decreased. The changes in the host metabolism and gut microbiota composition were strongly associated with the anxiety-like behaviors caused by SD. In addition, multi-probiotic supplementation for 14 days modestly improved the anxiety-like behaviors in SD rats but significantly reduced the serum level of LPS (P = 0.045). In conclusion, SD induces changes in the gut microbiota and serum metabolites, which may contribute to the development of chronic inflammatory responses and affect the gut-brain axis, causing anxiety-like behaviors. Probiotic supplementation significantly reduces serum LPS, which may alleviate the influence of chronic inflammation. IMPORTANCE The disturbance in the gut microbiome and serum metabolome induced by SD may be involved in anxiety-like behaviors. Probiotic supplementation decreases serum levels of LPS, but this reduction may be insufficient for alleviating SD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Nana Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Integrative Microecology Clinical Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Donghao Li
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Xu
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Yunsheng Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Zikai Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Xie Y, Wu Z, Qian Q, Yang H, Ma J, Luan W, Shang S, Li X. Apple polyphenol extract ameliorates sugary-diet-induced depression-like behaviors in male C57BL/6 mice by inhibiting the inflammation of the gut-brain axis. Food Funct 2024; 15:2939-2959. [PMID: 38406886 DOI: 10.1039/d3fo04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To explore whether apple polyphenol extract (APE) ameliorates sugary-diet-induced depression-like behaviors, thirty male C57BL/6 mice (3-4 weeks old) were assigned to three groups randomly to receive different treatments for 8 consecutive weeks: (1) control group (CON), (2) S-HSD group (60% high sucrose diet feeding with 0.1 mg mL-1 sucralose solution as drinking water), and (3) S-APE group (S-HSD feeding with 500 mg per (kg bw day) APE solution gavage). The S-HSD group showed significant depression-like behaviors compared with the CON group, which was manifested by an increased number of buried marbles in the marble burying test, prolonged immobility time in both the tail suspension test and forced swimming test, and cognitive impairment based on the Morris water maze test. However, APE intervention significantly improved the depression-like behaviors by reducing serum levels of corticosterone and adrenocorticotropic hormone, and increasing the serum level of IL-10. Moreover, APE intervention inhibited the activation of the NF-κB inflammatory pathway, elevated colonic MUC-2 protein expression, and elevated the colonic and hippocampal tight junction proteins of occludin and ZO-1. Furthermore, APE intervention increased the richness and diversity of gut microbiota by regulating the composition of microbiota, with increased relative abundance of Firmicutes and Bacteroidota, decreased relative abundance of Verrucomicrobiota at the phylum level, significantly lowered relative abundance of Akkermansia at the genus level, and rebalanced abnormal relative abundance of Muribaculaceae_unclassified, Coriobacteriaceae_UCG-002, and Lachnoclostridium induced by S-HSD feeding. Thus, our study supports the potential application of APE as a dietary intervention for ameliorating depression-like behavioral disorders.
Collapse
Affiliation(s)
- Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Jieyu Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Wenxue Luan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Siyuan Shang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| |
Collapse
|
18
|
Xiao X, Rui Y, Jin Y, Chen M. Relationship of Sleep Disorder with Neurodegenerative and Psychiatric Diseases: An Updated Review. Neurochem Res 2024; 49:568-582. [PMID: 38108952 DOI: 10.1007/s11064-023-04086-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sleep disorders affect many people worldwide and can accompany neurodegenerative and psychiatric diseases. Sleep may be altered before the clinical manifestations of some of these diseases appear. Moreover, some sleep disorders affect the physiological organization and function of the brain by influencing gene expression, accelerating the accumulation of abnormal proteins, interfering with the clearance of abnormal proteins, or altering the levels of related hormones and neurotransmitters, which can cause or may be associated with the development of neurodegenerative and psychiatric diseases. However, the detailed mechanisms of these effects are unclear. This review mainly focuses on the relationship between and mechanisms of action of sleep in Alzheimer's disease, depression, and anxiety, as well as the relationships between sleep and Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. This summary of current research hotspots may provide researchers with better clues and ideas to develop treatment solutions for neurodegenerative and psychiatric diseases associated with sleep disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Rui
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
19
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
20
|
Du YY, Sun T, Yang Q, Liu QQ, Li JM, Yang L, Luo LX. Therapeutic Potential of Kaempferol against Sleep Deprivation-Induced Cognitive Impairment: Modulation of Neuroinflammation and Synaptic Plasticity Disruption in Mice. ACS Pharmacol Transl Sci 2023; 6:1934-1944. [PMID: 38093836 PMCID: PMC10714427 DOI: 10.1021/acsptsci.3c00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2024]
Abstract
Sleep deprivation (SD) has led to a rise in cognitive impairment (CI) cases. Kaempferol (KMP), known for its anti-inflammatory and antiapoptotic properties, holds promise in countering SD-induced CI. Experimental validation using a sleep-deprived CI model confirmed KMP's efficacy in mitigating CI. Immunofluorescence investigations emphasized diminished activation of astrocytes and reduced the proliferation of microglia in the hippocampus of mice subjected to SD. Subsequently, network pharmacological analyses were conducted and found that KMP may be closely related to the mitogen-activated protein kinase (MAPK) pathway in SD-induced CI. The influence of KMP on the MAPK pathway was verified by the observed decrease in the expression of phosphorylated JNK (p-JNK) and p38 (p-p38). Analyzing hippocampal AMPARS and NMDARS expression indicated KMP's ability to enhance GluA1 phosphorylation (Ser831 and Ser845) and GluN2A levels. Patch clamp assays demonstrated heightened excitatory transmitter transmission in the hippocampus, suggesting KMP's positive influence. Overall, KMP combats neuroinflammation via MAPK inhibition, augments synaptic function, and addresses learning and memory dysfunction in sleep-deprived mice.
Collapse
Affiliation(s)
- Ya-Ya Du
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Ting Sun
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Qi Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Qing-Qing Liu
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Jia-Min Li
- School
of Pharmacy, Shaanxi University of Chinese
Medicine, Xianyang 712046, China
| | - Le Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lan-Xin Luo
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| |
Collapse
|
21
|
Shi S, Zhang M, Xie W, Ju P, Chen N, Wang F, Lyu D, Wang M, Hong W. Sleep deprivation alleviates depression-like behaviors in mice via inhibiting immune and inflammatory pathways and improving neuroplasticity. J Affect Disord 2023; 340:100-112. [PMID: 37543111 DOI: 10.1016/j.jad.2023.07.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Sleep deprivation (SD) has been suggested to have a rapid antidepressant effect. There is substantial evidence that neuroinflammation and neuroplasticity play critical roles in the pathophysiology and treatment of depression. Here, we investigated the mechanisms of SD to alleviate depression-like behaviors of mice, and the role of neuroinflammation and neuroplasticity in it. METHODS Adult male C57BL/6 J mice were subjected to chronic restraint stress (CRS) for 6 weeks, and 6 h of SD were administrated. Behavioral tests were performed to measure depression-like behaviors. RNA-sequencing and bioinformatic analysis were performed in the anterior cingulate cortex (ACC). The differentially expressed genes were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Neuroinflammation and neuroplasticity were measured by western blotting and immunofluorescence staining. RESULTS Behavioral tests demonstrated that SD swiftly attenuated the depression-like behaviors induced by CRS. RNA-sequencing identified the upregulated immune and inflammatory pathways after CRS exposure were downregulated by SD. Furthermore, SD reversed the levels of immune and inflammation-related mRNA, pro-inflammatory factors and microglia activation in ACC. Additionally, the impaired neuroplasticity elicited by CRS in the prefrontal cortex (PFC) and ACC were improved by SD. LIMITATIONS More in-depth studies are required to determine the role of different SD protocols in depressive symptoms and their underlying mechanisms. CONCLUSIONS Our study revealed the rapid antidepressant effect of SD on CRS mice through the reduction of the neuroinflammatory response in ACC and the improvement of neuroplasticity in PFC and ACC, providing a theoretical basis for the clinical application of SD as a rapid antidepressant treatment.
Collapse
Affiliation(s)
- Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Weijie Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Ningning Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
22
|
Li C, Long P, He M, Han F, Jiang W, Li Y, Hu Y, Wen X. Phyllanthus emblica Linn. fruit polyphenols improve acute paradoxical sleep deprivation-induced cognitive impairment and anxiety via Nrf2 pathway. J Funct Foods 2023; 110:105884. [DOI: 10.1016/j.jff.2023.105884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
|
23
|
Wang X, Zhao Z, Guo J, Mei D, Duan Y, Zhang Y, Gou L. GABA B1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice. Brain Res Bull 2023; 202:110755. [PMID: 37678443 DOI: 10.1016/j.brainresbull.2023.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai City, Shandong, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Lingshan Gou
- Peninsula Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
24
|
Ma J, Chen Y, Wang Z, Wang R, Dong Y. Lactiplantibacillus plantarum CR12 attenuates chronic unforeseeable mild stress induced anxiety and depression-like behaviors by modulating the gut microbiota-brain axis. J Funct Foods 2023; 107:105710. [DOI: 10.1016/j.jff.2023.105710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
25
|
Li J, Zhang H, Deng B, Wang X, Liang P, Xu S, Jing Z, Xiao Z, Sun L, Gao C, Wang J, Sun X. Dexmedetomidine Improves Anxiety-like Behaviors in Sleep-Deprived Mice by Inhibiting the p38/MSK1/NFκB Pathway and Reducing Inflammation and Oxidative Stress. Brain Sci 2023; 13:1058. [PMID: 37508990 PMCID: PMC10377202 DOI: 10.3390/brainsci13071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Sleep deprivation (SD) triggers a range of neuroinflammatory responses. Dexmedetomidine can improve sleep deprivation-induced anxiety by reducing neuroinflammatory response but the mechanism is unclear; (2) Methods: The sleep deprivation model was established by using an interference rod device. An open field test and an elevated plus maze test were used to detect the emotional behavior of mice. Mouse cortical tissues were subjected to RNA sequence (RNA-seq) analysis. Western blotting and immunofluorescence were used to detect the expression of p38/p-p38, MSK1/p-MSK1, and NFκBp65/p- NFκBp65. Inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA); (3) Results: SD triggered anxiety-like behaviors in mice and was closely associated with inflammatory responses and the MAPK pathway (as demonstrated by transcriptome analysis). SD led to increased expression levels of p-p38, p-MSK1, and p-NFκB. P38 inhibitor SB203580 was used to confirm the important role of the p38/MSK1/NFκB pathway in SD-induced neuroinflammation. Dexmedetomidine (Dex) effectively improves emotional behavior in sleep-deprived mice by attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex, mainly by inhibiting the activation of the p38/MSK1/NFκB pathway; (4) Conclusions: Dex inhibits the activation of the p38/MSK1/NFκB pathway, thus attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex of mice.
Collapse
Affiliation(s)
- Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710065, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Liang
- Department of Rehabilitative Physioltherapy, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Shenglong Xu
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Ziwei Jing
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Zhibin Xiao
- Department of Anesthesiology, The 986th Air Force Hospital, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Jin Wang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
26
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Liu D, Wang Q, Li Y, Yuan Z, Liu Z, Guo J, Li X, Zhang W, Tao Y, Mei J. Fructus gardeniae ameliorates anxiety-like behaviors induced by sleep deprivation via regulating hippocampal metabolomics and gut microbiota. Front Cell Infect Microbiol 2023; 13:1167312. [PMID: 37377643 PMCID: PMC10291143 DOI: 10.3389/fcimb.2023.1167312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Fructus gardeniae (FG) is a traditional Chinese medicine and health food for thousands of years of application throughout Chinese history and is still widely used in clinical Chinese medicine. FG has a beneficial impact on anxiety, depression, insomnia, and psychiatric disorders; however, its mechanism of action requires further investigation. This study aimed to investigate the effects and mechanisms of FG on sleep deprivation (SD)-induced anxiety-like behavior in rats. A model of SD-induced anxiety-like behavior in rats was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). This was accompanied by neuroinflammation and metabolic abnormalities in the hippocampus and disturbance of intestinal microbiota. However reduced SD-induced anxiety-like behavior and decreased levels of pro-inflammatory cytokines including TNF-α and IL-1β were observed in the hippocampus of rats after 7 days of FG intervention. In addition, metabolomic analysis demonstrated that FG was able to modulate levels of phosphatidylserine 18, Phosphatidylinositol 18, sn-glycero-3-phosphocholine, deoxyguanylic acid, xylose, betaine and other metabolites in the hippocampus. The main metabolic pathways of hippocampal metabolites after FG intervention involve carbon metabolism, glycolysis/gluconeogenesis, pentose phosphate, and glycerophospholipid metabolism. 16S rRNA sequencing illustrated that FG ameliorated the dysbiosis of gut microbiota in anxious rats, mainly increased the abundance of Muribaculaceae and Lactobacillus, and decreased the abundance of Lachnospiraceae_NK4A136_group. In addition, the correlation analysis demonstrated that there was a close relationship between hippocampal metabolites and intestinal microbiota. In conclusion, FG improved the anxiety behavior and inhibited of neuroinflammation in sleep-deprived rats, and the mechanism may be related to the FG regulation of hippocampal metabolites and intestinal microflora composition.
Collapse
Affiliation(s)
- Dong Liu
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qianfei Wang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiliang Liu
- Department of Emergency, Hebei Yiling Hospital, Shijiazhang, Hebei, China
| | - Junli Guo
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xin Li
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Weichao Zhang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yulei Tao
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianqiang Mei
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
29
|
Xu L, Yang X, He Y, Hu Q, Fu Z. Combined exposure to titanium dioxide and tetracycline induces neurotoxicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109562. [PMID: 36764589 DOI: 10.1016/j.cbpc.2023.109562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
In aquatic environment, engineered materials may inevitably interact with the coexisted organic pollutants, which affect their bioavailability and toxicity. In this contribution, the combined impacts of tetracycline (TC) and titanium dioxide nanoparticles (TiO2 NPs) on the neurodevelopment of zebrafish larvae were investigated, and the underlying mechanisms were further elucidated. Firstly, it was confirmed that the co-existence of TC would increase the size and decrease the zeta potential of TiO2 NPs. Following, developmental indicators and motor behaviors were investigated. Our results indicated that co-exposure to TC and TiO2 NPs exhibited enhanced embryonic malformation rates and abnormal nervous system development in zebrafish embryos. Meanwhile, the locomotor behavior was increased upon treatment of TC and TiO2 NP. Further, pathway enrichment analyses of transcriptomic sequencing provided detailed information that either lipid metabolism or PPAR signaling pathway were significantly affected in the co-exposure group. Also, TC + TiO2 NP exposure significantly changed the mRNA expression of neural development-related genes and up-regulated the expression levels of neurotransmitters like 5-hydroxytryptamine, dopamine, acetylcholinesterase, and γ-aminobutyric acid. Taken together, our results demonstrated that the co-exposure of TC and TiO2 NPs had the potential to cause neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Ying He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| |
Collapse
|
30
|
Zhu Q, Chen L, Xu Q, Xu J, Zhang L, Wang J. Association between obstructive sleep apnea and risk for post-stroke anxiety: A Chinese hospital-based study in noncardiogenic ischemic stroke patients. Sleep Med 2023; 107:55-63. [PMID: 37119621 DOI: 10.1016/j.sleep.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE This study explored the role of obstructive sleep apnea (OSA) in post stroke anxiety (PSA) in noncardiogenic ischemic stroke patients. METHODS 180 patients with noncardiogenic ischemic stroke were consecutively enrolled from January 2019 to December 2019. All patients underwent polysomnography (PSG) to assess for OSA. OSA severity was identified based on the apnea hypopnea index (AHI), i.e., no OSA (AHI <5), mild OSA (5 = AHI <15), and moderate to severe OSA (AHI ≥15). Neuropsychological assessments were performed at acute phase and 6 months later to evaluate anxiety (Chinese version of the Zung self-rating anxiety scale [SAS], and Beck Anxiety Inventory [BAI]), depression (Patient Health Questionnaire-9, [PHQ-9]), and cognition (Mini-mental state examination, [MMSE], and Montreal Cognitive Assessment, [MOCA]). Clinical diagnoses of PSA were made based on interviews and the anxiety scales. The correlations between PSA and OSA were investigated in Logistic regression analysis. RESULTS The prevalence of acute-phase and 6-month PSA were 27 (15%) and 52 (28.9%) respectively. Moderate to severe OSA and post-stroke depression (PSD) were the influencing factors of acute-phase PSA. 6-Month PSA was not associated with OSA but was associated with acute-phase anxiety, education status and MOCA. Logistic regression analysis including respiratory and sleeping parameters showed that AHI and micro-arousal index contributed to acute-phase PSA. CONCLUSIONS Acute-phase PSA was associated with OSA severity, potentially through OSA-caused sleep discontinuity. While 6-month PSA was associated with acute-phase anxiety, highlighting the need for integration of screening for and management of OSA and PSA at acute phase.
Collapse
Affiliation(s)
- Qiongbin Zhu
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Leihui Chen
- Department of Internal Medicine, The Wuyun Mountain Hospital of Hangzhou(The Health Promotion Institute of Hangzhou), Hangzhou, Zhejiang, China
| | - Qinglin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiahui Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisan Zhang
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jin Wang
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Bashir ST, Redden CR, Raj K, Arcanjo RB, Stasiak S, Li Q, Steelman AJ, Nowak RA. Endometriosis leads to central nervous system-wide glial activation in a mouse model of endometriosis. J Neuroinflammation 2023; 20:59. [PMID: 36879305 PMCID: PMC9987089 DOI: 10.1186/s12974-023-02713-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Chronic pelvic pain (CPP) is a common symptom of endometriosis. Women with endometriosis are also at a high risk of suffering from anxiety, depression, and other psychological disorders. Recent studies indicate that endometriosis can affect the central nervous system (CNS). Changes in the functional activity of neurons, functional magnetic resonance imaging signals, and gene expression have been reported in the brains of rat and mouse models of endometriosis. The majority of the studies thus far have focused on neuronal changes, whereas changes in the glial cells in different brain regions have not been studied. METHODS Endometriosis was induced in female mice (45-day-old; n = 6-11/timepoint) by syngeneic transfer of donor uterine tissue into the peritoneal cavity of recipient animals. Brains, spines, and endometriotic lesions were collected for analysis at 4, 8, 16, and 32 days post-induction. Sham surgery mice were used as controls (n = 6/timepoint). The pain was assessed using behavioral tests. Using immunohistochemistry for microglia marker ionized calcium-binding adapter molecule-1 (IBA1) and machine learning "Weka trainable segmentation" plugin in Fiji, we evaluated the morphological changes in microglia in different brain regions. Changes in glial fibrillary acidic protein (GFAP) for astrocytes, tumor necrosis factor (TNF), and interleukin-6 (IL6) were also evaluated. RESULTS We observed an increase in microglial soma size in the cortex, hippocampus, thalamus, and hypothalamus of mice with endometriosis compared to sham controls on days 8, 16, and 32. The percentage of IBA1 and GFAP-positive area was increased in the cortex, hippocampus, thalamus, and hypothalamus in mice with endometriosis compared to sham controls on day 16. The number of microglia and astrocytes did not differ between endometriosis and sham control groups. We observed increased TNF and IL6 expression when expression levels from all brain regions were combined. Mice with endometriosis displayed reduced burrowing behavior and hyperalgesia in the abdomen and hind-paw. CONCLUSION We believe this is the first report of central nervous system-wide glial activation in a mouse model of endometriosis. These results have significant implications for understanding chronic pain associated with endometriosis and other issues such as anxiety and depression in women with endometriosis.
Collapse
Affiliation(s)
- Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Catherine R Redden
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Kishori Raj
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Sandra Stasiak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Room 314 ASL, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation 2023; 20:23. [PMID: 36737776 PMCID: PMC9896737 DOI: 10.1186/s12974-023-02693-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.
Collapse
Affiliation(s)
- Junxing Ma
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Ran Wang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Yaoxing Chen
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zixu Wang
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yulan Dong
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
33
|
Huang X, Li Y, Liu H, Xu J, Tan Z, Dong H, Tian B, Wu S, Wang W. Activation of basolateral amygdala to anterior cingulate cortex circuit alleviates MK-801 induced social and cognitive deficits of schizophrenia. Front Cell Neurosci 2022; 16:1070015. [PMID: 36619672 PMCID: PMC9813383 DOI: 10.3389/fncel.2022.1070015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Schizophrenia is a severe psychiatric disorder with a high prevalence worldwide, however, its pathogenesis remains poorly understood. Methods and results In this study, we used the non-competitive NMDA receptor antagonist MK-801 to induce schizophrenia-like behaviors and confirmed that mice exhibited stereotypic rotational behavior and hyperlocomotion, social interaction defects and cognitive dysfunction, similar to the clinical symptoms in patients. Here, the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) were involved in the schizophrenia-like behaviors induced by MK-801. Furthermore, we confirmed BLA sent glutamatergic projection to the ACC. Chemogenetic and optogenetic regulation of BLA-ACC projecting neurons affected social and cognitive deficits but not stereotypic rotational behavior in MK-801-treated mice. Discussion Overall, our study revealed that the BLA-ACC circuit plays a major role and may be a potential target for treating schizophrenia-related symptoms.
Collapse
|
34
|
Chen S, Xie Y, Li Y, Fan X, Xing F, Mao Y, Xing N, Wang J, Yang J, Wang Z, Yuan J. Sleep deprivation and recovery sleep affect healthy male resident’s pain sensitivity and oxidative stress markers: The medial prefrontal cortex may play a role in sleep deprivation model. Front Mol Neurosci 2022; 15:937468. [PMID: 36061364 PMCID: PMC9434020 DOI: 10.3389/fnmol.2022.937468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is essential for the body’s repair and recovery, including supplementation with antioxidants to maintain the balance of the body’s redox state. Changes in sleep patterns have been reported to alter this repair function, leading to changes in disease susceptibility or behavior. Here, we recruited healthy male physicians and measured the extent of the effect of overnight sleep deprivation (SD) and recovery sleep (RS) on nociceptive thresholds and systemic (plasma-derived) redox metabolism, namely, the major antioxidants glutathione (GSH), catalase (CAT), malondialdehyde (MDA), and superoxide dismutase (SOD). Twenty subjects underwent morning measurements before and after overnight total SD and RS. We found that one night of SD can lead to increased nociceptive hypersensitivity and the pain scores of the Numerical Rating Scale (NRS) and that one night of RS can reverse this change. Pre- and post-SD biochemical assays showed an increase in MDA levels and CAT activity and a decrease in GSH levels and SOD activity after overnight SD. Biochemical assays before and after RS showed a partial recovery of MDA levels and a basic recovery of CAT activity to baseline levels. An animal study showed that SD can cause a significant decrease in the paw withdrawal threshold and paw withdrawal latency in rats, and after 4 days of unrestricted sleep, pain thresholds can be restored to normal. We performed proteomics in the rat medial prefrontal cortex (mPFC) and showed that 37 proteins were significantly altered after 6 days of SD. Current findings showed that SD causes nociceptive hyperalgesia and oxidative stress, and RS can restore pain thresholds and repair oxidative stress damage in the body. However, one night of RS is not enough for repairing oxidative stress damage in the human body.
Collapse
Affiliation(s)
- Shuhan Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Yanle Xie
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaochong Fan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Jingping Wang
- Massachusetts General Hospital Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, United States
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
- Zhongyu Wang,
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
- *Correspondence: Jingjing Yuan,
| |
Collapse
|