1
|
Levi R, Levi L, Louzoun Y. Bw4 ligand and direct T-cell receptor binding induced selection on HLA A and B alleles. Front Immunol 2023; 14:1236080. [PMID: 38077375 PMCID: PMC10703150 DOI: 10.3389/fimmu.2023.1236080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The HLA region is the hallmark of balancing selection, argued to be driven by the pressure to present a wide variety of viral epitopes. As such selection on the peptide-binding positions has been proposed to drive HLA population genetics. MHC molecules also directly binds to the T-Cell Receptor and killer cell immunoglobulin-like receptors (KIR). Methods We here combine the HLA allele frequencies in over six-million Hematopoietic Stem Cells (HSC) donors with a novel machine-learning-based method to predict allele frequency. Results We show for the first time that allele frequency can be predicted from their sequences. This prediction yields a natural measure for selection. The strongest selection is affecting KIR binding regions, followed by the peptide-binding cleft. The selection from the direct interaction with the KIR and TCR is centered on positively charged residues (mainly Arginine), and some positions in the peptide-binding cleft are not associated with the allele frequency, especially Tyrosine residues. Discussion These results suggest that the balancing selection for peptide presentation is combined with a positive selection for KIR and TCR binding.
Collapse
Affiliation(s)
| | | | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Legrand N, Salameh P, Jullien M, Chevallier P, Ferron E, David G, Devilder MC, Willem C, Gendzekhadze K, Parham P, Retière C, Gagne K. Non-Expressed Donor KIR3DL1 Alleles May Represent a Risk Factor for Relapse after T-Replete Haploidentical Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:2754. [PMID: 37345091 DOI: 10.3390/cancers15102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
KIR3DL1 alleles are expressed at different levels on the natural killer (NK) cell surface. In particular, the non-expressed KIR3DL1*004 allele appears to be common in Caucasian populations. However, the overall distribution of non-expressed KIR3DL1 alleles and their clinical relevance after T-replete haploidentical hematopoietic stem cell transplantation (hHSCT) with post-transplant cyclophosphamide remain poorly documented in European populations. In a cohort of French blood donors (N = 278), we compared the distribution of expressed and non-expressed KIR3DL1 alleles using next-generation sequencing (NGS) technology combined with multi-color flow cytometry. We confirmed the predominance of the non-expressed KIR3DL1*004 allele. Using allele-specific constructs, the phenotype and function of the uncommon KIR3DL1*019 allotype were characterized using the Jurkat T cell line and NKL transfectants. Although poorly expressed on the NK cell surface, KIR3DL1*019 is retained within NK cells, where it induces missing self-recognition of the Bw4 epitope. Transposing our in vitro observations to a cohort of hHSCT patients (N = 186) led us to observe that non-expressed KIR3DL1 HSC grafts increased the incidence of relapse in patients with myeloid diseases. Non-expressed KIR3DL1 alleles could, therefore, influence the outcome of hHSCT.
Collapse
Affiliation(s)
- Nolwenn Legrand
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Perla Salameh
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Maxime Jullien
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Patrice Chevallier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Enora Ferron
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Gaelle David
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Marie-Claire Devilder
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Ketevan Gendzekhadze
- Department of Hematology and HCT, HLA Laboratory, City of Hope, Medical Center, Duarte, CA 91010, USA
| | - Peter Parham
- Department of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christelle Retière
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- LabEx Transplantex, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
3
|
Yokoyama H. Role of NK cells in cord blood transplantation and their enhancement by the missing ligand effect of the killer-immunoglobulin like receptor. Front Genet 2022; 13:1041468. [PMID: 36330445 PMCID: PMC9623085 DOI: 10.3389/fgene.2022.1041468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the first lymphocytes reconstituted after allogenic hematopoietic stem cell transplantation (HSCT). Especially, in cord blood transplantation (CBT), the increase in the number of NK cells is sustained for a long period. Although there are conflicting results, many studies show that early reconstitution of NK cells is associated with favorable CBT outcomes, suggesting that maximizing NK cell functions could improve the CBT outcome. Killer immunoglobulin-like receptors (KIRs) include inhibitory and stimulatory receptors, which can regulate NK-cell activity. Because some of the KIRs have HLA class I as their ligand, the KIR—ligand interaction on NK cells can be lost in some cases of CBT, which results in the activation of NK cells and alters HSCT outcome. Thus, effects of KIR–ligand mismatch under various conditions have been widely examined; however, the results have been controversial. Among such studies, those using the largest number of CBTs showed that HLA—C2 (KIR2DL1—ligand) mismatches have a favorable effect on the relapse rate and overall survival only when the CBT used methotrexate for graft-versus-host disease prophylaxis. Another study suggested that KIR—ligand mismatch is involved in reducing the relapse of acute myeloid leukemia, mediated by reactivation of cytomegalovirus. These results indicate that activation of NK cells by KIR—ligand mismatch may have favorable effects on CBT outcomes and could help enhance the NK-cell function.
Collapse
|
4
|
Harrison GF, Leaton LA, Harrison EA, Kichula KM, Viken MK, Shortt J, Gignoux CR, Lie BA, Vukcevic D, Leslie S, Norman PJ. Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1. PLoS Comput Biol 2022; 18:e1009059. [PMID: 35192601 PMCID: PMC8896733 DOI: 10.1371/journal.pcbi.1009059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.
Collapse
Affiliation(s)
- Genelle F. Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica A. Harrison
- Independent Researcher, Broomfield, Colorado, United States of America
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marte K. Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benedicte A. Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Damjan Vukcevic
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Leslie
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
5
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
6
|
Increased donor inhibitory KIR with known HLA interactions provide protection from relapse following HLA matched unrelated donor HCT for AML. Bone Marrow Transplant 2021; 56:2714-2722. [PMID: 34234295 DOI: 10.1038/s41409-021-01393-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023]
Abstract
Killer immunoglobulin-like receptor (KIR) and KIR-ligand (KIRL) interactions play an important role in natural killer cell-mediated graft versus leukemia effect (GVL) after hematopoietic cell transplant (HCT) for AML. Accounting for known KIR-KIRL interactions may identify donors with optimal NK cell-mediated alloreactivity and GVL. A retrospective study of 2359 donor-recipient pairs (DRP) who underwent unrelated donor (URD) HCT for AML was performed. KIR-KIRL combinations were determined and associations with clinical outcomes examined. Relapse risk was reduced in DRP with both higher inhibitory KIR-KIRL (iKIR) and missing KIRL (mKIR) scores, with HR 0.86 (P = 0.01) & HR 0.84 (P = 0.02) respectively. The iKIR and mKIR score components were summed to give a maximal inhibitory KIR ligand (IM-KIR) score for each donor, which if it was 5, as opposed to <5, was also associated with a lower relapse risk, SHR 0.8 (P = 0.004). All IM = 5 donors possess KIR Haplotype B/x. Transplant-related mortality was increased among those with IM-KIR = 5, HR, 1.32 (P = 0.01). In a subset analysis of those transplanted with 8/8 HLA-matched DRP, anti-thymocyte globulin recipients with IM-KIR = 5, had a lower relapse rate HR, 0.61 (p = 0.001). This study demonstrates that HLA-matched unrelated donors with the highest inhibitory KIR content confer relapse protection, albeit with increased TRM. These donors all have KIR haplotype B. Clinical trials utilizing donors with a higher iKIR content in conjunction with novel strategies to reduce TRM should be considered for URD HCT in recipients with AML to optimize clinical outcomes.
Collapse
|
7
|
Schetelig J, Baldauf H, Koster L, Kuxhausen M, Heidenreich F, de Wreede LC, Spellman S, van Gelder M, Bruno B, Onida F, Lange V, Massalski C, Potter V, Ljungman P, Schaap N, Hayden P, Lee SJ, Kröger N, Hsu K, Schmidt AH, Yakoub-Agha I, Robin M. Haplotype Motif-Based Models for KIR-Genotype Informed Selection of Hematopoietic Cell Donors Fail to Predict Outcome of Patients With Myelodysplastic Syndromes or Secondary Acute Myeloid Leukemia. Front Immunol 2021; 11:584520. [PMID: 33542712 PMCID: PMC7851088 DOI: 10.3389/fimmu.2020.584520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Results from registry studies suggest that harnessing Natural Killer (NK) cell reactivity mediated through Killer cell Immunoglobulin-like Receptors (KIR) could reduce the risk of relapse after allogeneic Hematopoietic Cell Transplantation (HCT). Several competing models have been developed to classify donors as KIR-advantageous or disadvantageous. Basically, these models differ by grouping donors based on distinct KIR–KIR–ligand combinations or by haplotype motif assignment. This study aimed to validate different models for unrelated donor selection for patients with Myelodysplatic Syndromes (MDS) or secondary Acute Myeloid Leukemia (sAML). In a joint retrospective study of the European Society for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR) registry data from 1704 patients with secondary AML or MDS were analysed. The cohort consisted mainly of older patients (median age 61 years) with high risk disease who had received chemotherapy-based reduced intensity conditioning and anti-thymocyte globulin prior to allogeneic HCT from well-matched unrelated stem cell donors. The impact of the predictors on Overall Survival (OS) and relapse incidence was tested in Cox regression models adjusted for patient age, a modified disease risk index, performance status, donor age, HLA-match, sex-match, CMV-match, conditioning intensity, type of T-cell depletion and graft type. KIR genes were typed using high-resolution amplicon-based next generation sequencing. In univariable and multivariable analyses none of the models predicted OS and the risk of relapse consistently. Our results do not support the hypothesis that optimizing NK-mediated alloreactivity is possible by KIR-genotype informed selection of HLA-matched unrelated donors. However, in the context of allogeneic transplantation, NK-cell biology is complex and only partly understood. KIR-genes are highly diverse and current assignment of haplotype motifs based on the presence or absence of selected KIR genes is over-simplistic. As a consequence, further research is highly warranted and should integrate cutting edge knowledge on KIR genetics, and NK-cell biology into future studies focused on homogeneous groups of patients and treatment modalities.
Collapse
Affiliation(s)
- Johannes Schetelig
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | | | | | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Liesbeth C de Wreede
- DKMS Clinical Trials Unit, Dresden, Germany.,Leiden University Medical Center, Department of Biomedical Data Sciences, Leiden, Netherlands
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Michel van Gelder
- Maastricht University Medical Center, Department of Internal Medicine, Maastricht, Netherlands
| | - Benedetto Bruno
- A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Onida
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | - Per Ljungman
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Kathy Hsu
- Memorial Sloan Kettering Cancer Center, New York & Scientific Director, CIBMTR Immunobiology Working Committee, New York City, NY, United States
| | - Alexander H Schmidt
- DKMS Clinical Trials Unit, Dresden, Germany.,DKMS Life Science Lab, Dresden, Germany
| | | | - Marie Robin
- Hopital Saint-Louis, APHP, Université de Paris, Paris, France
| |
Collapse
|
8
|
Saunders PM, MacLachlan BJ, Widjaja J, Wong SC, Oates CVL, Rossjohn J, Vivian JP, Brooks AG. The Role of the HLA Class I α2 Helix in Determining Ligand Hierarchy for the Killer Cell Ig-like Receptor 3DL1. THE JOURNAL OF IMMUNOLOGY 2021; 206:849-860. [PMID: 33441440 DOI: 10.4049/jimmunol.2001109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023]
Abstract
HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Clare V L Oates
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
9
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
10
|
HLA-F on Autologous HIV-Infected Cells Activates Primary NK Cells Expressing the Activating Killer Immunoglobulin-Like Receptor KIR3DS1. J Virol 2019; 93:JVI.00933-19. [PMID: 31270222 DOI: 10.1128/jvi.00933-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023] Open
Abstract
HIV-exposed seronegative KIR3DS1 homozygotes have a reduced risk of HIV infection. HLA-F is the ligand for the activating NK cell receptor (NKR) KIR3DS1. HLA-F is expressed on HIV-infected CD4 T cells. Coculture of sorted, HIV-infected CD4- (siCD4-) T cells with NK cells activated a higher frequency of KIR3DS1+ than KIR3DS1- NK cells from KIR3DS1 homozygotes to elicit anti-HIV functions such as CCL4, gamma interferon (IFN-γ), and CD107a expression. This was the case whether KIR3DS1+/- NK cells were analyzed inclusively or exclusively by gating out NK cells coexpressing the NKRs, KIR2DL1/L2/L3, 3DL2, KIR2DS1/S2/S3/S5, NKG2A, and ILT2. Blocking the interaction of HLA-F on siCD4- cells with KIR3DS1 on exclusively gated KIR3DS1+ NK cells with KIR3DS1-Fc chimeric protein or an HLA-F-specific monoclonal antibody reduced the frequency of activated KIR3DS1+ cells compared to that under control conditions. KIR3DS1+ NK cell activation by HIV-infected CD4+ cells may underlie the reduced risk of KIR3DS1 homozygotes to HIV infection.IMPORTANCE This study investigated a mechanism that may underly epidemiological studies showing that carriage of the KIR3DS1 homozygous genotype is more frequent among HIV-exposed seronegative subjects than among HIV-susceptible individuals. Carriage of this genotype is associated with a reduced risk of HIV infection. The protective mechanism involves the interaction of HLA-F on CD4+ cells infected with replication-competent HIV with the activating NK receptor, KIR3DS1. This interaction leads to the activation of KIR3DS1+ NK cells for secretion of cytokines and chemokines with anti-HIV activity. Among these is CCL4, which binds and blocks CCR5, the coreceptor for HIV entry of HIV into new target cells. In the setting of an exposure to HIV, incoming HIV-infected cells expressing HLA-F rapidly activate KIR3DS1+ NK cells to elicit anti-HIV activity. Exclusive gating strategies and blocking experiments support the notion that the HLA-F/KIR3DS1 interaction is sufficient to activate NK cell functions.
Collapse
|
11
|
Weisdorf D, Cooley S, Wang T, Trachtenberg E, Haagenson MD, Vierra-Green C, Spellman S, Spahn A, Vogel J, Kobusingye H, Fehninger T, Woolfrey A, Devine S, Ross M, Waller EK, Sobecks R, Parham P, Guethlein LA, Marsh SGE, Miller J. KIR Donor Selection: Feasibility in Identifying better Donors. Biol Blood Marrow Transplant 2018; 25:e28-e32. [PMID: 30149149 DOI: 10.1016/j.bbmt.2018.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/18/2018] [Indexed: 01/17/2023]
Abstract
We previously reported that acute myelogenous leukemia (AML) transplants using killer cell immunoglobulin-type receptor (KIR) B haplotype better or best (≥2 B activating gene loci ± Cen B/B) unrelated donors (URDs) yield less relapse and better survival. In this prospective trial we evaluated 535 AML searches from 14 participating centers with centralized donor KIR genotyping for donor selection. This represented 3% to 48% of all AML searches (median 20%) per center, totaling 3 to 172 patients (median 22) per center. Donor KIR genotype was reported at a median of 14 days after request (≤26 days for 76% of searches). In 535 searches, 2080 donors were requested for KIR genotyping (mean 4.3 per search); and a median of 1.8 (range, 0 to 4.5) per search were KIR typed. Choosing more donors for confirmatory HLA and KIR haplotype identification enriched the likelihood of finding KIR better or best donors. The search process identified a mean of 30% KIR better or best donors; the success ranged from 24% to 38% in the 11 centers enrolling ≥8 patients. More donors requested for KIR genotyping increased the likelihood of identifying KIR better or best haplotype donors. Of the 247 transplants, 9.3% used KIR best, 19% used KIR better, and 48% used KIR neutral donors while 24% used a non-KIR-tested donor. KIR genotyping did not delay transplantation. The time from search to transplant was identical for transplants using a KIR-genotyped versus a non-KIR-genotyped donor. Prospective evaluation can rapidly identify KIR favorable genotype donors, but choosing more donors per search would substantially increase the likelihood of having a KIR best or better donor available for transplantation. Transplant centers and donor registries must both commit extra effort to incorporate new characteristics (beyond HLA, age, and parity) into improved donor selection. Deliberate efforts to present additional genetic factors for donor selection will require novel procedures.
Collapse
Affiliation(s)
- Daniel Weisdorf
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota.
| | - Sarah Cooley
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Michael D Haagenson
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Ashley Spahn
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Jenny Vogel
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Hati Kobusingye
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | | | - Ann Woolfrey
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Jeffrey Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Kiani Z, Dupuy FP, Bruneau J, Lebouché B, Zhang CX, Jackson E, Lisovsky I, da Fonseca S, Geraghty DE, Bernard NF. HLA-F on HLA-Null 721.221 Cells Activates Primary NK Cells Expressing the Activating Killer Ig-like Receptor KIR3DS1. THE JOURNAL OF IMMUNOLOGY 2018; 201:113-123. [PMID: 29743316 DOI: 10.4049/jimmunol.1701370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
NK cells elicit important responses against transformed and virally infected cells. Carriage of the gene encoding the activating killer Ig-like receptor KIR3DS1 is associated with slower time to AIDS and protection from HIV infection. Recently, open conformers of the nonclassical MHC class Ib Ag HLA-F were identified as KIR3DS1 ligands. In this study, we investigated whether the interaction of KIR3DS1 on primary NK cells with HLA-F on the HLA-null cell line 721.221 (221) stimulated KIR3DS1+ NK cells. We used a panel of Abs to detect KIR3DS1+CD56dim NK cells that coexpressed the inhibitory NK cell receptors KIR2DL1/L2/L3, 3DL2, NKG2A, and ILT2; the activating NK cell receptors KIR2DS1/S2/S3/S5; and CCL4, IFN-γ, and CD107a functions. We showed that both untreated and acid-pulsed 221 cells induced a similar frequency of KIR3DS1+ cells to secrete CCL4/IFN-γ and express CD107a with a similar intensity. A higher percentage of KIR3DS1+ than KIR3DS1- NK cells responded to 221 cells when either inclusive or exclusive (i.e., coexpressing none of the other inhibitory NK cell receptors and activating NK cell receptors detected by the Ab panel) gating strategies were employed to identify these NK cell populations. Blocking the interaction of HLA-F on 221 cells with KIR3DS1-Fc chimeric protein or anti-HLA-F Abs on exclusively gated KIR3DS1+ cells reduced the frequency of functional cells compared with that of unblocked conditions for stimulated KIR3DS1+ NK cells. Thus, ligation of KIR3DS1 activates primary NK cells for several antiviral functions.
Collapse
Affiliation(s)
- Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Family Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Family Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Cindy X Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Elise Jackson
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Sandrina da Fonseca
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Daniel E Geraghty
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
13
|
Prakash S, Sarangi AN, Alam S, Sonawane A, Sharma RK, Agrawal S. Putative role of KIR3DL1/3DS1 alleles and HLA-Bw4 ligands with end stage renal disease and long term renal allograft survival. Gene 2017; 637:219-229. [PMID: 28942035 DOI: 10.1016/j.gene.2017.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Killer immunoglobulin receptors (KIR) are highly polymorphic in nature. KIR3DL1/3DS1 genes are known to affect HLA-B antigen binding affinity causing natural killer (NK) cell inhibition, which results into successful renal transplantation. In this study we have examined whether alleles of KIR3DL1/3DS1 play any role in changing the binding affinity with HLA-Bw4 antigen and if so then how are they associated with long term renal allograft survival. We have also evaluated plausible association of KIR3DL1 with HLA-A23/A24/A32 with renal pathophysiology. MATERIALS AND METHODS KIR3DL1/3DS1 allelic diversity was examined in 501 renal transplant cases and 507 controls. PCR-SSP was used to determine the incidence of KIR3DL1/3DS1 genes and HLA class-I antigens. KIR3DL1/3DS1 alleles were determined by sequencing. Expression at transcription level for KIR3DL1/3DS1 genes was evaluated in the presence of HLA-Bw4. Different statistical analyses were performed using SPSS v 22.0. p≤0.05 was considered significant. Sequence based variant effect was predicted using Variant Effect Predictor. To evaluate whether variation in KIR3DL1 and HLA interaction changes the binding affinity structure based effect prediction was carried out using MutaBind and BindProf software. RESULTS For KIR3DL1*0010101, no-risk and low mRNA expression was seen among antibody mediated acute rejection (ABMR) and chronic rejection (CR) cases. Whereas, 3DS1*01301, 3DL1*00401, and 3DL1*00402 showed susceptibility and elevated mRNA expression with ABMR and CR. Two mutations c.320C>T (rs143159382) and c.911G>T (rs35974949), present in alleles 3DL1*00402 and 3DL1*00401 were predicted to be deleterious. Reduced renal allograft survival was observed for individuals possessing KIR3DL1*00401-HLA-Bw4+. In relation to HLA-A locus no significance was observed with ESRD, ABMR, and CR. DISCUSSION The experimental and computational data corroborated with each other suggesting susceptibility for renal allograft in presence of 3DL1*00402 and 3DL1*00401 alleles.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Aditya Narayan Sarangi
- Biomedical Informatics Centre, School of Telemedicine and Biomedical Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Shahnawaz Alam
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Avinash Sonawane
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Raj Kumar Sharma
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Suraksha Agrawal
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
14
|
Martínez-Losada C, Martín C, Gonzalez R, Manzanares B, García-Torres E, Herrera C. Patients Lacking a KIR-Ligand of HLA Group C1 or C2 Have a Better Outcome after Umbilical Cord Blood Transplantation. Front Immunol 2017; 8:810. [PMID: 28751893 PMCID: PMC5507950 DOI: 10.3389/fimmu.2017.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022] Open
Abstract
Donor natural killer (NK) cells can destroy residual leukemic cells after allogeneic hematopoietic stem cell transplantation. This effect is based on the interaction of killer-cell immunoglobulin-like receptors (KIR) of donor NK cells with ligands of the major histocompatibility complex found on the surface of the target cells. HLA-C1 subtypes provide the ligand for KIR2DL2 and KIR2DL3 and the HLA-C2 subtypes for KIR2DL1. We have studied the probability of relapse (PR) after single-unit unrelated cord blood transplantation (UCBT) in relation to the potential graft-vs.-leukemia effect mediated by NK cells present in the umbilical cord blood (UCB) by analyzing KIR-ligand and HLA-C typing of the receptor. Data from 33 consecutive patients given a single unit UCBT were included. We have considered two groups of patients based on the absence or the presence of one of the C-ligands for inhibitory KIR and the incompatibility HLA-C1/2 between UCB and patients. Group 1 (n = 21): the patient lacks a C-ligand for inhibitory KIR present in UCB NK cells, i.e., patients homozygous C1/C1 or C2/C2. Group 2 (n = 12): patients heterozygous C1/C2 in which KIR-mediated graft-vs.-leukemia effect is not expected (presence of both C ligands for inhibitory KIR in the receptor). With a median follow-up post-UCBT of 93 months, patients with absence of a C-ligand for inhibitory KIRs (Group 1) showed a lower actuarial PR than patients with both C-ligands (group 2): 21 ± 10 vs. 68 ± 18% at 2 year and 36 ± 13 vs. 84 ± 14% at 5 years (p = 0.025), respectively. In patients with acute lymphoblastic leukemia, the 2-year PR was 36 ± 21% for group 1 and 66 ± 26% for 2 (p = 0.038). Furthermore, group 1 had a lower incidence of grades II–IV acute graft-vs.-host disease (p = 0.04). In the setting of UCBT, the absence of a C-ligand (C1 or C2) of inhibitory KIR in the patient is associated with lower PR, which is probably due to the graft-vs.-host leukemia effect caused by UCB NK cells that lack a ligand for the inhibitory KIR 2DL1/2DL2/2DL3.
Collapse
Affiliation(s)
- Carmen Martínez-Losada
- Department of Hematology, Reina Sofía University Hospital/Instituto Maimónides de Investigación Biomédica (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Carmen Martín
- Department of Hematology, Reina Sofía University Hospital/Instituto Maimónides de Investigación Biomédica (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Rafael Gonzalez
- Department of Inmunology, Reina Sofía University Hospital, Córdoba, Spain
| | - Bárbara Manzanares
- Department of Inmunology, Reina Sofía University Hospital, Córdoba, Spain
| | - Estefania García-Torres
- Department of Hematology, Reina Sofía University Hospital/Instituto Maimónides de Investigación Biomédica (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital/Instituto Maimónides de Investigación Biomédica (IMIBIC), University of Córdoba, Córdoba, Spain
| |
Collapse
|
15
|
Maniangou B, Legrand N, Alizadeh M, Guyet U, Willem C, David G, Charpentier E, Walencik A, Retière C, Gagne K. Killer Immunoglobulin-Like Receptor Allele Determination Using Next-Generation Sequencing Technology. Front Immunol 2017; 8:547. [PMID: 28579987 PMCID: PMC5437120 DOI: 10.3389/fimmu.2017.00547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
The impact of natural killer (NK) cell alloreactivity on hematopoietic stem cell transplantation (HSCT) outcome is still debated due to the complexity of graft parameters, HLA class I environment, the nature of killer cell immunoglobulin-like receptor (KIR)/KIR ligand genetic combinations studied, and KIR+ NK cell repertoire size. KIR genes are known to be polymorphic in terms of gene content, copy number variation, and number of alleles. These allelic polymorphisms may impact both the phenotype and function of KIR+ NK cells. We, therefore, speculate that polymorphisms may alter donor KIR+ NK cell phenotype/function thus modulating post-HSCT KIR+ NK cell alloreactivity. To investigate KIR allele polymorphisms of all KIR genes, we developed a next-generation sequencing (NGS) technology on a MiSeq platform. To ensure the reliability and specificity of our method, genomic DNA from well-characterized cell lines were used; high-resolution KIR typing results obtained were then compared to those previously reported. Two different bioinformatic pipelines were used allowing the attribution of sequencing reads to specific KIR genes and the assignment of KIR alleles for each KIR gene. Our results demonstrated successful long-range KIR gene amplifications of all reference samples using intergenic KIR primers. The alignment of reads to the human genome reference (hg19) using BiRD pipeline or visualization of data using Profiler software demonstrated that all KIR genes were completely sequenced with a sufficient read depth (mean 317× for all loci) and a high percentage of mapping (mean 93% for all loci). Comparison of high-resolution KIR typing obtained to those published data using exome capture resulted in a reported concordance rate of 95% for centromeric and telomeric KIR genes. Overall, our results suggest that NGS can be used to investigate the broad KIR allelic polymorphism. Hence, these data improve our knowledge, not only on KIR+ NK cell alloreactivity in HSCT but also on the role of KIR+ NK cell populations in control of viral infections and diseases.
Collapse
Affiliation(s)
- Bercelin Maniangou
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Nolwenn Legrand
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mehdi Alizadeh
- Laboratoire de Recherche et Développement, EFS Rennes, Rennes, France
| | - Ulysse Guyet
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gaëlle David
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | | | - Christelle Retière
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang Pays de la Loire, Nantes, France.,CRCINA, INSERM U1232 CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Laboratoire d'Histocompatibilité, EFS Nantes, Nantes, France.,LabeX Transplantex, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Heidenreich S, Kröger N. Reduction of Relapse after Unrelated Donor Stem Cell Transplantation by KIR-Based Graft Selection. Front Immunol 2017; 8:41. [PMID: 28228753 PMCID: PMC5296332 DOI: 10.3389/fimmu.2017.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Besides donor T cells, natural killer (NK) cells are considered to have a major role in preventing relapse after allogeneic hematopoietic stem cell transplantation (HSCT). After T-cell-depleted haploidentical HSCT, a strong NK alloreactivity has been described. These effects have been attributed to killer-cell immunoglobulin-like receptors (KIR). Abundant reports suggest a major role of KIR not only on outcome after haploidentical HSCT but also in the unrelated donor setting. In this review, we give a brief overview of the mechanism of NK cell activation, nomenclature of KIR haplotypes, human leukocyte antigen (HLA) groups, and distinct models for prediction of NK cell alloreactivity. It can be concluded that KIR-ligand mismatch seems to provoke adverse effects in unrelated donor HSCT with reduced overall survival and increased risk for high-grade acute graft-versus-host disease. The presence of activating KIR, as seen in KIR haplotype B, as well as the patient’s HLA C1/x haplotype might reduce relapse in myeloid malignancies.
Collapse
Affiliation(s)
- Silke Heidenreich
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
17
|
Chabannon C, Mfarrej B, Guia S, Ugolini S, Devillier R, Blaise D, Vivier E, Calmels B. Manufacturing Natural Killer Cells as Medicinal Products. Front Immunol 2016; 7:504. [PMID: 27895646 PMCID: PMC5108783 DOI: 10.3389/fimmu.2016.00504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/27/2016] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic.
Collapse
Affiliation(s)
- Christian Chabannon
- CBT-1409: INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, AP-HM, Marseille, France; CRCM: INSERM, CNRS, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bechara Mfarrej
- CBT-1409: INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, AP-HM, Marseille, France; CRCM: INSERM, CNRS, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sophie Guia
- UM2, INSERM, Centre d'Immunologie de Marseille-Luminy, U1104, CNRS UMR7280, Aix-Marseille University , Marseille , France
| | - Sophie Ugolini
- UM2, INSERM, Centre d'Immunologie de Marseille-Luminy, U1104, CNRS UMR7280, Aix-Marseille University , Marseille , France
| | - Raynier Devillier
- CRCM: INSERM, CNRS, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM , Marseille , France
| | - Didier Blaise
- CRCM: INSERM, CNRS, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM , Marseille , France
| | - Eric Vivier
- UM2, INSERM, Centre d'Immunologie de Marseille-Luminy, U1104, CNRS UMR7280, Aix-Marseille University, Marseille, France; Laboratoire d'Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Boris Calmels
- CBT-1409: INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, AP-HM, Marseille, France; CRCM: INSERM, CNRS, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
18
|
Ocular toxoplasmosis: susceptibility in respect to the genes encoding the KIR receptors and their HLA class I ligands. Sci Rep 2016; 6:36632. [PMID: 27827450 PMCID: PMC5101474 DOI: 10.1038/srep36632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the influence of the genes encoding the KIR receptors and their HLA ligands in the susceptibility of ocular toxoplasmosis. A total of 297 patients serologically-diagnosed with toxoplasmosis were selected and stratified according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping was performed by PCR-SSOP. Statistical analyses were conducted using the Chi-square test, and odds ratio with a 95% confidence interval was also calculated to evaluate the risk association. The activating KIR3DS1 gene was associated with increased susceptibility for ocular toxoplasmosis. The activating KIR together with their HLA ligands (KIR3DS1-Bw4-80Ile and KIR2DS1+/C2++ KIR3DS1+/Bw4-80Ile+) were associated with increased susceptibility for ocular toxoplasmosis and its clinical manifestations. KIR-HLA inhibitory pairs -KIR2DL3/2DL3-C1/C1 and KIR2DL3/2DL3-C1- were associated with decreased susceptibility for ocular toxoplasmosis and its clinical forms, while the KIR3DS1−/KIR3DL1+/Bw4-80Ile+ combination was associated as a protective factor against the development of ocular toxoplasmosis and, in particular, against recurrent manifestations. Our data demonstrate that activating and inhibitory KIR genes may influence the development of ocular toxoplasmosis.
Collapse
|
19
|
Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 2016; 17:1067-74. [PMID: 27455421 PMCID: PMC4992421 DOI: 10.1038/ni.3513] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.
Collapse
Affiliation(s)
| | - Angelique Hölzemer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Gloria Martrus
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Yovana Pacheco
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nuestra Señora del Rosario, Bogotá, Colombia
| | | | | | | | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tae-Eun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Haley Dugan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | | | | | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
20
|
Varbanova V, Naumova E, Mihaylova A. Killer-cell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol Immunother 2016; 65:427-40. [PMID: 26874942 PMCID: PMC11029164 DOI: 10.1007/s00262-016-1806-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are considered crucial for the elimination of emerging tumor cells. Effector NK-cell functions are controlled by interactions of inhibitory and activating killer-cell immunoglobulin-like receptors (KIRs) on NK cells with human leukocyte antigen (HLA) class I ligands on target cells. KIR and HLA are highly polymorphic genetic systems segregating independently, creating a great diversity in KIR/HLA gene profiles in different individuals. There is an increasing evidence supporting the relevance of KIR and HLA ligand gene background for the occurrence and outcome of certain cancers. However, the data are still controversial and the mechanisms of receptor-ligand mediated NK-cell action remain unclear. Here, the main characteristics and functions of KIRs and their HLA class I ligands are reviewed. In addition, we review the HLA and KIR correlations with different hematological malignancies and discuss our current understanding of the biological significance and mechanisms underlying these associations.
Collapse
Affiliation(s)
- Viktoria Varbanova
- National Specialized Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria
| | - Elissaveta Naumova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital "Alexandrovska", Medical University, 1, Georgi Sofiiski Str., 1431, Sofia, Bulgaria
| | - Anastasiya Mihaylova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital "Alexandrovska", Medical University, 1, Georgi Sofiiski Str., 1431, Sofia, Bulgaria.
| |
Collapse
|
21
|
Sobecks RM, Wang T, Askar M, Gallagher MM, Haagenson M, Spellman S, Fernandez-Vina M, Malmberg KJ, Müller C, Battiwalla M, Gajewski J, Verneris MR, Ringdén O, Marino S, Davies S, Dehn J, Bornhäuser M, Inamoto Y, Woolfrey A, Shaw P, Pollack M, Weisdorf D, Milller J, Hurley C, Lee SJ, Hsu K. Impact of KIR and HLA Genotypes on Outcomes after Reduced-Intensity Conditioning Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1589-96. [PMID: 25960307 PMCID: PMC4537837 DOI: 10.1016/j.bbmt.2015.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Natural killer cells are regulated by killer cell immunoglobulin-like receptor (KIR) interactions with HLA class I ligands. Several models of natural killer cell reactivity have been associated with improved outcomes after myeloablative allogeneic hematopoietic cell transplantation (HCT), but this issue has not been rigorously addressed in reduced-intensity conditioning (RIC) unrelated donor (URD) HCT. We studied 909 patients undergoing RIC-URD HCT. Patients with acute myeloid leukemia (AML, n = 612) lacking ≥ 1 KIR ligands experienced higher grade III to IV acute graft-versus-host disease (GVHD) (HR, 1.6; 95% CI, 1.16 to 2.28; P = .005) compared to those with all ligands present. Absence of HLA-C2 for donor KIR2DL1 was associated with higher grade II to IV (HR, 1.4; P = .002) and III to IV acute GVHD (HR, 1.5; P = .01) compared with HLA-C2(+) patients. AML patients with KIR2DS1(+), HLA-C2 homozygous donors had greater treatment-related mortality compared with others (HR, 2.4; 95% CI, 1.4 to 4.2; P = .002) but did not experience lower relapse. There were no significant associations with outcomes for AML when assessing donor-activating KIRs or centromeric KIR content or for any donor-recipient KIR-HLA assessments in patients with myelodysplastic syndrome (n = 297). KIR-HLA combinations in RIC-URD HCT recapitulate some but not all KIR-HLA effects observed in myeloablative HCT.
Collapse
Affiliation(s)
- Ronald M Sobecks
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Medhat Askar
- Transplant Center, Cleveland Clinic, Cleveland, Ohio
| | - Meighan M Gallagher
- The Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | - Minoo Battiwalla
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James Gajewski
- Division of Hematology & Medical Oncology, Center for Hematologic Malignancies, Oregon Health and Science University, Portland, Oregon
| | - Michael R Verneris
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Olle Ringdén
- Department of Therapeutic Immunology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susana Marino
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois
| | - Stella Davies
- Department of Pediatrics, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jason Dehn
- Immunogenetic Operations and Research, National Marrow Donor Program, Minneapolis, Minnesota
| | | | - Yoshihiro Inamoto
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ann Woolfrey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Pediatrics, University of Washington, Seattle, Washington
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Marilyn Pollack
- Department of Pathology, Histocompatibility and Immunogenetics Laboratory, Children's Hospital, Oakland, California
| | - Daniel Weisdorf
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey Milller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Carolyn Hurley
- Department of Oncology, Georgetown University Hospital, Washington, DC
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Katharine Hsu
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Gras Navarro A, Björklund AT, Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 2015; 6:202. [PMID: 25972872 PMCID: PMC4413815 DOI: 10.3389/fimmu.2015.00202] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.
Collapse
Affiliation(s)
| | - Andreas T Björklund
- Karolinska University Hospital, Hematology Center and Karolinska Institute , Stockholm , Sweden
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen , Bergen , Norway
| |
Collapse
|
23
|
Park H, Rho EY, In JW, Kim I, Yoon SS, Park S, Shin S, Park KU, Song EY. The impact of HLA and KIR ligand mismatching on unrelated allogeneic hematopoietic stem cell transplantation in Korean adult patients. Ann Lab Med 2014; 35:111-7. [PMID: 25553290 PMCID: PMC4272940 DOI: 10.3343/alm.2015.35.1.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Abstract
Background The impact of HLA and KIR ligand mismatching on the outcome of hematopoietic stem cell transplantation (HSCT) remains unclear. Previous reports have identified considerable ethnic differences in the impact of HLA and KIR ligand mismatches, as well as KIR ligand status, on HSCT; however, to date, no data has been acquired in Korean adult patients. Methods We investigated the association of high-resolution HLA matching on five loci (HLA-A, -B, -C, -DRB1, and -DQB1), KIR ligand mismatching, and KIR ligand status on the outcome of allogeneic HSCT from unrelated donors in 154 Korean adult patients treated at Seoul National University Hospital. Results In a multivariate analysis, less than 9/10 allelic matches in five HLA loci was an independent risk factor for acute graft-versus-host disease (GVHD) (grade II to IV) (P=0.019, odds ratio [OR]=2.7). In addition, HLA-A allele mismatching was increasingly prevalent in patients with acute GVHD compared to patients without (61.9% vs. 34.5%, P=0.06). For KIR ligand status, the patient and donor combination of both C1/C1 ligands showed better event-free and overall survival than combinations with C2 ligand patients or donors (P=0.048, P=0.034, respectively) by log-rank test. Conclusions Korean adult transplant patients with less than 9 of 10 HLA allele matches in the HLA-A, -B, -C, -DRB1, and DQB1 loci have a higher likelihood of developing acute GVHD (grade II to IV). Impact of KIR ligand status on clinical outcome should be further studied in a larger patient population.
Collapse
Affiliation(s)
- Hyewon Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Korea
| | - Eun Youn Rho
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won In
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seonyang Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Shahid A, Chopera DR, Martin E, Penney KA, Milloy MJ, Brumme ZL. A method for killer-cell immunoglobulin-like receptor (KIR) 3DL1/3DS1 genotyping using DNA recovered from frozen plasma. J Immunol Methods 2013; 391:154-62. [PMID: 23524032 DOI: 10.1016/j.jim.2013.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
We describe a reliable and semi-automated method for killer-cell immunoglobulin-like receptor (KIR) 3DL1/S1 genotyping using DNA recovered from frozen plasma. The primers and protocol were first validated using two independent genomic DNA reference panels. To confirm the approach using plasma-derived DNA, total nucleic acids were extracted from 69 paired frozen PBMC and plasma specimens representing all common KIR3DL1/S1 genotypes (3DS1/3DS1, 3DS1/3DL1 and 3DL1/3DL1, including rare allele 3DL1*054), and analyzed in a blinded fashion. The method involves independent nested PCR amplification of KIR3DL1/S1 Exon 4, and if required Exon 3, using universal sequence-specific primers, followed by bidirectional sequencing. The free basecalling software RECall is recommended for rapid, semi-automated chromatogram analysis. KIR3DL1/S1 type assignment is based on two key nucleotide polymorphisms in Exon 4 and, if required, up to two additional polymorphisms in exon 3. Assignment can be performed manually or using our web-based algorithm, KIR3D. Extractions from plasma yielded median [IQR] nucleic acid concentrations of 0.9 [below the limit of detection-2.45] ng/μl. PCR was successful for 100% of exon 4 (69/69) and exon 3 (29/29) plasma amplifications. Chromatogram quality was high and concordance between PBMC and plasma-derived types was 100%. The estimated lower limit of input DNA required for reliable typing is 0.01 ng/μl. This method provides reliable and accurate KIR3DL1/S1 typing when conventional sources of high-quality genomic DNA are unavailable or limiting.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Gagne K, Willem C, Legrand N, Djaoud Z, David G, Rettman P, Bressollette-Bodin C, Senitzer D, Esbelin J, Cesbron-Gautier A, Schneider T, Retière C. Both the nature of KIR3DL1 alleles and the KIR3DL1/S1 allele combination affect the KIR3DL1 NK-cell repertoire in the French population. Eur J Immunol 2013; 43:1085-98. [PMID: 23436464 DOI: 10.1002/eji.201243007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 01/25/2013] [Indexed: 02/04/2023]
Abstract
NK-cell functions are regulated by many activating and inhibitory receptors including KIR3DL1. Extensive allelic polymorphism and variability in expression can directly alter NK-cell phenotype and functions. Here we investigated the KIR3DL1(+) NK-cell repertoire, taking into account the allelic KIR3DL1/S1 polymorphism, KIR3DL1 phenotype, and function. All 109 studied individuals possessed at least one KIR3DL1 allele, with weak KIR3DL1*054, or null alleles being frequently present. In KIR3DL1(high/null) individuals, we observed a bimodal distribution of KIR3DL1(+) NK cells identified by a different KIR3DL1 expression level and cell frequency regardless of a similar amount of both KIR3DL1 transcripts, HLA background, or KIR2D expression. However, this bimodal distribution can be explained by a functional selection following a hierarchy of KIR3DL1 receptors. The higher expression of KIR3DL1 observed on cord blood NK cells suggests the expression of the functional KIR3DL1*004 receptors. Thus, the low amplification of KIR3DL1(high) , KIR3DL1*004 NK-cell subsets during development may be due to extensive signaling via these two receptors. Albeit in a nonexclusive manner, individual immunological experience may contribute to shaping the KIR3DL1 NK-cell repertoire. Together, this study provides new insight into the mechanisms regulating the KIR3DL1 NK-cell repertoire.
Collapse
Affiliation(s)
- Katia Gagne
- Etablissement Français du Sang and Université de Nantes, EA4271 Immunovirologie et Polymorphisme Génétique, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Babor F, Fischer JC, Uhrberg M. The role of KIR genes and ligands in leukemia surveillance. Front Immunol 2013; 4:27. [PMID: 23404428 PMCID: PMC3566379 DOI: 10.3389/fimmu.2013.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/23/2013] [Indexed: 11/13/2022] Open
Abstract
The antileukemic potential of natural killer (NK) cells has been of rising interest in recent years. Interactions between inhibitory killer cell immunoglobulin-like receptors (KIR) and HLA class I ligands seem to be critically involved in the immunosurveillance process. It is also well established that mismatching of HLA class I-encoded KIR ligands in the setting of hematopoietic stem cell transplantation leads to allorecognition of leukemic cells by NK cells, which is in line with the concept of missing-self recognition. Recent data now suggest that KIR gene polymorphism constitutes another important parameter that needs to be taken into account for selection of suitable stem cell donors. Moreover, the role of KIR gene polymorphism for predisposition to leukemia is a current matter of debate. Here, we would like to review the role of KIR function and genetic polymorphism for recognition of leukemia and discuss the impact of these findings for developing novel concepts for NK cell-based immunotherapy strategies.
Collapse
Affiliation(s)
- Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
27
|
Role of killer immunoglobulin-like receptor and ligand matching in donor selection. BONE MARROW RESEARCH 2012. [PMID: 23193479 PMCID: PMC3502759 DOI: 10.1155/2012/271695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite all efforts to improve HLA typing and immunosuppression, it is still impossible to prevent severe graft versus host disease (GVHD) which can be fatal. GVHD is not always associated with graft versus malignancy and can prevent stem cell transplantation from reaching its goals. Overall T-cell alloreactivity is not the sole mechanism modulating the immune defense. Innate immune system has its own antigens, ligands, and mediators. The bridge between HLA and natural killer (NK) cell-mediated reactions is becoming better understood in the context of stem cell transplantation. Killer immunoglobulin-like receptors (KIRs) constitute a wide range of alleles/antigens segregated independently from the HLA alleles and classified into two major haplotypes which imprints the person's ability to suppress or to amplify T-cell alloreactivity. This paper will summarize the impact of both activating and inhibitory KIRs and their ligands on stem cell transplantation outcome. The ultimate goal is to develop algorithms based on KIR profiles to select donors with maximum antileukemic and minimum antihost effects.
Collapse
|
28
|
Abstract
The function of natural killer (NK) cells is controlled by several activating and inhibitory receptors, including the family of killer-immunoglobulin-like receptors (KIRs). One distinctive feature of KIRs is the extensive number of various haplotypes generated by the gene content within the KIR gene locus as well as by highly polymorphic members of the KIR gene family, namely KIR3DL1/S1. Within the KIR3DL1/S1 gene locus, KIR3DS1 represents a conserved allelic variant and displays other unique features in comparison to the highly polymorphic KIR3DL1 allele. KIR3DS1 is present in all human populations and belongs to the KIR haplotype group B. KIR3DS1 encodes for an activating receptor featuring the characteristic short cytoplasmic tail and a positively charged residue within the transmembrane domain, which allows recruitment of the ITAM-bearing adaptor molecule DAP12. Although HLA class I molecules are thought to represent natural KIR ligands, and HLA-Bw4 molecules serve as ligands for KIR3DL1, the ligand for KIR3DS1 still needs to be identified. Despite the lack of formal evidence for an interaction of KIR3DS1 with HLA-Bw4-I80 or any other HLA class I subtype to date, a growing number of associations between the presence of KIR3DS1 and the outcome of viral infections have been described. Especially, the potential protective role of KIR3DS1 in combination with HLA-Bw4-I80 in the context of HIV-1 infection has been studied intensively. In addition, a number of recent studies have associated the presence or absence of KIR3DS1 with the occurrence and outcome of some malignancies, autoimmune diseases, and graft-versus-host disease (GVHD). In this review, we summarize the present knowledge regarding the characteristics of KIRD3S1 and discuss its role in various human diseases.
Collapse
Affiliation(s)
- Christian Körner
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University Charlestown, MA, USA
| | | |
Collapse
|
29
|
Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M, Gallagher MM, Malkki M, Petersdorf E, Dupont B, Hsu KC. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med 2012; 367:805-16. [PMID: 22931314 PMCID: PMC3767478 DOI: 10.1056/nejmoa1200503] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Of the cancers treated with allogeneic hematopoietic stem-cell transplantation (HSCT), acute myeloid leukemia (AML) is most sensitive to natural killer (NK)-cell reactivity. The activating killer-cell immunoglobulin-like receptor (KIR) 2DS1 has ligand specificity for HLA-C2 antigens and activates NK cells in an HLA-dependent manner. Donor-derived NK reactivity controlled by KIR2DS1 and HLA could have beneficial effects in patients with AML who undergo allogeneic HSCT. METHODS We assessed clinical data, HLA genotyping results, and donor cell lines or genomic DNA for 1277 patients with AML who had received hematopoietic stem-cell transplants from unrelated donors matched for HLA-A, B, C, DR, and DQ or with a single mismatch. We performed donor KIR genotyping and evaluated the clinical effect of donor KIR genotype and donor and recipient HLA genotypes. RESULTS Patients with AML who received allografts from donors who were positive for KIR2DS1 had a lower rate of relapse than those with allografts from donors who were negative for KIR2DS1 (26.5% vs. 32.5%; hazard ratio, 0.76; 95% confidence interval [CI], 0.61 to 0.96; P=0.02). Of allografts from donors with KIR2DS1, those from donors who were homozygous or heterozygous for HLA-C1 antigens could mediate this antileukemic effect, whereas those from donors who were homozygous for HLA-C2 did not provide any advantage (24.9% with homozygosity or heterozygosity for HLA-C1 vs. 37.3% with homozygosity for HLA-C2; hazard ratio, 0.46; 95% CI, 0.28 to 0.75; P=0.002). Recipients of KIR2DS1-positive allografts mismatched for a single HLA-C locus had a lower relapse rate than recipients of KIR2DS1-negative allografts with a mismatch at the same locus (17.1% vs. 35.6%; hazard ratio, 0.40; 95% CI, 0.20 to 0.78; P=0.007). KIR3DS1, in positive genetic linkage disequilibrium with KIR2DS1, had no effect on leukemia relapse but was associated with decreased mortality (60.1%, vs. 66.9% without KIR3DS1; hazard ratio, 0.83; 95% CI, 0.71 to 0.96; P=0.01). CONCLUSIONS Activating KIR genes from donors were associated with distinct outcomes of allogeneic HSCT for AML. Donor KIR2DS1 appeared to provide protection against relapse in an HLA-C-dependent manner, and donor KIR3DS1 was associated with reduced mortality. (Funded by the National Institutes of Health and others.).
Collapse
MESH Headings
- Aged
- Genotype
- HLA-C Antigens/genetics
- HLA-C Antigens/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Kaplan-Meier Estimate
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/prevention & control
- Leukemia, Myeloid, Acute/therapy
- Proportional Hazards Models
- Receptors, KIR/genetics
- Receptors, KIR/physiology
- Retrospective Studies
- Secondary Prevention
- Transplantation, Homologous
- Unrelated Donors
Collapse
Affiliation(s)
- Jeffrey M Venstrom
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Beating the odds: factors implicated in the speed and availability of unrelated haematopoietic cell donor provision. Bone Marrow Transplant 2012; 48:210-9. [DOI: 10.1038/bmt.2012.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Clinical production and therapeutic applications of alloreactive natural killer cells. Methods Mol Biol 2012; 882:491-507. [PMID: 22665252 DOI: 10.1007/978-1-61779-842-9_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances have improved our understanding of natural killer (NK) cell-mediated alloreactivity after hematopoietic cell transplantation (HCT) or with adoptive transfer. NK cells contribute to a graft-versus-leukemia effect and may play a role in preventing graft-versus-host disease or controlling infectious diseases after allogeneic HCT. New discoveries in NK cell biology, including characterization of NK cell receptors and their interactions with self-HLA molecules and a better understanding of the mechanism of NK cell education have led to the development of novel strategies to exploit NK cell alloreactivity against tumors. While early studies using autologous NK cells lacked efficacy, the use of adoptively transferred NK cells to treat hematopoietic malignancies has been expanding. The production of allogeneic donor NK cells requires efficient removal of T- and B cells from clinical-scale leukapheresis collections. The goal of this chapter is to review NK cell biology, NK cell receptors, the use of NK cells as therapy and then to discuss the clinical decisions resulting in our current good manufacturing practices processing and activation of human NK cells for therapeutic use.
Collapse
|
32
|
Differential impact of inhibitory and activating Killer Ig-Like Receptors (KIR) on high-risk patients with myeloid and lymphoid malignancies undergoing reduced intensity transplantation from haploidentical related donors. Bone Marrow Transplant 2011; 47:817-23. [PMID: 22139069 DOI: 10.1038/bmt.2011.181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The impact of activating KIR (aKIR) and inhibitory KIR (iKIR) on OS, relapse-related mortality (RRM) and acute GVHD (aGVHD) was prospectively studied in 84 adults with high-risk hematologic malignancies receiving reduced intensity conditioning (RIC) T-cell depleted hematopoietic SCT (HSCT) from haploidentical related donors. In this clinical model, freedom from RRM is dependent on GVL effect. Patients were divided into myeloid (n=49) and lymphoid (n=35) malignancy groups. KIR-ligand and ligand-ligand models were studied in both GVH and rejection directions and statistically correlated with outcome measures. In the myeloid group, OS was higher (P=0.009) and RRM was lower (P=0.036) in patients missing HLA-C group2 ligand to donor iKIR. OS was higher if patients had >1 missing ligand (P=0.018). In lymphoid malignancy, missing ligand to donor KIR had no impact on OS or RRM. However, OS was better with donor aKIR 2DS2 (P=0.028). There was a trend towards shorter OS in recipient with KIR 2DS1, 2DS5 and 3DS1, although sample sizes were too small to provide inferential statistics. Findings in lymphoid malignancy patients should be further studied. These results suggest that the absence of appropriate HLA ligands in the recipient to donor iKIR may induce GVL without aGVHD in myeloid malignancy patients undergoing TCD-RIC transplants.
Collapse
|
33
|
Clausen J, Kircher B, Auberger J, Schumacher P, Grabmer C, Mühlbacher A, Gastl G, Nachbaur D. Bone marrow may be the preferable graft source in recipients homozygous for HLA-C group 2 ligands for inhibitory killer Ig-like receptors. Bone Marrow Transplant 2011; 47:791-8. [PMID: 21946379 DOI: 10.1038/bmt.2011.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HLA class I molecules participate in natural killer cell regulation by acting as ligands for inhibitory killer cell Ig-like receptors (KIRs). One individual may express one or more inhibitory KIR lacking the corresponding HLA ligand. The role of this 'missing KIR ligand' constellation in hematopoietic SCT (HSCT) remains controversial and depends on incompletely defined transplant variables. We have retrospectively analyzed the effects of missing HLA-C group 1/2 and Bw4 KIR ligands in the recipients on the outcome in 382 HSCT, comparing 118 BMT to 264 PBSC transplants (PBSCT). In the multivariate Cox analysis of PBSCT, poor PFS was observed in homozygous HLA-C group 2 (C2/2) recipients (risk ratio (RR), 1.59; P=0.026). In contrast, C2 homozygosity was not unfavorable after BMT (RR, 0.68; P=0.16). C2 homozygous recipients (n=68) had better PFS after BMT than after PBSCT (RR, 0.17; P=0.001), due to fewer relapses (RR, 0.27; P=0.018). Missing Bw4 favorably influenced PFS after BMT (RR, 0.56; P=0.04), but not after PBSCT. These data suggest opposite effects of missing KIR ligands in BMT vs PBSCT. Larger studies are required to reassess whether BMT should be preferred to PBSCT as an option for C2/C2 recipients.
Collapse
Affiliation(s)
- J Clausen
- Department of Internal Medicine V, Hematology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW After hematopoietic cell transplantation (HCT) donor-derived natural killer (NK) cells kill tumor cells to prevent relapse and mediate other beneficial clinical effects including control of infections without inducing graft-vs.-host disease (GVHD). Understanding the determinants of NK cell alloreactivity and function will support improvements in the design of HCT and adoptive cellular therapies. RECENT FINDINGS Refinements to the model of NK cell education or licensing have been made which will inform strategies to develop functional alloreactive NK cells for therapeutic use. Differences in NK cell function have been shown to be dependent on the nature of the stimuli. Recent advances have been made in our understanding of the role of activating NK receptors on education and outcome after HCT. The use of adoptively transferred NK cells to treat hematopoietic malignancies has been expanding. New approaches to modulate target sensitivity to NK cell-mediated killing are under development. SUMMARY NK cells play an important role in the therapeutic efficacy of HCT, with effects on control of infections, GVHD, engraftment and relapse prevention. Recent advances in our understanding of NK cell biology will support improvements in our ability to exploit NK cells to treat cancer.
Collapse
|
35
|
Merino A, Malhotra R, Morton M, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. Impact of a functional KIR2DS4 allele on heterosexual HIV-1 transmission among discordant Zambian couples. J Infect Dis 2011; 203:487-95. [PMID: 21216870 DOI: 10.1093/infdis/jiq075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands interact to regulate natural killer (NK) cell function. KIR gene content and allelic variations are reported to influence human immunodeficiency virus (HIV)-1 infection and pathogenesis. We investigated the impact of KIR genes on heterosexual HIV-1 transmission among 566 discordant couples from Lusaka, Zambia. KIR2DS4*001, the only allele of KIR2DS4 known to encode a functional activating receptor, was associated with relatively high viral load for HIV-1 in index (HIV-1 seroprevalent) partners (β [standard error (SE)], .17 [.8] log₁₀; P = .04) and with accelerated transmission of HIV-1 to cohabiting seronegative partners (relative hazard [RH], 2.00; P = .004). The latter association was independent of the direction of transmission (male-to-female or female-to-male), genital ulcers, and carriage of the putative ligand (HLA-Cw*04). No KIR-gene variant in the initially seronegative partners was associated with HIV-1 acquisition or early viral load following seroconversion. Further analysis of NK cell function should clarify the role of KIR2DS4*001 in HIV-1 transmission.
Collapse
Affiliation(s)
- Aimee Merino
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Woolfrey A, Klein JP, Haagenson M, Spellman S, Petersdorf E, Oudshoorn M, Gajewski J, Hale GA, Horan J, Battiwalla M, Marino SR, Setterholm M, Ringden O, Hurley C, Flomenberg N, Anasetti C, Fernandez-Vina M, Lee SJ. HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2010; 17:885-92. [PMID: 20870028 DOI: 10.1016/j.bbmt.2010.09.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/16/2010] [Indexed: 12/23/2022]
Abstract
The association between HLA matching and outcome in unrelated-donor peripheral blood stem cell (PBSC) transplantation has not yet been established. In the present study, a total of 1933 unrelated donor-recipient pairs who underwent PBSC transplantation between 1999 and 2006 for acute myelogenous leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia and received high-resolution HLA typing for HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 were included in the analysis. Outcomes were compared between HLA-matched and HLA-mismatched pairs, adjusting for patient and transplant characteristics. Matching for HLA-A, -B, -C, and -DRB1 alleles (8/8 match) was associated with better survival at 1 year compared with 7/8 HLA-matched pairs (56% vs 47%). Using 8/8 HLA-matched patients as the baseline (n = 1243), HLA-C antigen mismatches (n = 189) were statistically significantly associated with lower leukemia-free survival (relative risk [RR], 1.36; 95% confidence interval [CI], 1.13-1.64; P = .0010), and increased risk for mortality (RR, 1.41; 95% CI, 1.16-1.70; P = .0005), treatment-related mortality (RR, 1.61; 95% CI, 1.25-2.08; P = .0002), and grade III-IV graft-versus-host disease (RR, 1.98; 95% CI, 1.50-2.62; P < .0001). HLA-B antigen or allele mismatching was associated with an increased risk for acute GVHD grade III-IV. No statistically significant differences in outcome were observed for HLA-C allele (n = 61), HLA-A antigen/allele (n = 136), HLA-DRB1 allele (n = 39), or HLA-DQ antigen/allele (n = 114) mismatches compared with 8/8 HLA-matched pairs. HLA mismatch was not associated with relapse or chronic GVHD. HLA-C antigen-mismatched unrelated PBSC donors were associated with worse outcomes compared with 8/8 HLA-matched donors. The study's limited power due to small sample size precludes conclusions about other mismatches.
Collapse
Affiliation(s)
- Ann Woolfrey
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|