1
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
2
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Zhai N, Liu W, Jin CH, Ding Y, Sun L, Zhang D, Wang Z, Tang Y, Zhao W, LeGuern C, Mapara MY, Wang H, Yang YG. Lack of IFN-γ Receptor Signaling Inhibits Graft-versus-Host Disease by Potentiating Regulatory T Cell Expansion and Conversion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:885-894. [PMID: 37486211 DOI: 10.4049/jimmunol.2200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
IFN-γ is a pleiotropic cytokine that plays a controversial role in regulatory T cell (Treg) activity. In this study, we sought to understand how IFN-γ receptor (IFN-γR) signaling affects donor Tregs following allogeneic hematopoietic cell transplant (allo-HCT), a potentially curative therapy for leukemia. We show that IFN-γR signaling inhibits Treg expansion and conversion of conventional T cells (Tcons) to peripheral Tregs in both mice and humans. Mice receiving IFN-γR-deficient allo-HCT showed markedly reduced graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects, a trend associated with increased frequencies of Tregs, compared with recipients of wild-type allo-HCT. In mice receiving Treg-depleted allo-HCT, IFN-γR deficiency-induced peripheral Treg conversion was effective in preventing persistent GVHD while minimally affecting GVL effects. Thus, impairing IFN-γR signaling in Tcons may offer a promising strategy for achieving GVL effects without refractory GVHD. Similarly, in a human PBMC-induced xenogeneic GVHD model, significant inhibition of GVHD and an increase in donor Tregs were observed in mice cotransferred with human CD4 T cells that were deleted of IFN-γR1 by CRISPR/Cas9 technology, providing proof-of-concept support for using IFN-γR-deficient T cells in clinical allo-HCT.
Collapse
Affiliation(s)
- Naicui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Chun-Hui Jin
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Yanan Ding
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Donghui Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhaowei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yang Tang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Christian LeGuern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Markus Y Mapara
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Hui Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
5
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
6
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
7
|
First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv 2021; 5:1425-1436. [PMID: 33666654 DOI: 10.1182/bloodadvances.2020003219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023] Open
Abstract
Human CD4+25- T cells cultured in interleukin 2 (IL-2), rapamycin, and transforming growth factor β (TGFβ) along with anti-CD3 monoclonal antibody-loaded artificial antigen-presenting cells generate FoxP3+ induced regulatory T cells (iTregs) with potent suppressive function. We performed a phase 1, single-center, dose-escalation study to determine the safety profile of iTregs in adults with high-risk malignancy treated with reduced-intensity conditioning and mobilized peripheral blood stem cells (PBSCs) from HLA-identical sibling donors. Sixteen patients were enrolled and 14 were treated (2 productions failed to meet desired doses). One patient each received 3.0 × 106/kg, 3.0 × 107/kg, and 3.0 × 108/kg iTregs with corresponding T-conventional-to-iTreg ratios of 86:1, 8:1, and 1:2. After 3 patients received 3.0 × 108/kg in the presence of cyclosporine (CSA) and mycophenolate mofetil (MMF) with no dose-limiting toxicities, subsequent patients were to receive iTregs in the presence of sirolimus/MMF that favors Foxp3 stability based on preclinical modeling. However, 2 of 2 developed grade 3 acute graft-versus-host disease (GVHD), resulting in suspension of the sirolimus/MMF. An additional 7 patients received 3.0 × 108/kg iTregs with CSA/MMF. In the 14 patients treated with iTregs and CSA/MMF, there were no severe infusional toxicities with all achieving neutrophil recovery (median, day 13). Of 10 patients who received 3.0 × 108/kg iTregs and CSA/MMF, 7 had no aGVHD, 2 had grade 2, and 1 had grade 3. Circulating Foxp3+ iTregs were detectable through day 14. In summary, iTregs in the context of CSA/MMF can be delivered safely at doses as high as 3 × 108/kg. This trial was registered at www.clinicaltrials.gov as #NCT01634217.
Collapse
|
8
|
Selck C, Dominguez-Villar M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front Immunol 2021; 12:661875. [PMID: 34054826 PMCID: PMC8160309 DOI: 10.3389/fimmu.2021.661875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells are a heterogenous population of immunosuppressive T cells whose therapeutic potential for the treatment of autoimmune diseases and graft rejection is currently being explored. While clinical trial results thus far support the safety and efficacy of adoptive therapies using polyclonal Treg cells, some studies suggest that antigen-specific Treg cells are more potent in regulating and improving immune tolerance in a disease-specific manner. Hence, several approaches to generate and/or expand antigen-specific Treg cells in vitro or in vivo are currently under investigation. However, antigen-specific Treg cell therapies face additional challenges that require further consideration, including the identification of disease-relevant antigens as well as the in vivo stability and migratory behavior of Treg cells following transfer. In this review, we discuss these approaches and the potential limitations and describe prospective strategies to enhance the efficacy of antigen-specific Treg cell treatments in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Claudia Selck
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
9
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
10
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
11
|
Le HT, Keslar K, Nguyen QT, Blazar BR, Hamilton BK, Min B. Interleukin-27 Enforces Regulatory T Cell Functions to Prevent Graft-versus-Host Disease. Front Immunol 2020; 11:181. [PMID: 32117306 PMCID: PMC7028690 DOI: 10.3389/fimmu.2020.00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GvHD) remains a significant complication of allogeneic hematopoietic cell transplantation (HCT), associated with significant morbidity and mortality. GvHD is characterized by dysregulated immune responses and resulting tissue damage of target organs. Recent investigations have focused on Foxp3+ regulatory T cells (Tregs) as a therapeutic tool, based on its regulatory functions in GvHD pathogenesis and their instrumental role in mitigating GvHD severity while preserving graft-versus-leukemia (GvL) activity. There are several challenges to its clinical application, including their paucity, impaired suppressive activity, and instability in vivo. Herein, we report that IL-27 pre-stimulation enhances suppressive functions of both mouse and human Tregs. In a complete MHC mismatched murine bone marrow transplant model, IL-27 pre-stimulated polyclonal iTregs diminish acute (a)GvHD lethality, while preserving the GvL effect. Allo-antigen specificity further improves suppressive functions when combined with IL-27 pre-stimulation. In a xenogeneic (human to mouse) GvHD model, IL-27 pre-stimulated human iTregs are superior in protecting recipients from GvHD. Lastly, we compared gene expression profiles of circulating Tregs isolated from HCT recipients with and without aGvHD and found that Tregs from aGvHD patients express distinct gene signatures enriched in immune activation and inflammation. Therefore, these results highlight a novel function of IL-27 in enforcing Treg functions to prevent aGvHD mediated lethality, proposing the hypothesis that dysregulated Treg functions may account for the potential mechanisms underlying GvHD development.
Collapse
Affiliation(s)
- Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Karen Keslar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
12
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Thangavelu G, Blazar BR. Achievement of Tolerance Induction to Prevent Acute Graft-vs.-Host Disease. Front Immunol 2019; 10:309. [PMID: 30906290 PMCID: PMC6419712 DOI: 10.3389/fimmu.2019.00309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), a main therapy to treat various hematological disorders. Despite rapid progress in understanding GVHD pathogenesis, broad immunosuppressive agents are most often used to prevent and remain the first line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT would permit reductions in immunosuppressant use and their associated undesirable side effects. In this review, we discuss the mechanisms responsible for GVHD and advancement in strategies to achieve immune balance and tolerance thereby avoiding GVHD and its complications.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Cui C, Tian X, Lin Y, Su M, Chen Q, Wang SY, Lai L. In vivo administration of recombinant BTNL2-Fc fusion protein ameliorates graft-versus-host disease in mice. Cell Immunol 2018; 335:22-29. [PMID: 30389093 DOI: 10.1016/j.cellimm.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Although hematopoietic stem cell transplantation (HSCT) has been widely used in the treatment of many diseases, graft-versus-host disease (GVHD) remains a major complication after allogeneic HSCT. Butyrophilin-like 2 (BTNL2) protein has been reported to have the ability to inhibit T cell proliferation in vitro; its ability to inhibit T cell responses in vivo has not been determined. We show here that in vivo administration of recombinant BTNL2-IgG2a Fc (rBTNL2-Ig) fusion protein ameliorates GVHD in mice. This is related to the ability of rBTNL2-Ig to inhibit T cell proliferation, activation and Th1/Th17 cytokine production in vivo. Furthermore, rBTNL2-Ig treatment increases the generation of regulatory T cells. Our results suggest that rBTNL2-Ig has the potential to be used in the prevention and treatment of patients with GVHD.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States; Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Tian
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Qingquan Chen
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Shao-Yuan Wang
- Fujian Institute of Hematology, Hematology Department of Fujian Medical University Union Hospital, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
15
|
Yang ZG, Wen RT, Feng JS, Cao PJ, Zhou HT, Liu WX. Recipient-Derived Allo-iTregs Induced by Donor DCs Effectively Inhibit the Proliferation of Donor T Cells and Reduce GVHD. Anat Rec (Hoboken) 2018; 302:825-836. [PMID: 30312018 DOI: 10.1002/ar.23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022]
Abstract
To compare the potency of recipient-derived, antigen-specific regulatory T cells induced by different dendritic cells (DCs; iTregs) and freshly isolated natural regulatory T cells (nTregs) in preventing mouse graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT). CD4+ T cells from recipient BALB/c mice were stimulated with DCs from recipient BALB/c (syn-DCs), donor B6 (allo-DCs), and third-party C3H (third-party-DCs) mice to induce different iTregs. In parallel, nTregs were isolated from spleen cells of recipient BALB/c (syn-nTregs) and donor B6 (allo-nTregs) mice using magnetic-activated cell sorting. Mixed lymphocyte reaction (MLR) assays were performed to evaluate the suppressive ability of these various regulatory T cells (Tregs). Both the iTregs and nTregs were transfused to GVHD mice on Days 0, 1, 3, and 5. Body weight, GVHD score, and survival time were monitored. Peripheral Tregs were subsequently examined on Days 7, 14, 21, and 28 after BMT, while chimerism was evaluated on Days 14 and 60. Histopathology of colon, liver, and spleen were also performed. DCs markedly induced CD25+ and Foxp3+ expression on CD4+ T cells. The allo-DC-induced Tregs (allo-iTregs) suppressed the proliferation of alloreactive T cells better than the other iTregs/nTregs in MLR assays (P < 0.05). Meanwhile, transfusion of the allo-iTregs reduced the severity of GVHD (P < 0.05), increased survival time compared with the GVHD group (P < 0.05), and enhanced the chimerism proportion. On Day 28 after BMT, the allo-iTregs group had the highest frequency of peripheral Tregs (P < 0.05). Recipient-derived allo-iTregs induced by donor DCs included predominant clones that specifically recognized donor antigens. These allo-iTregs not only prevented GVHD by suppressing the proliferation of donor-alloreactive T cells, but also promoted engraftment, and prolonged the survival of GVHD mice. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:825-836, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhi-Gang Yang
- Affiliated Central People's Hospital of Zhanjiang of Guangdong Medical University, Zhanjiang, Guangdong, 524045, People's Republic of China.,Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Rui-Ting Wen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Jin-Shan Feng
- Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Pei-Jie Cao
- Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Hai-Tao Zhou
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Wen-Xin Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| |
Collapse
|
16
|
Mathew JM, H-Voss J, LeFever A, Konieczna I, Stratton C, He J, Huang X, Gallon L, Skaro A, Ansari MJ, Leventhal JR. A Phase I Clinical Trial with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Sci Rep 2018; 8:7428. [PMID: 29743501 PMCID: PMC5943280 DOI: 10.1038/s41598-018-25574-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
There is considerable interest in therapeutic transfer of regulatory T cells (Tregs) for controlling aberrant immune responses. Initial clinical trials have shown the safety of Tregs in hematopoietic stem cell transplant recipients and subjects with juvenile diabetes. Our hypothesis is that infusion(s) of Tregs may induce transplant tolerance thus avoiding long-term use of toxic immunosuppressive agents that cause increased morbidity/mortality. Towards testing our hypothesis, we conducted a phase I dose escalation safety trial infusing billions of ex vivo expanded recipient polyclonal Tregs into living donor kidney transplant recipients. Despite variability in recipient’s renal disease, our expansion protocol produced Tregs which met all release criteria, expressing >98% CD4+CD25+ with <1% CD8+ and CD19+ contamination. Our product displayed >80% FOXP3 expression with stable demethylation in the FOXP3 promoter. Functionally, expanded Tregs potently suppressed allogeneic responses and induced the generation of new Tregs in the recipient’s allo-responders in vitro. Within recipients, expanded Tregs amplified circulating Treg levels in a sustained manner. Clinically, all doses of Treg therapy tested were safe with no adverse infusion related side effects, infections or rejection events up to two years post-transplant. This study provides the necessary safety data to advance Treg cell therapy to phase II efficacy trials.
Collapse
Affiliation(s)
- James M Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Jessica H-Voss
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ann LeFever
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Iwona Konieczna
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cheryl Stratton
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Jie He
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xuemei Huang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lorenzo Gallon
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Anton Skaro
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Mohammed Javeed Ansari
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,TRACT Therapeutics, Inc; 125W. Oak Street; Suite D, Chicago, IL, 60610, USA.
| |
Collapse
|
17
|
Zhang Y, Liu W, Chen Y, Liu J, Wu K, Su L, Zhang W, Jiang Y, Zhang X, Zhang Y, Liu C, Tao L, Liu B, Zhang H. A Cellular MicroRNA Facilitates Regulatory T Lymphocyte Development by Targeting the FOXP3 Promoter TATA-Box Motif. THE JOURNAL OF IMMUNOLOGY 2017; 200:1053-1063. [DOI: 10.4049/jimmunol.1700196] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
|
18
|
Hu R, Liu Y, Su M, Song Y, Rood D, Lai L. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice. Stem Cells Transl Med 2016; 6:121-130. [PMID: 28170174 PMCID: PMC5442732 DOI: 10.5966/sctm.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
19
|
Heinrichs J, Bastian D, Veerapathran A, Anasetti C, Betts B, Yu XZ. Regulatory T-Cell Therapy for Graft-versus-host Disease. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2016; 1:1-14. [PMID: 27722210 PMCID: PMC5049884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graft-versus-host disease (GVHD) is a significant cause of non-relapse mortality after allogeneic hematopoietic cell transplantation (allo-HCT). Existing strategies to prevent and treat GVHD are incomplete, where a significant portion of allo-HCT recipients developed this complication. Despite this, one such therapy has emerged involving the use of regulatory T cells (Tregs) to control GVHD. The use of natural Tregs (nTregs) yielded positive pre-clinical results and are actively under investigation to reduce GVHD. However, broad application of this approach may require standardization of Treg expansion methods and dosing. Inducible Tregs (iTregs) can be seamlessly generated, but controversial pre-clinical findings and phenotype instability have hampered their translation into the clinic. Here, we review the current biological differences between nTregs and iTregs, as well as their effects on GVHD and graft-versus-leukemia (GVL) responses. We conclude by exploring the idea of combinational cellular therapies for the prevention of GVHD and preservation of GVL.
Collapse
Affiliation(s)
- Jessica Heinrichs
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, USA
| | - David Bastian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Claudio Anasetti
- Department of Blood & Marrow Translation, Moffitt Cancer Center, Tampa, FL, USA
| | - Brain Betts
- Department of Blood & Marrow Translation, Moffitt Cancer Center, Tampa, FL, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Heinrichs J, Li J, Nguyen H, Wu Y, Bastian D, Daethanasanmak A, Sofi MH, Schutt S, Liu C, Jin J, Betts B, Anasetti C, Yu XZ. CD8(+) Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4(+) Tregs in mice. Oncoimmunology 2016; 5:e1146842. [PMID: 27471614 DOI: 10.1080/2162402x.2016.1146842] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/03/2023] Open
Abstract
Adoptive natural regulatory T cell (nTreg) therapy has improved the outcome for patients suffering from graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (Allo-HCT). However, fear of broad immune suppression and subsequent dampening of beneficial graft-versus-leukemia (GVL) responses remains a challenge. To address this concern, we generated alloreactive induced Tregs (iTregs) from resting CD4(+) or CD8(+) T cells and tested their ability to suppress GVH and maintain GVL responses. We utilized major mismatched and haploidentical murine models of HCT with host-derived lymphoma or leukemia cell lines to evaluate GVH and GVL responses simultaneously. Alloreactive CD4(+) iTregs were effective in preventing GVHD, but abrogated the GVL effect against aggressive leukemia. Alloreactive CD8(+) iTregs moderately attenuated GVHD while sparing the GVL effect. Hence, we reasoned that using a combination of CD4(+) and CD8(+) iTregs could achieve the optimal goal of Allo-HCT. Indeed, the combinational therapy was superior to CD4(+) or CD8(+) iTreg singular therapy in GVHD control; importantly, the combinational therapy maintained GVL responses. Cellular analysis uncovered potent suppression of both CD4(+) and CD8(+) effector T cells by the combinational therapy that resulted in effective prevention of GVHD, which could not be achieved by either singular therapy. Gene expression profiles revealed alloreactive CD8(+) iTregs possess elevated expression of multiple cytolytic molecules compared to CD4(+) iTregs, which likely contributes to GVL preservation. Our study uncovers unique differences between alloreactive CD4(+) and CD8(+) iTregs that can be harnessed to create an optimal iTreg therapy for GVHD prevention with maintained GVL responses.
Collapse
Affiliation(s)
- Jessica Heinrichs
- Department of Pathology and Cell biology, University of South Florida, Tampa, FL, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Jun Li
- Department of Hematology, the Third Xiangya Hospital of Central South University , Changsha, Hunan, China
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - Anusara Daethanasanmak
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - M-Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC, USA
| | - Chen Liu
- Pathology, Immunology and Laboratory Medicine, University of Florida , Gainesville, FL, USA
| | - Junfei Jin
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Brian Betts
- Department of Pathology and Cell biology, University of South Florida , Tampa, FL, USA
| | - Claudio Anasetti
- Department of Blood and Marrow Transplantation, Moffitt Cancer Center , Tampa, FL, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
21
|
Xu YJ, Li L, Chen Y, Fu B, Wu DS, Li XL, Zhao XL, Chen FP. Role of HMGB1 in regulation of STAT3 expression in CD4 + T cells from patients with aGVHD after allogeneic hematopoietic stem cell transplantation. Clin Immunol 2015; 161:278-83. [DOI: 10.1016/j.clim.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/27/2022]
|
22
|
Li J, Heinrichs J, Haarberg K, Semple K, Veerapathran A, Liu C, Anasetti C, Yu XZ. HY-Specific Induced Regulatory T Cells Display High Specificity and Efficacy in the Prevention of Acute Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:717-25. [PMID: 26048147 DOI: 10.4049/jimmunol.1401250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
Abstract
Naturally derived regulatory T cells (Tregs) may prevent graft-versus-host disease (GVHD) while preserving graft-versus-leukemia (GVL) activity. However, clinical application of naturally derived regulatory T cells has been severely hampered by their scarce availability and nonselectivity. To overcome these limitations, we took alternative approaches to generate Ag-specific induced Tregs (iTregs) and tested their efficacy and selectivity in the prevention of GVHD in preclinical models of bone marrow transplantation. We selected HY as a target Ag because it is a naturally processed, ubiquitously expressed minor histocompatibility Ag (miHAg) with a proven role in GVHD and GVL effect. We generated HY-specific iTregs (HY-iTregs) from resting CD4 T cells derived from TCR transgenic mice, in which CD4 cells specifically recognize HY peptide. We found that HY-iTregs were highly effective in preventing GVHD in male (HY(+)) but not female (HY(-)) recipients using MHC II-mismatched, parent→F1, and miHAg-mismatched murine bone marrow transplantation models. Interestingly, the expression of target Ag (HY) on the hematopoietic or nonhematopoietic compartment alone was sufficient for iTregs to prevent GVHD. Furthermore, treatment with HY-iTregs still preserved the GVL effect even against pre-established leukemia. We found that HY-iTregs were more stable in male than in female recipients. Furthermore, HY-iTregs expanded extensively in male but not female recipients, which in turn significantly reduced donor effector T cell expansion, activation, and migration into GVHD target organs, resulting in effective prevention of GVHD. This study demonstrates that iTregs specific for HY miHAgs are highly effective in controlling GVHD in an Ag-dependent manner while sparing the GVL effect.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jessica Heinrichs
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33620; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Kelley Haarberg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kenrick Semple
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Anandharaman Veerapathran
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611
| | - Claudio Anasetti
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33620
| | - Xue-Zhong Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| |
Collapse
|
23
|
Hildebrand A, Jarsch C, Kern Y, Böhringer D, Reinhard T, Schwartzkopff J. Subconjunctivally applied naïve Tregs support corneal graft survival in baby rats. Mol Vis 2014; 20:1749-57. [PMID: 25558177 PMCID: PMC4279769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/20/2014] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Corneal transplantation is the most frequent and successful form of tissue transplantation in adults (<10% rejection). In young children, any corneal opacity should be corrected as early as possible to prevent lifelong visual impairment. However, the corneal graft rejection rate is dramatically increased in infants younger than 12 months of age (up to 85% rejection), and immunosuppressive therapy is particularly challenging in this age group. Regulatory T cells (Tregs) are a well-characterized T cell subpopulation with the potential to prevent autoimmune disorders or transplant rejection. Antigen-specific Tregs were shown to inhibit graft rejection in adult stem cell transplantation. Less is known about the role of naïve Tregs.The purpose of the present study was to elucidate the relevance of naïve Tregs in juvenile corneal transplantation in a baby rat keratoplasty model that reproduces the accelerated rejection in young patients. METHODS Counts and inhibitory potential of Tregs were studied in spleens of 3- and 10-week-old rats. Unprimed Tregs (CD4+CD25+) were isolated from the spleens of 10-week-old Lewis rats and systemically or subconjunctivally administered in vivo in allogenic keratoplasty in 3- and 10-week-old Lewis recipient rats. In subconjunctival tissue, transcription was analyzed for induction of transforming-growth-factor beta (TGF-β). RESULTS In 3-week-old rats, CD4 T cell counts, but not FoxP3 T cell counts were lower than in 10-week-old rats. The Tregs of both age groups had the potential to inhibit T cell activation in vitro. No significant delay in rejection was observed when Tregs were applied systemically before keratoplasty. However, subconjunctival application of Tregs abrogated rejection in 66.7% and 33.3% of the 3- and 10-week-old recipients, respectively. Analysis of the conjunctival tissue revealed a transplantation-induced increase in TGF-β transcription in the 3-week-old rats. CONCLUSIONS Our data suggest that local application of unprimed regulatory T cells may be a therapeutic strategy for preventing corneal graft rejection in young recipients.
Collapse
Affiliation(s)
- Antonia Hildebrand
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany
| | - Christian Jarsch
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany
| | - Yvonne Kern
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany
| | - Daniel Böhringer
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany
| | - Johannes Schwartzkopff
- University Eye Hospital, Killianstrasse 5, 79106 Freiburg, Germany,Ophthalmology Clinic Knapp-Schwartzkopff, Lörrach, Germany
| |
Collapse
|
24
|
Huang Y, Feng S, Xu Y, Chen W, Wang S, Li D, Li Z, Lu Q, Pan X, Xu K. Suppression of graft-versus-host disease and retention of graft-versus-tumour reaction by murine genetically engineered dendritic cells following bone marrow transplantation. Mol Med Rep 2014; 11:3820-7. [PMID: 25529231 DOI: 10.3892/mmr.2014.3123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 09/18/2014] [Indexed: 11/05/2022] Open
Abstract
The effect of infusion of lentiviral vector‑mediated, genetically engineered dendritic cells (DCs) following allogeneic bone marrow transplantation (allo‑BMT) on graft‑versus‑host disease (GVHD) and graft‑versus‑leukemia (GVL) was investigated in a mouse model. Lentivirus‑mediated expression of soluble tumor necrosis factor receptor 1 (sTNFR1) converted immature DCs (imDCs) from BABL/c mice into engineered DCs in vitro. An EL4 leukemia allo‑BMT model of BABL/c to C57BL/6 mice was established. Engineered DCs with donor bone marrow cells and splenocytes were subsequently transplanted into myeloablatively irradiated recipients. The average survival duration in the sTNFR1‑ and pXZ9‑imDC groups was significantly prolonged compared with that of the allo‑BMT group (P<0.05). Mild histological changes in GVHD or leukemia were observed in the recipients in the sTNFR1‑imDC group and clinical GVHD scores in this group were significantly decreased compared with those of the transplantation and pXZ9‑imDC groups. Serum interferon‑γ levels were decreased in the pXZ9‑imDC and sTNFR1‑imDC groups compared with those in the allo‑BMT group (P<0.05), with the reduction being more significant in the sTNFR1‑imDC group (P<0.05). Serum interleukin‑4 expression levels were decreased in the allo‑BMT group, but gradually increased in the pXZ9‑imDC and sTNFR1‑imDC groups (P<0.05). Co‑injection of donor genetically‑engineered imDCs was able to efficiently protect recipient mice from lethal GVHD while preserving GVL effects during allo‑BMT.
Collapse
Affiliation(s)
- Yihong Huang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wanru Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Shuhua Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qunxian Lu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiuying Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
25
|
Li Y. T-cell immune suppression in patients with hematologic malignancies: clinical implications. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.14.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The reversion of immune suppression and restoration of T-cell function against leukemia remains a significant clinical challenge. However, the advent of improved antileukemia-specific T-cell induction and the generation of gene-modified T cells has extended cellular immunotherapy to hematological malignancies. Numerous immunotherapeutic protocols have been developed aiming to enhance antileukemia T-cell immune function, eliminate leukemic cells and prevent relapse. By contrast, abnormal expression of CTLA-4 and PD1/PD-L1 plays a critical role in effector T-cell responses and increases Treg suppressive activity in patients with tumors; therefore, blocking CTLA-4, PD1 and PD-L1 is a novel approach for immunotherapy.
Collapse
|
26
|
Fu J, Heinrichs J, Yu XZ. Helper T-cell differentiation in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Arch Immunol Ther Exp (Warsz) 2014; 62:277-301. [PMID: 24699629 DOI: 10.1007/s00005-014-0284-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapeutic option for many malignant diseases. However, the efficacy of allo-HSCT is limited by the occurrence of destructive graft-versus-host disease (GVHD). Since allogeneic T cells are the driving force in the development of GVHD, their activation, proliferation, and differentiation are key factors to understanding GVHD pathogenesis. This review focuses on one critical aspect: the differentiation and function of helper T (Th) cells in acute GVHD. We first summarize well-established subsets including Th1, Th2, Th17, and T-regulatory cells; their flexibility, plasticity, and epigenetic modification; and newly identified subsets including Th9, Th22, and T follicular helper cells. Next, we extensively discuss preclinical findings of Th-cell lineages in GVHD: the networks of transcription factors involved in differentiation, the cytokine and signaling requirements for development, the reciprocal differentiation features, and the regulation of microRNAs on T-cell differentiation. Finally, we briefly summarize the recent findings on the roles of T-cell subsets in clinical GVHD and ongoing strategies to modify T-cell differentiation for controlling GVHD in patients. We believe further exploration and understanding of the immunobiology of T-cell differentiation in GVHD will expand therapeutic options for the continuing success of allo-HSCT.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology PhD Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
27
|
Jin Z, Wu X, Chen S, Yang L, Liu Q, Li Y. Distribution and clonality of the vα and vβ T-cell receptor repertoire of regulatory T cells in leukemia patients with and without graft versus host disease. DNA Cell Biol 2014; 33:182-8. [PMID: 24410134 DOI: 10.1089/dna.2013.2277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Graft versus host disease (GVHD) is the main complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent data indicated that regulatory T (Treg) cells might relate to GVHD, and such functions might be mediated by certain T-cell receptor (TCR) subfamily of Treg cells. Thus, we analyzed the distribution and clonality of the TCR Vα and Vβ repertoire of Treg cells from leukemia patients with and without GVHD after allo-HSCT. Numerous TCR Vα subfamilies, including Vα1, Vα9, Vα13, Vα16-19, and Vα24-29, were absent in Treg cells after allo-HSCT. The usage numbers for the TCR Vα and Vβ subfamilies in Treg cells from patients without GVHD appeared more widely. The expression frequencies of Vα10 or Vα20 between both groups were significantly different. Moreover, the expression frequency of TCR Vβ2 subfamily in patients without GVHD was significantly higher than that in patients with GVHD. Oligoclonally expanded TCR Vα and Vβ Treg cells were identified in a few samples in both groups. Restricted utilization of the Vα and Vβ subfamilies and the absence of some important TCR rearrangements in Treg cells may be related to GVHD due to a lower regulating function of Treg subfamilies.
Collapse
Affiliation(s)
- Zhenyi Jin
- 1 Institute of Hematology, Jinan University , Guangzhou, China
| | | | | | | | | | | |
Collapse
|
28
|
Dhamne C, Chung Y, Alousi AM, Cooper LJN, Tran DQ. Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol 2013; 4:253. [PMID: 23986762 PMCID: PMC3753660 DOI: 10.3389/fimmu.2013.00253] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, much has been learnt and much more to discover about Foxp3(+) regulatory T cells (Tregs). Initially, it was thought that Tregs were a unique entity that originates in the thymus. It is now recognized that there is a fraternal twin sibling that is generated in the periphery. The difficulty is in the distinction between these two subsets. The ability to detect, monitor, and analyze these two subsets in health and disease will provide invaluable insights into their functions and purposes. The plasticity and mechanisms of action can be unique and not overlapping within these subsets. Therefore, the therapeutic targeting of a particular subset of Tregs might be more efficacious. In the past couple of years, a vast amount of data have provided a better understanding of the cellular and molecular components essential for their development and stability. Many studies are implicating their preferential involvement in certain diseases and immunologic tolerance. However, it remains controversial as to whether any phenotypic markers have been identified that can differentiate thymic versus peripheral Tregs. This review will address the validity and controversy regarding Helios, Lap/Garp and Neuropilin-1 as markers of thymic Tregs. It also will discuss updated information on distinguishing features of these two subsets and their critical roles in maternal-fetal tolerance and transplantation.
Collapse
Affiliation(s)
- Chetan Dhamne
- Department of Paediatrics, University Children’s Medical Institute, National University Hospital, Singapore
| | - Yeonseok Chung
- Institute of Molecular Medicine, Center for Immunology and Autoimmune Diseases, UTHealth, Houston, TX, USA
| | - Amin Majid Alousi
- Department of Pediatrics Patient Care, Division of Pediatrics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Laurence J. N. Cooper
- Department of Stem Cell Transplant and Cellular Therapy, Division of Cancer Medicine, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dat Quoc Tran
- Department of Pediatrics, Divisions of Allergy/Immunology, Pediatric Research Center, UTHealth, Houston, TX, USA
| |
Collapse
|
29
|
Liu Y, Cai Y, Dai L, Chen G, Ma X, Wang Y, Xu T, Jin S, Wu X, Qiu H, Tang X, Li C, Sun A, Wu D, Liu H. The expression of Th17-associated cytokines in human acute graft-versus-host disease. Biol Blood Marrow Transplant 2013; 19:1421-9. [PMID: 23792271 DOI: 10.1016/j.bbmt.2013.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
The role of Th17 cells and Th17-associated cytokines in the development of acute graft-versus-host disease (aGVHD) in clinical allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients is not well established. In the current study, a cohort of 69 allo-HSCT patients was examined for the percentages of Th17 and FoxP3(+) Treg cells and the expressions of RORγt and FoxP3 in peripheral blood mononuclear cells (PBMCs). The Th17 percentage and RORγt expression were significantly higher, whereas Treg percentage and FoxP3 expression were significantly lower in severe aGVHD (grade 3 to 4) and mild aGVHD (grade 1 to 2) patients than in patients without aGVHD (grade 0) and healthy donors. We then investigated the expressions of Th17-associated cytokines, including TGF-β, IL-6, IL-1β, IL-17, IL-21, IL-22, IL-23, as well as IL-23R in the PBMCs of patients after allo-HSCT. The expressions of IL-17 and IL-22 in CD4(+) T cells were also examined. The results showed that the expressions of IL-6, IL-1β, IL-17, IL-21, IL-23, and IL-23R were all increased, whereas IL-22 expression was decreased in aGVHD patients. The changes were also correlated with the severity of aGVHD. We also investigated the dynamic changes of Th17/Treg cells and Th17-associated cytokines in patients during the onset and resolution of aGVHD. The results demonstrated a reciprocal relationship between Treg and Th17 cells. Th17-associated cytokine expressions, namely IL-17 and IL-23, were closely related to the occurrence and resolution of aGVHD. We conclude that the dynamic balance between the Th17 and FoxP3(+) Treg cells and the changes of Th17-associated cytokines could be the indicators of the disease progression and promising candidates of prognostic biomarkers of aGVHD.
Collapse
Affiliation(s)
- Yuejun Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Han KL, Thomas SVM, Koontz SM, Changpriroa CM, Ha SK, Malech HL, Kang EM. Adenosine A₂A receptor agonist-mediated increase in donor-derived regulatory T cells suppresses development of graft-versus-host disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:458-68. [PMID: 23225892 PMCID: PMC3674549 DOI: 10.4049/jimmunol.1201325] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graft-versus-host disease (GVHD) remains a significant complication of allogeneic transplantation. We previously reported that the adenosine A(2A) receptor (A(2A)R) specific agonist, ATL146e, decreases the incidence and severity of GVHD in a mouse transplant model. There is increasing interest in treatments that increase CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) to suppress GVHD. Our current study found in vitro that A(2A)R selective agonists enhanced TGF-β-induced generation of mouse Tregs 2.3- to 3-fold. We demonstrated in vivo suppression of GVHD with specific A(2A)R agonists in two different murine GVHD transplant models associated with profound increases in both circulating and target tissue Tregs of donor origin. Three different A(2A)R agonists of differing potency, ATL146e, ATL370, and ATL1223, all significantly inhibited GVHD-associated weight loss and mortality. At the same time, Tregs shown to be of donor origin increased 5.1- to 7.4-fold in spleen, 2.7- to 4.6-fold in peripheral blood, 2.3- to 4.7-fold in colon, and 3.8- to 4.6-fold in skin. We conclude that specific activation of A(2A)R inhibits acute GVHD through an increase of donor-derived Tregs. Furthermore, the increased presence of Tregs in target tissues (colon and skin) of A(2A)R-specific agonist-treated mice is likely the mechanistic basis for the anti-inflammatory effect preventing acute GVHD.
Collapse
Affiliation(s)
- Kyu Lee Han
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephenie V. M. Thomas
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sherry M. Koontz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cattlena M. Changpriroa
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seung-Kwon Ha
- Life Science R&D Center, SK Chemical Inc. 310 Pangyo-ro Bundang-gu, Sungnam-Si, Gyeonggi-Do, Republic of Korea
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth M. Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Abstract
Allogeneic haematopoietic stem cell transplantation is used to treat a variety of disorders, but its efficacy is limited by the occurrence of graft-versus-host disease (GVHD). The past decade has brought impressive advances in our understanding of the role of stimulatory and suppressive elements of the adaptive and innate immune systems from both the donor and the host in GVHD pathogenesis. New insights from basic immunology, preclinical models and clinical studies have led to novel approaches for prevention and treatment. This Review highlights the recent advances in understanding the pathophysiology of GVHD and its treatment, with a focus on manipulations of the immune system that are amenable to clinical application.
Collapse
|
32
|
Fricke S, Rothe K, Hilger N, Ackermann M, Oelkrug C, Fricke C, Schönfelder U, Niederwieser D, Emmrich F, Sack U. Allogeneic bone marrow grafts with high levels of CD4+CD25+FoxP3+ T cells can lead to engraftment failure. Cytometry A 2012; 81:476-88. [DOI: 10.1002/cyto.a.22061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/02/2023]
|
33
|
Immune modulation of inflammatory conditions: regulatory T cells for treatment of GvHD. Immunol Res 2012; 53:200-12. [DOI: 10.1007/s12026-012-8267-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Hippen KL, Riley JL, June CH, Blazar BR. Clinical perspectives for regulatory T cells in transplantation tolerance. Semin Immunol 2011; 23:462-8. [PMID: 21820917 PMCID: PMC3230779 DOI: 10.1016/j.smim.2011.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
Three main types of CD4+ regulatory T cells can be distinguished based upon whether they express Foxp3 and differentiate naturally in the thymus (natural Tregs) or are induced in the periphery (inducible Tregs); or whether they are FoxP3 negative but secrete IL-10 in response to antigen (Tregulatory type 1, Tr1 cells). Adoptive transfer of each cell type has proven highly effective in mouse models at preventing graft vs. host disease (GVHD) and autoimmunity. Although clinical application was initially hampered by low Treg frequency and unfavorable ex vivo expansion properties, several phase I trials are now being conducted to assess their effect on GVHD following hematopoietic stem cell transplantation (HSCT) and in type I diabetes. Human Treg trials for HSCT recipients have preceded other indications because GVHD onset is precisely known, the time period needed for prevention relatively short, initial efficacy is likely to provide life-long protection, and complications of GVHD can be lethal. This review will summarize the clinical trials conducted to date that have employed Tregs to prevent GVHD following HSCT and discuss recent advances in Treg cellular therapy.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, MN USA
| | - James L. Riley
- Abramson Family Cancer Center Research Institute, University of Pennsylvania Cancer Center, Philadelphia, PA USA
| | - Carl H. June
- Abramson Family Cancer Center Research Institute, University of Pennsylvania Cancer Center, Philadelphia, PA USA
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, MN USA
| |
Collapse
|
35
|
The effects of leflunomide on CD4+CD25+Foxp3+ T regulatory cells in mice receiving allogeneic bone marrow transplantation. Inflamm Res 2011; 61:53-60. [DOI: 10.1007/s00011-011-0388-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/23/2011] [Accepted: 09/16/2011] [Indexed: 01/04/2023] Open
|
36
|
Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood 2011; 118:5671-80. [PMID: 21948174 DOI: 10.1182/blood-2011-02-337097] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adoptive transfer of regulatory T cells (Tregs) prevents GVHD in experimental animals. Because antigen activation drives Treg function, we measured the frequency, growth requirements, and function of alloantigen-specific (allospecific) Tregs from human blood. When alloantigen was presented directly, the precursor frequency of allo-specific Tregs in normal individuals was 1.02% (95% confidence interval [95% CI]: 0.65-1.59) and non-Tregs 1.56% (95% CI: 0.94-2.55). When alloantigen was presented indirectly, the frequency of specific Tregs was approximately 100-fold less. Purified Tregs were expanded with APCs, rapamycin, IL-2, and IL-15. In 12 days, allo-specific Tregs expanded 793-fold (95% CI: 480-1107), with duplication approximately every 24 hours. Purified allo-specific Tregs suppressed responses to specific alloantigen selectively and were approximately 100-fold more potent than polyspecific Tregs and nonexpanded Tregs. Allo-specific Tregs maintained high expression of Foxp3, Bcl-2, lymphoid homing receptor CD62L, and chemokine receptor CCR7, predicting sustained function and migration to lymphoid tissues in vivo. Allo-specific Tregs produced TGF-β and IL-10 and expressed more cytoplasmic CTLA-4 compared with non-Tregs. These data provide a platform for the selective expansion of Tregs against major and possibly minor histocompatibility antigens and predict the feasibility of adoptive immunotherapy trials using Tregs with indirect allo-recognition for preventing GVHD while sparing GVL effects.
Collapse
|
37
|
Abstract
The microenviroment of acute myelogenous leukemia (AML) is suppressive for immune effector cells. Regulatory T cells (Tregs) have been recognized as a contributor factor and may be recruited and exploited by leukemic cells to evade immunesurveillance. Studies have shown that the frequencies of marrow and blood Tregs are greater in patients with AML than in control patients. Although increased Tregs have been associated with a decreased risk of GVHD after allogeneic HCT and hence may impede the graft-versus-tumor effect, recent findings indicate that that this may not be the case. Because there is a need to improve outcomes of standard treatment (chemotherapy with or without allogeneic HCT) in AML, targeting Tregs present an outstanding opportunity in AML because discoveries may apply throughout its treatment. Here, we review data on the roles of Tregs in mediating immune system-AML interactions. We focused on in vitro, animal, and observational human studies of Tregs in AML biology, development, prognosis, and therapy in different settings (eg, vaccination and HCT). Manipulation of Tregs or other types of immunomodulation may become a part of AML treatment in the future.
Collapse
|
38
|
Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORγt in mice. Blood 2011; 118:5011-20. [PMID: 21856864 DOI: 10.1182/blood-2011-03-340315] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is effective therapy for hematologic malignancies through T cell-mediated GVL effects. However, HCT benefits are frequently offset by the destructive GVHD, which is also induced by donor T cells. Naive Th can differentiate into Th1 and Th17 subsets and both can mediate GVHD after adoptive transfer into an allogeneic host. Here we tested the hypothesis that blockade of Th1 and Th17 differentiation is required to prevent GVHD in mice. T cells with combined targeted disruption of T-bet and RORγt have defective differentiation toward Th1 and Th17 and skewed differentiation toward Th2 and regulatory phenotypes, and caused ameliorated GVHD in a major MHC-mismatched model of HCT. GVL effects mediated by granzyme-positive CD8 T cells were largely preserved despite T-bet and RORγt deficiency. These data indicate that GVHD can be prevented by targeting Th1 and Th17 transcription factors without offsetting GVL activity.
Collapse
|
39
|
Teshima T, Maeda Y, Ozaki K. Regulatory T cells and IL-17-producing cells in graft-versus-host disease. Immunotherapy 2011; 3:833-52. [DOI: 10.2217/imt.11.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Graft-versus-host disease (GvHD), a major complication following allogeneic hematopoietic stem cell transplantation, is mediated by donor-derived T cells. On activation with alloantigens expressed on host antigen-presenting cells, naive CD4+ T cells differentiate into T-helper cell subsets of effector T cells expressing distinct sets of transcriptional factors and cytokines. Classically, acute GvHD was suggested to be predominantly related to Th1 responses. However, we now face a completely different and complex scenario involving possible roles of newly identified Th17 cells as well as Tregs in GvHD. Accumulating data from experimental and clinical studies suggest that the fine balance between Th1, Th2, Th17 and Tregs after transplantation may be an important determinant of the severity, manifestation and tissue distribution of GvHD. Understanding the dynamic process of reciprocal differentiation of regulatory and T-helper cell subsets as well as their interactions will be important in establishing novel strategies for preventing and treating GvHD.
Collapse
Affiliation(s)
- Takanori Teshima
- Center for Cellular & Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshinobu Maeda
- Biopathological Science, Okayama University Graduate School of Medicine & Dentistry, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Katsutoshi Ozaki
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329–0498, Japan
| |
Collapse
|