1
|
Stathis CJ, Zhu H, Carlin K, Phan TL, Toomey D, Hill JA, Zerr DM. A systematic review and meta-analysis of HHV-6 and mortality after hematopoietic cell transplant. Bone Marrow Transplant 2024:10.1038/s41409-024-02398-w. [PMID: 39245683 DOI: 10.1038/s41409-024-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Human herpesvirus-6B (HHV-6B) reactivation has been associated with non-relapse mortality (NRM) and overall mortality (OM) following allogeneic hematopoietic stem cell transplant (HCT). We performed a systematic review and meta-analysis to better quantify the association. Studies were included if they systematically tested a cohort of HCT recipients for HHV-6 infection or reactivation and described mortality for patients with and without HHV-6B. Random effects models were used to assess the pooled effect of HHV-6B positivity on each outcome of interest. Bayesian aggregation was additionally performed if models included 10 or fewer studies. Eight studies were included in the NRM analysis, which demonstrated a significant association between HHV-6 detection and NRM (pooled effect: 1.84; 95% CI: 1.29-2.62) without significant heterogeneity (I2 = 0.0%, p = 0.55). A Bayesian aggregation of the raw data used to construct the NRM random effects model supported these findings (95% credible interval: 0.15-1.13). Twenty-five studies were included in OM analysis, which showed a significant positive association (pooled effect: 1.37; 95% CI: 1.07-1.76), though considerable heterogeneity was observed (I2 = 36.7%, p < 0.05). HHV-6 detection is associated with NRM and OM following HCT. Randomized trials are warranted to evaluate if preventing or treating HHV-6B reactivation improves outcomes.
Collapse
Affiliation(s)
- Christopher J Stathis
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
| | - Harrison Zhu
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Baylor College of Medicine, Houston, TX, USA
| | | | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Geisinger Commonwealth School of Medicine, Scranton, PA, 18509, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Danielle M Zerr
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Li N, Zhang R, Wang J, Zhu X, Meng F, Cao Y, Wang G, Yang Y. Case report: Acute HHV6B encephalitis/myelitis post CAR-T cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma. Front Neurol 2024; 15:1334000. [PMID: 38487325 PMCID: PMC10937551 DOI: 10.3389/fneur.2024.1334000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Background The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment outcomes in patients with lymphoid malignancies. However, several studies have reported a relatively high rate of infection in adult patients following CD19-targeting CAR T-cell therapy, particularly in the first 28 days. Notably, acute human herpesvirus 6 B (HHV6B) reactivation occurs in up to two-thirds of allogeneic hematopoietic stem cell transplantation patients. Case presentations Herein, we describe a report of HHV6B encephalitis/myelitis in three patients with relapsed/refractory diffuse large B-cell lymphoma post CAR T-cell therapy. All three patients received multiple lines of prior treatment (range: 2-9 lines). All patients presented with fever that persisted for at least 2 weeks after CAR-T cell infusion (CTI). Both the onset time and duration were similar to those of the cytokine release syndrome (CRS); nevertheless, the CRS grades of the patients were low (grade 1 or 2). Delirium and memory loss after CTI were the earliest notable mental presentations. Neurological manifestations progressed rapidly, with patients experiencing varying degrees of impaired consciousness, seizures, and coma. Back pain, lumbago, lower limb weakness and uroschesis were also observed in Patient 3, indicating myelitis. High HHV6B loads were detected in all Cerebral spinal fluid (CSF) samples using metagenomic next-generation sequencing (mNGS). Only one patient required high-activity antivirals and IgG intravenous pulse treatment finally recovered, whereas the other two patients died from HHV6B encephalitis. Conclusion Considering its fatal potential, HHV6B encephalitis/myelitis should be urgently diagnosed post CAR-T cell-based therapy. Furthermore, hematologists should differentially diagnose these conditions from CRS or other immunotherapy-related neurotoxicities as early as possible. The results of this study demonstrate the potential of mNGS in the early diagnosis of HHV6B infection, particularly when the organism is difficult to culture.
Collapse
Affiliation(s)
- Ningwen Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Ruoxuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yang Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
3
|
Paviglianiti A, Maia T, Gozlan JM, Brissot E, Malard F, Banet A, Van de Wyngaert Z, Ledraa T, Belhocine R, Sestili S, Capes A, Stocker N, Bonnin A, Vekhoff A, Legrand O, Mohty M, Duléry R. Human herpesvirus type 6 reactivation after haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide and antithymocyte globulin: risk factors and clinical impact. Clin Hematol Int 2024; 6:26-38. [PMID: 38817703 PMCID: PMC11087003 DOI: 10.46989/001c.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 06/01/2024] Open
Abstract
Human herpesvirus type 6 (HHV6) reactivation after haploidentical hematopoietic cell transplantation (HCT) with post-transplant cyclophosphamide (PT-Cy) has been scarcely studied, especially when antithymocyte globulin (ATG) is added to the graft-versus-host disease (GvHD) prophylaxis. We conducted a retrospective cohort study in 100 consecutive patients receiving haploidentical HCT with PT-Cy. We systematically monitored HHV6 DNA loads in blood samples on a weekly basis using quantitative PCR until day +100. The 100-day cumulative incidence of HHV6 reactivation was 54%. Clinically significant HHV6 infections were rare (7%), associated with higher HHV6 DNA loads, and had favorable outcomes after antiviral therapy. The main risk factor for HHV6 reactivation was a low absolute lymphocyte count (ALC) \< 290/µL on day +30 (68% versus 40%, p = 0.003). Adding ATG to PT-Cy did not increase the incidence of HHV6 reactivation (52% with ATG versus 79% without ATG, p = 0.12). Patients experiencing HHV6 reactivation demonstrated delayed platelet recovery (HR 1.81, 95% CI 1.07-3.05, p = 0.026), higher risk of acute grade II-IV GvHD (39% versus 9%, p \< 0.001) but similar overall survival and non-relapse mortality to the other patients. In conclusion, our findings endorse the safety of combining ATG and PT-Cy in terms of the risk of HHV6 reactivation and infection in patients undergoing haploidentical HCT. Patients with a low ALC on day +30 face a higher risk of HHV6 reactivation and may require careful monitoring.
Collapse
Affiliation(s)
- Annalisa Paviglianiti
- HematologySorbonne University
- Università Campus Bio-Medico
- Clinical HematologyInstitut Català d’Oncologia
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Tânia Maia
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- Clinical HematologyHospital de São João
| | - Joël-Meyer Gozlan
- VirologySorbonne University
- Virology, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Eolia Brissot
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- INSERM, UMRs 938Centre de Recherche Saint-Antoine
| | - Florent Malard
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- INSERM, UMRs 938Centre de Recherche Saint-Antoine
| | - Anne Banet
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Zoé Van de Wyngaert
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Tounes Ledraa
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Ramdane Belhocine
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Simona Sestili
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Antoine Capes
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Nicolas Stocker
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- INSERM, UMRs 938Centre de Recherche Saint-Antoine
| | - Agnès Bonnin
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Anne Vekhoff
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Ollivier Legrand
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
| | - Mohamad Mohty
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- INSERM, UMRs 938Centre de Recherche Saint-Antoine
| | - Rémy Duléry
- HematologySorbonne University
- Clinical Hematology and Cellular Therapy, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris
- INSERM, UMRs 938Centre de Recherche Saint-Antoine
| |
Collapse
|
4
|
Wormser VR, Agudelo Higuita NI, Ramaswami R, Melendez DP. Hematopoietic stem cell transplantation and the noncytomegalovirus herpesviruses. Transpl Infect Dis 2023; 25 Suppl 1:e14201. [PMID: 38041493 DOI: 10.1111/tid.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Although hematopoietic stem cell transplantation (HSCT) and other cellular therapies have significantly improved outcomes in the management of multiple hematological and nonhematological malignancies, the resulting impairment in humoral and cellular response increases the risk for opportunistic infection as an undesirable side effect. With their ability to establish latent infection and reactivate when the host immune system is at its weakest point, the Herpesviridae family constitutes a significant proportion of these opportunistic pathogens. Despite recent advancements in preventing and managing herpesvirus infections, they continue to be a common cause of significant morbidity and mortality in transplanted patients. Herein, we aim to provide and update on herpesvirus other than cytomegalovirus (CMV) affecting recipients of HSCT and other cellular therapies.
Collapse
Affiliation(s)
- Vanessa R Wormser
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Nelson Iván Agudelo Higuita
- Section of Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Dante P Melendez
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Noviello M, Lorentino F, Xue E, Racca S, Furnari G, Valtolina V, Campodonico E, Dvir R, Lupo-Stanghellini MT, Giglio F, Piemontese S, Clerici D, Oltolini C, Tassi E, Beretta V, Farina F, Mannina D, Ardemagni A, Vago L, Bernardi M, Corti C, Peccatori J, Clementi M, Ciceri F, Bonini C, Greco R. Human herpesvirus 6-specific T-cell immunity in allogeneic hematopoietic stem cell transplant recipients. Blood Adv 2023; 7:5446-5457. [PMID: 37067947 PMCID: PMC10515312 DOI: 10.1182/bloodadvances.2022009274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) can reactivate after allogeneic hematopoietic stem cell transplant (allo-HSCT) and may lead to severe symptoms. HHV-6-specific immune responses after HSCT are largely unexplored. We conducted a prospective observational study on 208 consecutive adult patients who received allo-HSCT to investigate HHV-6 reactivations and specific immune responses. Interferon gamma-producing HHV-6-specific T cells were quantified using enzyme-linked immunospot assay (ELISpot). HHV-6 reactivation occurred in 63% of patients, at a median of 25 days from allo-HSCT. Only 40% of these presented a clinically relevant infection, defined by the presence of classical HHV-6 end-organ diseases (EODs), based on European Conference on Infections in Leukaemia (ECIL) guidelines, and other possible HHV6-related EODs. Using multivariate analysis, we identified risk factors for HHV-6 reactivation: previous allo-HSCT, posttransplant cyclophosphamide (PT-Cy), and time-dependent steroids introduction. The use of PT-Cy and steroids were associated with clinically relevant infections, whereas higher CD3+ cell counts seemed to be protective. Interestingly, circulating HHV-6-specific T cells were significantly higher in patients with reactivated virus. Moreover, HHV-6-specific T-cell responses, quantified at >4 days after the first viremia detection, predicted clinically relevant infections (P < .0001), with higher specificity (93%) and sensitivity (79%) than polyclonal CD3+ cells per μL. Overall survival and transplant-related mortality were not affected by time-dependent HHV-6 reactivation, whereas a significant association was observed between clinically relevant infections and acute graft-versus-host disease. These results shed light on the role of HHV-6 in allo-HSCT and may affect HHV-6 monitoring and treatment.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Francesca Lorentino
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Elisabetta Xue
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Sara Racca
- Laboratory of Microbiology and Virology, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | | | - Veronica Valtolina
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Edoardo Campodonico
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Roee Dvir
- Laboratory of Microbiology and Virology, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | | | - Fabio Giglio
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Simona Piemontese
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Daniela Clerici
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Oltolini
- Infectious Disease Unit, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Francesca Farina
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Daniele Mannina
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Anna Ardemagni
- Laboratory of Microbiology and Virology, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Università Vita-Salute San Raffaele, Milan, Italy
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Consuelo Corti
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Jacopo Peccatori
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Ospedale San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, Ospedale San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
6
|
Mah J, Huang C, Sahoo MK, Pinsky BA. Evaluation of an automated system for the quantitation of human Herpesvirus-6 DNA from clinical specimens. Pract Lab Med 2023; 36:e00329. [PMID: 37649537 PMCID: PMC10462668 DOI: 10.1016/j.plabm.2023.e00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
Background Quantitation of human herpesvirus-6 (HHV-6) DNA in clinical specimens is important for the diagnosis and management of HHV-6-associated infection and reactivation in immunocompromised patients, particularly transplant recipients. Methods The analytical performance of the Altona RealStar ASR HHV-6 qPCR on the semi-automated AltoStar AM16 system was assessed using HHV-6 reference material in plasma and cerebral spinal fluid (CSF). Qualitative and quantitative agreement was determined using 123 clinical EDTA plasma specimens tested using a laboratory-developed HHV-6 qPCR. Results The 95% Lower Limit of Detection was 20 IU/mL [95% confidence interval (CI): 10 to 29] in plasma and 78 IU/mL (95% CI: 55 to 146) in CSF. The assay was linear from 7.0 to 2.0 log10 IU/mL in both matrices. Overall agreement of the RealStar ASR HHV-6 qPCR on the AltoStar AM16 with a laboratory-developed test was 95.9% (95% CI: 90.8 to 98.7). Passing-Bablok analysis of specimens quantifiable by both methods and at levels >1000 copies/mL revealed a regression line of Y = 1.00*X-0.20, with neither systematic (95% CI Y-intercept: -0.66 to 0.26) nor proportional (95% CI slope: 0.89 to 1.10) bias compared to the reference. Conclusions The RealStar ASR HHV-6 qPCR on the AltoStar AM16 provides accurate quantitation for clinical monitoring of HHV-6 in immunocompromised hosts.
Collapse
Affiliation(s)
- Jordan Mah
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Zanella MC, Vu DL, Hosszu-Fellous K, Neofytos D, Van Delden C, Turin L, Poncet A, Simonetta F, Masouridi-Levrat S, Chalandon Y, Cordey S, Kaiser L. Longitudinal Detection of Twenty DNA and RNA Viruses in Allogeneic Hematopoietic Stem Cell Transplant Recipients Plasma. Viruses 2023; 15:v15040928. [PMID: 37112908 PMCID: PMC10142697 DOI: 10.3390/v15040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomics revealed novel and routinely overlooked viruses, representing sources of unrecognized infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aim to describe DNA and RNA virus prevalence and kinetics in allo-HSCT recipients' plasma for one year post HSCT. We included 109 adult patients with first allo-HSCT from 1 March 2017 to 31 January 2019 in this observational cohort study. Seventeen DNA and three RNA viral species were screened with qualitative and/or quantitative r(RT)-PCR assays using plasma samples collected at 0, 1, 3, 6, and 12 months post HSCT. TTV infected 97% of patients, followed by HPgV-1 (prevalence: 26-36%). TTV (median 3.29 × 105 copies/mL) and HPgV-1 (median 1.18 × 106 copies/mL) viral loads peaked at month 3. At least one Polyomaviridae virus (BKPyV, JCPyV, MCPyV, HPyV6/7) was detected in >10% of patients. HPyV6 and HPyV7 prevalence reached 27% and 12% at month 3; CMV prevalence reached 27%. HSV, VZV, EBV, HHV-7, HAdV and B19V prevalence remained <5%. HPyV9, TSPyV, HBoV, EV and HPg-V2 were never detected. At month 3, 72% of patients had co-infections. TTV and HPgV-1 infections were highly prevalent. BKPyV, MCPyV and HPyV6/7 were frequently detected relative to classical culprits. Further investigation is needed into associations between these viral infections and immune reconstitution or clinical outcomes.
Collapse
Affiliation(s)
- Marie-Céline Zanella
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Diem-Lan Vu
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Krisztina Hosszu-Fellous
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, 1211 Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Chistian Van Delden
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Lara Turin
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Antoine Poncet
- Center for Clinical Research, Department of Health and Community Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Clinical Epidemiology, Department of Health and Community Medicine, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Federico Simonetta
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Yves Chalandon
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Once Daily Foscarnet is Effective for HHV-6 Reactivation after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023:S2666-6367(23)01132-6. [PMID: 36878429 DOI: 10.1016/j.jtct.2023.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Human herpesvirus 6 (HHV-6) reactivation is common after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with higher mortality and transplant-related complications. OBJECTIVES We hypothesized that preemptive treatment with short course of foscarnet at lower cut point of plasma HHV-6 viral load would be effective in treating early HHV-6 reactivation, prevent complications and hospitalization of these patients. METHODS We reviewed outcomes of adult patients (18 years or older) who received preemptive treatment with once daily foscarnet 60-90 mg/kg for 7 days for HHV-6 reactivation after allo-HSCT at our institution between 05/2020-11/2022. Plasma HHV-6 viral load was monitored using quantitative polymerase chain reaction twice monthly in the first 100 days post-transplant and twice weekly after reactivation until resolution. RESULTS Eleven patients with a median age of 46 years (range, 23-73) were included in the analysis. Ten patients received HSCT from a haploidentical and one patient from HLA matched related donor. The most common diagnosis was acute leukemia (9 cases). Myeloablative- and reduced-intensity conditioning regimens were used in 4 cases and 7 cases, respectively. Most patients (10/11) received post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis. Median follow-up was 440 days (range, 174-831). Median time to HHV-6 reactivation was 22 days post-transplantation (range, 15-89), median level of viral load 3,100 copies/mL (range, 210-118,000) at first reactivation and median peak viral load was 11,300 copies/mL (range, 600-983,000). All patients received a short course of foscarnet of 90 mg/kg/day (N=7) and 60 mg/kg/day (N=4). Plasma HHV-6 DNA in all patients became undetected after completion of one week treatment. No HHV-6 encephalitis or pneumonitis occurred. All patients achieved neutrophil and platelet engraftment after a median time of 16 (range, 8-22) and 26 (range, 14-168) days, respectively, with no secondary graft failure. No complications related to foscarnet administration were noted. One patient with very high HHV-6 viremia had recurrent reactivation and received a second course of foscarnet as outpatient. CONCLUSIONS Short course of once daily foscarnet is effective in treating early HHV-6 reactivation post-transplant, may reduce incidence of HHV-6-related and treatment-related complications, and prevent hospitalization in these patients.
Collapse
|
9
|
Miranda-Silva W, de Molla VC, Knebel FH, Tozetto-Mendoza TR, Arrais-Rodrigues C, Camargo AA, Braz-Silva PH, Fregnani ER. Oral shedding of herpesviruses and clinical outcomes in hematopoietic stem cell transplant patients. Oral Dis 2023; 29:815-826. [PMID: 34523191 DOI: 10.1111/odi.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To characterize the oral shedding of herpes viruses in patients who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) and investigate its relationship with clinical outcomes. MATERIALS AND METHODS Polymerase chain reaction and enzymatic digestion were performed to identify the oral shedding of the members of the Herpesviridae family in 31 patients. The samples were collected from the oral cavity at five timestamps. RESULTS The presence of each herpesvirus in the oral cavity was observed in 3.2%, 12.9%, 19.3%, 32.2%, 54.8% and 93.5% patients for human herpesvirus (HHV)-6A, herpes simplex virus-1, HHV-6B, cytomegalovirus (CMV), Epstein-Barr virus (EBV) and HHV-7, respectively. Oral shedding of herpes virus was not uncommon after alloHSCT. There was a statistically significant association between the EBV and CMV oral shedding at C1 and the cumulative incidence of acute graft-versus-host disease (aGVHD). The results suggested that the presence of HSV-1 at C2 was related to a relapse. The HHV-7 oral shedding at C2 suggests a possible link between relapse, progression-free survival and overall survival of the patients. CONCLUSIONS Patients who developed aGVHD showed higher CMV and EBV shedding in the oral cavity at aplasia, suggesting modifications to the pattern of immune cell response and inflammatory microenvironment.
Collapse
Affiliation(s)
| | - Vinícius Campos de Molla
- Centro de Oncologia, Hospital Sírio-Libanes, São Paulo, Brazil.,Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Celso Arrais-Rodrigues
- Centro de Oncologia, Hospital Sírio-Libanes, São Paulo, Brazil.,Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Paulo Henrique Braz-Silva
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil.,Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Raouf MME, Ouf NM, Elsorady MAS, Ghoneim FM. Human herpesvirus-6 in hematopoietic stem cell transplant recipients: a prospective cohort study in Egypt. Virol J 2023; 20:20. [PMID: 36739398 PMCID: PMC9899109 DOI: 10.1186/s12985-023-01980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Immunocompromised patients face reactivation of latent viruses that increase the risk of morbidity. AIM The study aimed to detect human herpes virus 6 (HHV-6) reactivation among allogeneic (allo) and autologous (auto) hematopoietic stem cell transplant (HSCT) recipients and to correlate potentially attributed clinical manifestations to HHV-6 DNA plasma level. METHODS A prospective study included all (forty) patients undergoing allo and auto-HSCT from Jan 2020 till June 2022. Plasma samples were collected for HHV-6 serology, and for HHV-6 quantitative PCR at post-transplantation weeks 2, 4, 6. Demographic and clinical data were recorded. RESULTS Out of 40 peripheral blood stem cell transplant (PBSCT) recipients, 34 (85%) were HHV-6 IgG positive pre-HSCT. Of which, fourteen patients (14/34, 41.2%) showed positive HHV-6 DNaemia. HHV-6 DNAemia (15/40, 37.5%) was significantly higher among allo (8/12, 66.7%) versus auto (7/28, 25%) HSCT recipients (p = 0.030). Patients with HHV-6 DNAemia developed fever, delayed engraftment and bone marrow suppression in 6/15, 40%, thrombocytopenia (5/15, 33.3%), rash and pneumonitis (2/15, 13.3%), acute GVHD (aGVHD) (1/15, 6.7%). HHV-6 DNAemia ranged from 101 to 102,000 copies/mL. Univariate analysis identified conditioning with busulfan-cyclophosphamide as a significant risk (p = 0.043), while receiving BEAM protocol was a protective factor (p = 0.045). In multivariate analysis, receiving BEAM protocol retained significance (p = 0.040). CONCLUSION Frequent HHV-6 reactivation was detected after HSCT, especially in allo-HSCT recipients with clinical manifestations which could not be otherwise explained. To our best knowledge this is the first study of HHV6 reactivation in HSCT recipients from Egypt. Raising awareness for HHV-6 reactivation manifestations and screening in HSCT recipients could be lifesaving.
Collapse
Affiliation(s)
- May Moheb Eldin Raouf
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, 0 Khartoum Square, Azarita, Alexandria, Egypt.
| | - Nancy Mohammed Ouf
- grid.7155.60000 0001 2260 6941Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, 0 Khartoum Square, Azarita, Alexandria, Egypt
| | - Manal Abdel Sattar Elsorady
- grid.7155.60000 0001 2260 6941Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Faika Mahmoud Ghoneim
- grid.7155.60000 0001 2260 6941Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, 0 Khartoum Square, Azarita, Alexandria, Egypt
| |
Collapse
|
11
|
Meng J, Ji H, Chen L, Liu A. Comparison of Droplet Digital PCR and Metagenomic Next-Generation Sequencing Methods for the Detection of Human Herpesvirus 6B Infection Using Cell-Free DNA from Patients Receiving CAR-T and Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2022; 15:5353-5364. [PMID: 36110128 PMCID: PMC9469937 DOI: 10.2147/idr.s379439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to examine and compare the differences between droplet digital PCR (ddPCR) and metagenomic next-generation sequencing (mNGS) in the detection of human herpesvirus 6B (HHV-6B). Long-term monitoring of HHV-6B viral load in patients receiving chimeric antigen receptor-modified T-cell (CAR-T) therapy and hematopoietic stem cell transplantation (HSCT) can be used to identify immune effector cell-associated neurotoxicity syndrome (ICANS) and guide drug therapy. Methods Twenty-seven patients with suspected HHV-6B infection who had both mNGS and ddPCR test results were analyzed retrospectively, including 19 patients who received CAR T-cell therapy and 8 who received HSCT. The HHV-6B probe and primers were designed, and the performance of the ddPCR assay was evaluated. Subsequently, ddPCR was performed utilizing blood and urine. Data on clinical information and mNGS investigations were collected. Results The ddPCR test results correlated significantly with the mNGS test results (P < 0.001, R2 = 0.672). Of the 27 time-paired samples, ddPCR showed positive HHV-6B detection in 20 samples, while mNGS alone showed positive HHV-6B detection in 12 samples. ddPCR detected additional HHV-6B infections in 8 samples that would have been missed if only mNGS were used. In addition, the first HHV-6B infection event was detected at a median of 14 days after CAR T-cell infusion (range, 8 to 19 days). Longitudinal monitoring of HHV-6B by ddPCR was performed to assess the effectiveness of antiviral therapy. The data showed that with antiviral treatment HHV-6B viral load gradually decreased. Conclusion Our results indicated that ddPCR improved the HHV-6B positive detection ratio and was an effective adjunct to mNGS methods. Furthermore, the longitudinal detection and quantification of HHV-6B viral load in patients undergoing CAR T-cell therapy and HSCT may serve as a guide for drug treatment.
Collapse
Affiliation(s)
- Jiao Meng
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Hongyan Ji
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
12
|
Handley G. Current Role of Prospective Monitoring, Pre-emptive and Prophylactic Therapy for Human Herpesvirus-6 after Allogeneic Stem Cell Transplantation. Open Forum Infect Dis 2022; 9:ofac398. [PMID: 36004309 PMCID: PMC9394762 DOI: 10.1093/ofid/ofac398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) frequently reactivates after allogeneic stem cell transplantation (SCT). Most patients are asymptomatic and viremia often resolves without therapy; however, transplant-related complications may be associated with reactivation. Multiple presentations have been attributed to HHV-6 reactivation after SCT including encephalitis. Several strategies have been trialed to reduce such risks or complications. Challenges exist with prospective monitoring strategies, and established thresholds of high-level reactivation may be limited. Three published guidelines and extensive trials focusing on preemptive and prophylactic strategies are reviewed. Future areas of investigation and high-risk populations are described. Existing trials and testing platforms have significant limitations, and to date no clear benefit for a preemptive or prophylactic intervention has been demonstrated.
Collapse
Affiliation(s)
- Guy Handley
- Department of Medicine, Division of Infectious Disease and International Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
- H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA
| |
Collapse
|
13
|
Weaver GC, Arya R, Schneider CL, Hudson AW, Stern LJ. Structural Models for Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and HHV-7. Front Immunol 2022; 13:864898. [PMID: 35444636 PMCID: PMC9013968 DOI: 10.3389/fimmu.2022.864898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.
Collapse
Affiliation(s)
- Grant C. Weaver
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Richa Arya
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | | | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence J. Stern
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
14
|
Human herpes simplex virus-6 (HHV-6) detection and seroprevalence among Qatari nationals and immigrants residing in Qatar. IJID REGIONS 2022; 2:90-95. [PMID: 35757074 PMCID: PMC9216376 DOI: 10.1016/j.ijregi.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
The prevalence of anti-human herpes virus-6 immunoglobulin G (IgG) was 71.7% among healthy donors in Qatar. One-quarter (24.3%) of healthy donors in Qatar had detectable viraemia. No strong association was found between viraemia and IgG positivity. A significant association was found between viraemia and the nationality of healthy donors.
Background Human herpes simplex virus-6 (HHV-6) is the causative agent of exanthema subitum. Transmission mainly occurs through salivary secretions, yet blood transfusions and organ transplantations have also been reported as routes of transmission. Studies of seroprevalence of HHV-6 in the Middle East and North Africa (MENA) region and other parts of Asia are scarce. As such, this study aimed to estimate the seroprevalence of HHV-6 among healthy blood donors in Qatar. Methods In total, 620 healthy blood donors from different nationalities residing in Qatar, mainly from the MENA region and Southeast Asia, were tested using a commercial anti-HHV-6 immunoglobulin G (IgG) enzyme-linked immunosorbent assay kit. In addition, HHV-6 DNA from randomly selected samples was tested and quantified using quantitative reverse transcriptase polymerase chain reaction. Results Anti-HHV-6 IgG was detected in 71.7% (445/620) [95% confidence interval (CI) 68.2–75.3%] of the tested samples, while 24.3% (61/251) (95% CI 20.0–29.6%) had detectable HHV-6 viraemia. Only 22.5% of individuals with positive IgG status had detectable HHV-6 DNA in their blood, indicating a weak association between viraemia and IgG positivity (P=0.08). Furthermore, no significant difference was associated between HHV-6 viraemia and demographic characteristics, except for nationality. Conclusion The seroprevalence of HHV-6 in Qatar was found to be similar to rates reported in other parts of the world.
Collapse
|
15
|
Rebechi MT, Bork JT, Riedel DJ. HHV-6 Encephalitis After Chimeric Antigen Receptor T-cell Therapy (CAR-T): 2 Case Reports and a Brief Review of the Literature. Open Forum Infect Dis 2021; 8:ofab470. [PMID: 34738024 PMCID: PMC8562470 DOI: 10.1093/ofid/ofab470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) reactivation can occur in patients who are highly immunosuppressed, including those who have undergone hematopoietic stem cell transplantation (HSCT). HHV-6 encephalitis is a severe manifestation that is well described in the HSCT population. Chimeric antigen receptor T-cell (CAR-T) therapy is a novel cancer-directed immunotherapy that results in severe immunosuppression. Patients undergoing CAR-T therapy may be at risk for HHV-6 encephalitis, which can be difficult to distinguish from a common adverse effect of CAR-T therapy, neurotoxicity. Herein, we describe 2 patients diagnosed with HHV-6 encephalitis after CAR-T therapy and discuss the diagnostic approach and differential diagnosis for altered mental status after CAR-T therapy. Diagnosing HHV-6 encephalitis can be difficult in this patient population as altered mental status is common after CAR-T therapy and may be attributed to CAR-T-associated neurotoxicity.
Collapse
Affiliation(s)
| | - Jacqueline T Bork
- University of Maryland School of Medicine, Baltimore Maryland,USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland,USA
| | - David J Riedel
- University of Maryland School of Medicine, Baltimore Maryland,USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland,USA
| |
Collapse
|
16
|
Lee YJ, Su Y, Cho C, Tamari R, Perales MA, Jakubowski AA, Papanicolaou G. Human herpes virus 6 DNAemia is associated with worse survival after ex vivo T-cell depleted hematopoietic cell transplant. J Infect Dis 2021; 225:453-464. [PMID: 34390240 DOI: 10.1093/infdis/jiab412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We examined the correlation between persistent HHV-6 DNAemia (p-HHV-6) and absolute lymphocyte counts (ALC), platelet counts (PLT) and all-cause mortality the 1-year after ex vivo T-cell depleted (TCD) hematopoietic cell transplant (HCT). METHODS We analyzed a cohort of adult TCD HCT recipients 2012-2016 prospectively monitored for plasma HHV-6 by qPCR from day +14 post-HCT (D+14) through D+100. P-HHV-6 was defined as ≥2 consecutive values of ≥500 copies/mL by D+100. PLT and ALC were compared between patients with and without p-HHV-6 using mixed model analysis of variance. Multivariable Cox proportional hazard models were used to identify the impact of p-HHV-6 on 1-year mortality. RESULTS Of 312 patients, 83 (27%) had p-HHV-6 by D+100. P-HHV-6 was associated with lower ALC and PLT in the first year post-HCT. In multivariable models, p-HHV-6 was associated with higher mortality by 1-year post-HCT (adjusted hazard ratio 2.97, 95% confidence intervals: 1.62-5.47, P=0.0005), after adjusting for age, antiviral treatment, and ALC at D+100. CONCLUSIONS P-HHV-6 was associated with lower ALC and PLT in the first year post-HCT. P-HHV-6 was an independent predictor of mortality in the first year after TCD HCT.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Infectious Disease Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Yiqi Su
- Infectious Disease Service, Department of Medicine, New York, NY, USA
| | - Christina Cho
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Ann A Jakubowski
- Adult Bone Marrow Transplantation Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Genovefa Papanicolaou
- Infectious Disease Service, Department of Medicine, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Wang X, Patel SA, Haddadin M, Cerny J. Post-allogeneic hematopoietic stem cell transplantation viral reactivations and viremias: a focused review on human herpesvirus-6, BK virus and adenovirus. Ther Adv Infect Dis 2021; 8:20499361211018027. [PMID: 34104434 PMCID: PMC8155777 DOI: 10.1177/20499361211018027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus and Epstein-Barr virus have been recognized as potential drivers of morbidity and mortality of patients undergoing allogeneic stem cell transplantation for years. Specific protocols for monitoring, prophylaxis and pre-emptive therapy are in place in many transplant settings. In this review, we focus on the next three most frequent viruses, human herpesvirus-6, BK virus and adenovirus, causing reactivation and/or viremia after allogeneic transplant, which are increasingly detected in patients in the post-transplant period owing to emerging techniques of molecular biology, recipients' characteristics, treatment modalities used for conditioning and factors related donors or stem cell source. Given the less frequent detection of an illness related to these viruses, there are often no specific protocols in place for the management of affected patients. While some patients develop significant morbidity (generally older), others may not need therapy at all (generally younger or children). Furthermore, some of the antiviral therapies used are potentially toxic. With the addition of increased risk of secondary infections, risk of graft failure or increased risk of graft-versus-host disease as well as the relationship with other post-transplant complications, the outcomes of patients with these viremias remain unsatisfactory and even long-term survivors experience increased morbidity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Shyam A Patel
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Michael Haddadin
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Jan Cerny
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, 55 Lake Avenue North, Worcester, MA, 01655, USA
| |
Collapse
|
18
|
Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in Virus Infections. J Clin Med 2021; 10:jcm10040877. [PMID: 33672766 PMCID: PMC7924611 DOI: 10.3390/jcm10040877] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Thrombocytopenia, which signifies a low platelet count usually below 150 × 109/L, is a common finding following or during many viral infections. In clinical medicine, mild thrombocytopenia, combined with lymphopenia in a patient with signs and symptoms of an infectious disease, raises the suspicion of a viral infection. This phenomenon is classically attributed to platelet consumption due to inflammation-induced coagulation, sequestration from the circulation by phagocytosis and hypersplenism, and impaired platelet production due to defective megakaryopoiesis or cytokine-induced myelosuppression. All these mechanisms, while plausible and supported by substantial evidence, regard platelets as passive bystanders during viral infection. However, platelets are increasingly recognized as active players in the (antiviral) immune response and have been shown to interact with cells of the innate and adaptive immune system as well as directly with viruses. These findings can be of interest both for understanding the pathogenesis of viral infectious diseases and predicting outcome. In this review, we will summarize and discuss the literature currently available on various mechanisms within the relationship between thrombocytopenia and virus infections.
Collapse
Affiliation(s)
- Matthijs Raadsen
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Justin Du Toit
- Department of Haematology, Wits University Donald Gordon Medical Centre Johannesburg, Johannesburg 2041, South Africa;
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Bas van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center Plus, 6229 HX Maastricht, The Netherlands;
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Annaloro C, Serpenti F, Saporiti G, Galassi G, Cavallaro F, Grifoni F, Goldaniga M, Baldini L, Onida F. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications. Front Immunol 2021; 11:569381. [PMID: 33552044 PMCID: PMC7854690 DOI: 10.3389/fimmu.2020.569381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In spite of an increasing array of investigations, the relationships between viral infections and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and almost exclusively regard DNA viruses. Viral infections per se account for a considerable risk of morbidity and mortality among HSCT recipients, and available antiviral agents have proven to be of limited effectiveness. Therefore, an optimal management of viral infection represents a key point in HSCT strategies. On the other hand, viruses bear the potential of shaping immunologic recovery after HSCT, possibly interfering with control of the underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT outcome. Moreover, preliminary data are available about the possible role of some virome components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has been considered as an eradicating approach in these indications.
Collapse
Affiliation(s)
- Claudio Annaloro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Fabio Serpenti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giorgia Saporiti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giulia Galassi
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesca Cavallaro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Federica Grifoni
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Maria Goldaniga
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Luca Baldini
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| |
Collapse
|
20
|
Han TT, Zhang YN, Sun YQ, Kong J, Wang FR, Wang ZD, Cheng YF, Yan CH, Wang Y, Xu LP, Zhang XH, Liu KY, Huang XJ, Zhao XS. Human herpesvirus 6 reactivation in unmanipulated haploidentical hematopoietic stem cell transplantation predicts the occurrence of grade II to IV acute graft-versus-host disease. Transpl Infect Dis 2021; 23:e13544. [PMID: 33326670 DOI: 10.1111/tid.13544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human herpesvirus 6 (HHV-6) reactivation is relatively common after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the incidence of HHV-6 reactivation and the clinical outcomes following unmanipulated haploidentical HSCT (haplo-HSCT) remain unknown. METHOD We prospectively monitored blood HHV-6 DNA using real-time quantitative polymerase chain reaction weekly until day 100 post unmanipulated haplo-HSCT in patients with hematological malignancies. RESULTS From November 2016 to March 2017, 102 patients (58 male and 44 female, median age 25(2-58) years old) were enrolled. Within 100 days post-transplantation, 27 patients (27/136, 19.9%) developed HHV-6 viremia with a median onset time of 14 (7-98) days. The cumulative incidence of HHV-6 reactivation on day 100 post-HSCT was 25.5 ± 4.3% in haplo-HSCT. The median HHV-6 copy number was 1.45 × 103 (5.48 × 102 -2.00 × 104 ) copies/ml. The HHV-6 viremia duration time was 7 days in 23 patients, 14 days in one patient and 21 days in one patient. In multivariate analysis, prior HHV-6 reactivation was an independent risk factor for grade 2-4 graft-versus-host disease (GVHD). But it did not influence the overall survival (OS)(HR 1.624, 95%CI 0.768-3.432, P = .204), disease-free survival (DFS) (HR 1.640, 95%CI 0.799-3.367, P = .177) and non-relapse mortality (NRM) (HR 1.644, 95%CI 0.670-4.038, P = .278). CONCLUSION The reactivation of HHV-6 after unmanipulated haploidentical transplantation predicts the occurrence of grade 2-4 a-GVHD, but it may not influence the overall survival (OS), disease-free survival (DFS) and non-relapse mortality (NRM).
Collapse
Affiliation(s)
- Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Ning Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
21
|
Bacigalupo A, Metafuni E, Amato V, Marquez Algaba E, Pagano L. Reducing infectious complications after allogeneic stem cell transplant. Expert Rev Hematol 2020; 13:1235-1251. [PMID: 32996342 DOI: 10.1080/17474086.2020.1831382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Infections remain a significant problem, in patients undergoing an allogeneic hematopoietic stem-cell transplant (HSCT) and efforts have been made over the years, to reduce the incidence, morbidity and mortality of infectious complications. AREAS COVERED This manuscript is focused on the epidemiology, risk factors and prevention of infections after allogeneic HSCT. A systematic literature review was performed using the PubMed database, between November 2019 and January 2020, with the following MeSH terms: stem-cell transplantation, infection, fungal, bacterial, viral, prophylaxis, vaccines, prevention. The authors reviewed all the publications, and following a common revision, a summary report was made and results were divided in three sections: bacterial, fungal and viral infections. EXPERT OPINION Different infections occur in the early, intermediate and late post-transplant period, due to distinct risk factors. Improved diagnostic techniques, pre-emtive therapy and better prophylaxis of immunologic complications, have reduced the morbidity and mortality of infections. The role of the gut microbiota is under careful scrutiny and may further help us to identify high-risk patients.
Collapse
Affiliation(s)
- Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Viviana Amato
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Ester Marquez Algaba
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica Del Sacro Cuore , Rome, Italy
| |
Collapse
|
22
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
23
|
Sakamoto A, Yamada M, Tsujimoto SI, Osumi T, Arai K, Tomizawa D, Ishiguro A, Matsumoto K, Imadome KI, Kato M. A case of human herpesvirus 6 encephalitis following pediatric hematopoietic stem cell transplantation: early diagnosis and treatment matters. Int J Hematol 2020; 112:751-754. [DOI: 10.1007/s12185-020-02905-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
|
24
|
An Animal Model That Mimics Human Herpesvirus 6B Pathogenesis. J Virol 2020; 94:JVI.01851-19. [PMID: 31852793 DOI: 10.1128/jvi.01851-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.
Collapse
|
25
|
Herpes Virus Infections Other than Cytomegalovirus in the Recipients of Hematopoietic Stem Cell Transplantation. Infect Dis Clin North Am 2019; 33:467-484. [PMID: 31005137 DOI: 10.1016/j.idc.2019.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review discusses the epidemiologic and clinical aspects of herpes viruses other than cytomegalovirus in patients who have undergone hematopoietic stem cell transplantation.
Collapse
|
26
|
Ward KN, Hill JA, Hubacek P, de la Camara R, Crocchiolo R, Einsele H, Navarro D, Robin C, Cordonnier C, Ljungman P. Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic stem cell transplantation. Haematologica 2019; 104:2155-2163. [PMID: 31467131 PMCID: PMC6821622 DOI: 10.3324/haematol.2019.223073] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Of the two human herpesvirus 6 (HHV-6) species, human herpesvirus 6B (HHV-6B) encephalitis is an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplant. Guidelines for the management of HHV-6 infections in patients with hematologic malignancies or post-transplant were prepared a decade ago but there have been no other guidelines since then despite significant advances in the understanding of HHV-6 encephalitis, its therapy, and other aspects of HHV-6 disease in this patient population. Revised guidelines prepared at the 2017 European Conference on Infections in Leukaemia covering diagnosis, preventative strategies and management of HHV-6 disease are now presented.
Collapse
Affiliation(s)
- Katherine N Ward
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua A Hill
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Petr Hubacek
- Department of Medical Microbiology and Department of Paediatric Haematology and Oncology 2 Medical Faculty of Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Julius Maximilians Universität, Würzburg, Germany
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA and Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Christine Robin
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | | | | |
Collapse
|
27
|
Zhou X, O’Dwyer DN, Xia M, Miller HK, Chan PR, Trulik K, Chadwick MM, Hoffman TC, Bulte C, Sekerak K, Wilke CA, Patel SJ, Yokoyama WM, Murray S, Yanik GA, Moore BB. First-Onset Herpesviral Infection and Lung Injury in Allogeneic Hematopoietic Cell Transplantation. Am J Respir Crit Care Med 2019; 200:63-74. [PMID: 30742492 PMCID: PMC6603051 DOI: 10.1164/rccm.201809-1635oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: "Noninfectious" pulmonary complications are significant causes of morbidity and mortality after allogeneic hematopoietic cell transplant. Early-onset viral reactivations or infections are common after transplant. Whether the first-onset viral infection causes noninfectious pulmonary complications is unknown. Objectives: To determine whether the first-onset viral infection within 100 days after transplant predisposes to development of noninfectious pulmonary complications. Methods: We performed a retrospective review of 738 allogeneic hematopoietic cell transplant patients enrolled from 2005 to 2011. We also established a novel bone marrow transplantation mouse model to test whether herpesviral reactivation after transplant causes organ injury. Measurements and Main Results: First-onset viral infections with human herpesvirus 6 or Epstein-Barr virus within 100 days after transplant increase the risk of developing idiopathic pneumonia syndrome (adjusted hazard ratio [aHR], 5.52; 95% confidence interval [CI], 1.61-18.96; P = 0.007; and aHR, 9.21; 95% CI, 2.63-32.18; P = 0.001, respectively). First infection with human cytomegalovirus increases risk of bronchiolitis obliterans syndrome (aHR, 2.88; 95% CI, 1.50-5.55; P = 0.002) and grade II-IV acute graft-versus-host disease (aHR, 1.59; 95% CI, 1.06-2.39; P = 0.02). Murine roseolovirus, a homolog of human herpesvirus 6, can also be reactivated in the lung and other organs after bone marrow transplantation. Reactivation of murine roseolovirus induced an idiopathic pneumonia syndrome-like phenotype and aggravated acute graft-versus-host disease. Conclusions: First-onset herpesviral infection within 100 days after allogeneic hematopoietic cell transplant increases risk of pulmonary complications. Experimentally reactivating murine roseolovirus causes organ injury similar to phenotypes seen in human transplant recipients.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Meng Xia
- Department of Biostatistics, School of Public Health and
| | - Holly K. Miller
- Department of Hematology/Oncology, Phoenix Children’s Hospital, Phoenix, Arizona; and
| | - Paul R. Chan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Kelsey Trulik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Mathew M. Chadwick
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Timothy C. Hoffman
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Camille Bulte
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin Sekerak
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carol A. Wilke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Susan Murray
- Department of Biostatistics, School of Public Health and
| | - Gregory A. Yanik
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Balsat M, Pillet S, Tavernier E, Cacheux V, Escuret V, Moluçon-Chabrot C, Augeul-Meunier K, Mirand A, Regagnon C, Tinquaut F, Bousser V, Oriol M, Guyotat D, Salles G, Bay JO, Pozzetto B, Cornillon J. Human herpesvirus 6 infection after autologous stem cell transplantation: A multicenter prospective study in adult patients. J Infect 2019; 79:36-42. [PMID: 31075291 DOI: 10.1016/j.jinf.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES to prospectively evaluate the incidence and the clinical relevance on hematopoietic reconstitution of HHV-6 infection in autologous hematopoietic stem cell transplantation (ASCT) recipients. METHODS HHV-6 DNA load was measured in whole blood specimens once during the 7 days before stem cell re-infusion and once a week after transplantation until hematopoietic recovery. Active HHV-6 infection was defined by 2 consecutive positive DNA loads. RESULTS from July 2012 to February 2015, 196 adult patients undergoing ASCT were enrolled. Twenty-two (11.2%) patients developed active HHV-6 infection with a cumulative incidence of 19% at 40 days after transplantation. The onset of active HHV-6 infection occurred with a median of 13 days after stem cell re-infusion. HHV-6 infection was associated with an increased frequency of non-infectious complications (OR = 5.05; 95%CI 1.78-14.32; P < 0.001). Moreover, the severity of these non-infectious complications was higher in recipients exhibiting HHV-6 infection (OR = 4.62; 95%CI 1.32-16.2; p < 0.01). Delayed neutrophils 10 (IQR: 8-14) vs 8 (IQR: 6-11) days and platelets recoveries 15 (IQR: 11.8-18.5) vs 8 (IQR: 4-14) days were observed in patients with active HHV-6 infection compared to non-infected ones. CONCLUSIONS in this study, 11.2% ASCT recipients presented active HHV-6 infection associated with significantly delayed hematologic reconstitution.
Collapse
Affiliation(s)
- Marie Balsat
- Hematology Department, Institut de Cancérologie Lucien Neuwirth, 108, bis avenue Albert Raymond, 42270 Saint-Priest-en-Jarez, France; Hematology Department, Hospices Civils de Lyon, Pavillon Marcel Bérard, Centre Hospitalier Lyon Sud, 165 chemin du Grand Revoyet, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France.
| | - Sylvie Pillet
- CHU de Saint-Etienne, Laboratory of Infectious Agents and Hygiene, avenue Albert Raymond, 42270 Saint-Priest-en-jarez, France
| | - Emmanuelle Tavernier
- Hematology Department, Institut de Cancérologie Lucien Neuwirth, 108, bis avenue Albert Raymond, 42270 Saint-Priest-en-Jarez, France
| | - Victoria Cacheux
- Hematology Department, CHU Clermont-Ferrand, 1, rue Lucie Aubrac, 63100 Clermont-Ferrand, France
| | - Vanessa Escuret
- Hospices Civils de Lyon, GHN, Laboratoire de Virologie F-69317, Lyon, France
| | - Cécile Moluçon-Chabrot
- Hematology Department, CHU Clermont-Ferrand, 1, rue Lucie Aubrac, 63100 Clermont-Ferrand, France
| | - Karine Augeul-Meunier
- Hematology Department, Institut de Cancérologie Lucien Neuwirth, 108, bis avenue Albert Raymond, 42270 Saint-Priest-en-Jarez, France
| | - Audrey Mirand
- CHU Clermont-Ferrand, Laboratory of Virology, F-63003 Clermont-Ferrand, France
| | - Christel Regagnon
- CHU Clermont-Ferrand, Laboratory of Virology, F-63003 Clermont-Ferrand, France
| | - Fabien Tinquaut
- Institut de Cancérologie Lucien Neuwirth, Centre Hygée, Chemin de la Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Véronique Bousser
- Institut de Cancérologie Lucien Neuwirth, Centre Hygée, Chemin de la Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Mathieu Oriol
- Institut de Cancérologie Lucien Neuwirth, Centre Hygée, Chemin de la Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Denis Guyotat
- Hematology Department, Institut de Cancérologie Lucien Neuwirth, 108, bis avenue Albert Raymond, 42270 Saint-Priest-en-Jarez, France
| | - Gilles Salles
- Hematology Department, Hospices Civils de Lyon, Pavillon Marcel Bérard, Centre Hospitalier Lyon Sud, 165 chemin du Grand Revoyet, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France
| | - Jacques-Olivier Bay
- Hospices Civils de Lyon, GHN, Laboratoire de Virologie F-69317, Lyon, France
| | - Bruno Pozzetto
- CHU de Saint-Etienne, Laboratory of Infectious Agents and Hygiene, avenue Albert Raymond, 42270 Saint-Priest-en-jarez, France
| | - Jérôme Cornillon
- Hematology Department, Institut de Cancérologie Lucien Neuwirth, 108, bis avenue Albert Raymond, 42270 Saint-Priest-en-Jarez, France
| |
Collapse
|
29
|
Possible reactivation of chromosomally integrated human herpesvirus 6 after treatment with histone deacetylase inhibitor. Blood Adv 2019; 2:1367-1370. [PMID: 29898877 DOI: 10.1182/bloodadvances.2018015982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Key Points
HDAC inhibitors might induce ciHHV-6 reactivation. In ciHHV-6 HSCT recipients posttransplant viral load can estimate persistent host chimerism when the donor is ciHHV-6 negative.
Collapse
|
30
|
Kao RL, Holtan SG. Host and Graft Factors Impacting Infection Risk in Hematopoietic Cell Transplantation. Infect Dis Clin North Am 2019; 33:311-329. [PMID: 30940461 DOI: 10.1016/j.idc.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection contributes significantly to morbidity and mortality in hematopoietic cell transplantation. A complex interplay of host, graft, and technical factors contributes to infectious risk in the recipient. Host factors such as age, underlying disease, and comorbidities; central venous access; and the preparative regimen contribute to mucosal disruption, organ dysfunction, and immunodeficiency before hematopoietic cell transplantation. Graft factors, including donor histocompatibility, cell source, and graft components, along with immunosuppression and graft-versus-host disease, contribute to the speed of immune reconstitution. Evaluation of these factors, plus previous and posttransplant exposure to pathogens, is necessary to best assess an individual recipient's infection risk.
Collapse
Affiliation(s)
- Roy L Kao
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street Southeast, MMC 480, Minneapolis, MN 55455, USA.
| | - Shernan G Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street Southeast, MMC 480, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Shargian-Alon L, Yahav D, Rozovski U, Dovrat S, Amitai I, Sela-Navon M, Pasvolsky O, Raanani P, Yeshurun M. Human herpes virus 6 reactivation following autologous hematopoietic cell transplantation - a single-center experience. Leuk Lymphoma 2019; 60:2230-2236. [PMID: 30773083 DOI: 10.1080/10428194.2019.1576869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Data regarding presentation and management of human herpes virus 6 (HHV-6) reactivation among autologous hematopoietic cell transplantation (HCT) recipients are limited. We retrospectively reviewed medical charts of all autologous HCT patients tested for HHV-6 reactivation due to suspected clinical presentation between 1/2012 and 8/2017. Among 328 autologous HCT recipients, 44 patients were tested for HHV-6 reactivation. Thirty patients tested positive; 29 (97%) had sustained fever, six (20%) had rash and four (13%) had pneumonia. Median C-reactive protein was significantly lower in HHV-6 positive patients compared to negative patients (3.6 (range, 0.4-11) vs. 9.6 (range, 3.2-30) mg/dL, respectively, p = .004). Ganciclovir formulations were administrated in 29 (97%) patients with median time to fever resolution of one (range, 1-2) day. HHV-6 should be considered as an important cause of post engraftment fever in autologous HCT. Larger studies are warranted to evaluate incidence of HHV-6 reactivation and optimal treatment regimen.
Collapse
Affiliation(s)
- Liat Shargian-Alon
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Dafna Yahav
- Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel.,Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital , Petah-Tikva , Israel
| | - Uri Rozovski
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Sara Dovrat
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center , Tel-Hashomer , Israel
| | - Irina Amitai
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Michal Sela-Navon
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel
| | - Oren Pasvolsky
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Pia Raanani
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Moshe Yeshurun
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center , Petah-Tikva , Israel.,Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
32
|
Han TT, Zhao XS, Huang XJ, Zhang XH, Liu KY, Wang Y, Yan CH, Xu LP. [Significance of PCR detection of HHV6 in gastro biopsy on the course of diarrhea in patients with severe diarrhea after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 38:690-694. [PMID: 28954348 PMCID: PMC7348244 DOI: 10.3760/cma.j.issn.0253-2727.2017.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
目的 探讨肠黏膜人疱疹病毒6型(HHV6)检测在异基因造血干细胞移植(allo-HSCT)术后重度腹泻患者中的意义。 方法 回顾性分析2015年2月至2016年8月于北京大学血液病研究所行allo-HSCT后出现重度腹泻并行肠镜检查及肠黏膜活检的患者资料;HHV6、CMV、EBV检测采用RT-PCR方法;肠黏膜病理检查也包括免疫组化方法检测CMV早期抗原、CMV晚期抗原,原位杂交检测EBV。 结果 共有45例患者纳入研究,其中21例(46.7%)肠黏膜活检HHV6阳性,包括男13例,女8例,中位年龄29(14~54)岁;肠黏膜HHV6阳性与阴性组患者血CMV阳性检出率差异无统计学意义(76.2%对87.5%,P>0.05),但EBV血症发生率前者(6/21,28.6%)明显高于后者(1/24,4.2%)(P=0.028);两组患者在腹泻发生的时间、次数及量方面差异无统计学意义(P值均>0.05)。45例患者中44例接受了膦甲酸钠和(或)更昔洛韦抗病毒治疗,抗病毒治疗并没有影响腹泻的进程。 结论 肠黏膜HHV6阳性在allo-HSCT术后重症腹泻患者中发生率高,未发现其对于治疗及预后有临床意义。肠黏膜HHV6阳性并不能证明HHV6在肠道的感染。
Collapse
Affiliation(s)
- T T Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoshimoto G, Mori Y, Kato K, Shima T, Miyawaki K, Kikushige Y, Kamezaki K, Numata A, Maeda T, Takenaka K, Iwasaki H, Teshima T, Akashi K, Miyamoto T. Human Herpes Virus-6–Associated Encephalitis/Myelitis Mimicking Calcineurin Inhibitor–Induced Pain Syndrome in Allogeneic Stem Cell Transplantation Recipients. Biol Blood Marrow Transplant 2018; 24:2540-2548. [DOI: 10.1016/j.bbmt.2018.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
34
|
Flamand L. Chromosomal Integration by Human Herpesviruses 6A and 6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:209-226. [PMID: 29896669 DOI: 10.1007/978-981-10-7230-7_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Upon infection and depending on the infected cell type, human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one way to establish latency. Viral integration takes place near the subtelomeric/telomeric junction of chromosomes. When HHV-6 infection and integration occur in gametes, the virus can be genetically transmitted. Inherited chromosomally integrated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 2%, depending on the geographical region sampled. In this chapter, the mechanisms leading to viral integration and reactivation from latency, as well as some of the biological and medical consequences associated with iciHHV-6, were discussed.
Collapse
Affiliation(s)
- Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada. .,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada.
| |
Collapse
|
35
|
Watanabe M, Kanda J, Hishizawa M, Kondo T, Yamashita K, Takaori-Kondo A. Lymphocyte Area Under the Curve as a Predictive Factor for Viral Infection after Allogenic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2018; 25:587-593. [PMID: 30359733 DOI: 10.1016/j.bbmt.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Viral infection is a serious complication that can greatly affect patient mortality and morbidity after allogenic hematopoietic stem cell transplantation (allo-HSCT). For the early identification of patients at high risk for viral infection, we evaluated the impact of lymphocyte area under the curve (AUC) value as a new predictive factor for early immune reconstitution after allo-HSCT against viral infection. This study included 286 patients who underwent their first allo-HSCT at Kyoto University Hospital between 2005 and 2017. Lymphocyte AUC from day 0 to day +15 was calculated in the analysis of human herpesvirus 6 (HHV-6), and lymphocyte AUC from day 0 to day +30 was calculated in the analysis of other viruses (cytomegalovirus [CMV], adenovirus, BK virus, JC virus, and varicella zoster virus). The risk factors for each viral reactivation/infection were assessed by multivariate analysis. The median age at transplantation was 51years (range, 17 to 68 years). The median lymphocyte AUC was 63/μL (range, 0 to 5620/μL) at day +15 and 3880 (range, 0 to 118,260/μL) at day +30. An increase in lymphocyte AUC was significantly associated with a high frequency of HHV-6 reactivation (P = .033) and a low frequency of CMV antigenemia (P = .014). No apparent association was found between lymphocyte AUC and reactivation/infection of other viruses. Aplastic anemia as a primary disease (hazard ratio [HR], 5.34; P < .001) and cord blood as a donor source (HR, 3.05; P = .006) were other risk factors for HHV-6 reactivation. Other risk factors for CMV antigenemia included the occurrence of acute graft-versus-host disease (HR 2.21; P < .001) and recipient age (HR 1.55; P = .017). Higher lymphocyte AUC at day +30 was significantly associated with low treatment-related mortality (HR, .47; P = .045). Lymphocyte AUC may be a good predictive factor for immune reconstitution against CMV reactivation. It also provides valuable information for predicting HHV-6 reactivation and treatment-related mortality.
Collapse
Affiliation(s)
- Mizuki Watanabe
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article describes the diagnosis and management of neurologic problems during hematopoietic cell and solid organ transplantation using time elapsed since transplantation as a guide to expected complications, including drug toxicities, infections, strokes, autoimmune phenomena, disease recurrence, and secondary neoplasms. RECENT FINDINGS Growing clinical experience in the neurology of transplantation has led to appreciation of the diverse clinical and radiographic spectrum of calcineurin inhibitor-related posterior reversible encephalopathy syndrome (PRES) and progressive multifocal leukoencephalopathy. Novel autoimmune phenomena illustrate the delicate balance between adequate immunosuppression and necessary host inflammatory defenses that can lead to organ rejection. The spectrum of infectious complications has changed with the evolution of new conditioning regimens. SUMMARY Neurologic problems remain an important source of morbidity and mortality, both in the immediate transplantation period and for years after the procedure. As perioperative management has reduced the incidence of acute infections, graft versus host disease, and organ rejection, problems of long-term survivors require neurologic input into multidisciplinary management of chronic neurologic conditions impacting quality of life.
Collapse
|
37
|
Hanson DJ, Hill JA, Koelle DM. Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front Immunol 2018; 9:1454. [PMID: 29988505 PMCID: PMC6026635 DOI: 10.3389/fimmu.2018.01454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus (HHV) 6 is thought to remain clinically latent in most individuals after primary infection and to reactivate to cause disease in persons with severe immunosuppression. In allogeneic hematopoietic stem cell transplant recipients, reactivation of HHV-6 species B is a considerable cause of morbidity and mortality. HHV-6B reactivation is the most frequent cause of infectious meningoencephalitis in this setting and has been associated with a variety of other complications such as graft rejection and acute graft versus host disease. This has inspired efforts to develop HHV-6-targeted immunotherapies. Basic knowledge of HHV-6-specific adaptive immunity is crucial for these endeavors, but remains incomplete. Many studies have focused on specific HHV-6 antigens extrapolated from research on human cytomegalovirus, a genetically related betaherpesvirus. Challenges to the study of HHV-6-specific T-cell immunity include the very low frequency of HHV-6-specific memory T cells in chronically infected humans, the large genome size of HHV-6, and the lack of an animal model. This review will focus on emerging techniques and methodological improvements that are beginning to overcome these barriers. Population-prevalent antigens are now becoming clear for the CD4+ T-cell response, while definition and ranking of CD8+ T-cell antigens and epitopes is at an earlier stage. This review will discuss current knowledge of the T-cell response to HHV-6, new research approaches, and translation to clinical practice.
Collapse
Affiliation(s)
- Derek J Hanson
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Joshua A Hill
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Benaroya Research Institute, Seattle, WA, United States
| |
Collapse
|
38
|
Iesato K, Hori T, Yoto Y, Yamamoto M, Inazawa N, Kamo K, Ikeda H, Iyama S, Hatakeyama N, Iguchi A, Sugita J, Kobayashi R, Suzuki N, Tsutsumi H. Long-term prognosis of human herpesvirus 6 reactivation following allogeneic hematopoietic stem cell transplantation. Pediatr Int 2018. [PMID: 29542206 DOI: 10.1111/ped.13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients undergoing hematopoietic stem cell transplantation (HSCT) frequently have HHV-6 reactivation typically during the early phase following HSCT. The long-term clinical complications and prognosis, however, remain unclear. METHODS Between September 2010 and October 2012, whole blood samples from 105 patients collected weekly from prior to 6 weeks after HSCT underwent multiplex polymerase chain reaction (PCR) to screen for viral DNA, followed by real-time PCR for quantitative estimation. In 48 patients, only HHV-6 was detected in at least one sample. In 30 patients, no viral DNA was detected. Long-term clinical records were reviewed in March 2016. All 48 HHV-6-positive patients, and 24 patients in whom no viral DNA detected, were followed up. RESULTS Median maximum HHV-6 DNA load in the blood of the HHV-6 reactivation group (n = 48) was 11 800 copies/μg peripheral blood leukocyte DNA (range, 52-310 000 000). Hemophagocytic syndrome (HPS) was diagnosed in two subjects with HHV-6 reactivation. Acute graft-versus-host disease (GVHD) developed more frequently in patients with HHV-6 reactivation than in patients without viral reactivation (P = 0.002), but there was no difference in incidence of chronic GVHD. There was no difference in engraftment of neutrophils and platelets between groups. There was also no difference in overall survival between groups. Onset of HPS, however, was associated with lower overall survival (P = 0.009). CONCLUSIONS Human herpesvirus 6 reactivation was associated with acute GVHD, but not with chronic GVHD, engraftment or overall survival. Onset of HPS, however, predicts lower overall survival.
Collapse
Affiliation(s)
- Kotoe Iesato
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsukasa Hori
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuko Yoto
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Natsuko Inazawa
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Kamo
- Department of Mathematics Division, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ikeda
- Department of Hematology, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Iyama
- Department of Hematology, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Hatakeyama
- Department of Pediatrics, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Sugita
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Nobuhiro Suzuki
- Hokkaido Medical Center for Child Health and Rehabilitation, Sapporo, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Center for Medical Education, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
39
|
Rashidi A, Ebadi M, Said B, Cao Q, Shanley R, Curtsinger J, Bejanyan N, Warlick ED, Green JS, Brunstein CG, Miller JS, Weisdorf DJ. Absence of early HHV-6 reactivation after cord blood allograft predicts powerful graft-versus-tumor effect. Am J Hematol 2018; 93:10.1002/ajh.25141. [PMID: 29756385 PMCID: PMC6235732 DOI: 10.1002/ajh.25141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
Abstract
Approximately 75% of cord blood transplant (CBT) recipients experience human herpes virus-6 (HHV-6) reactivation. Considering the immunomodulatory effects of HHV-6, we hypothesized that early HHV-6 reactivation may influence the risk of relapse of the underlying hematologic malignancy. In 152 CBT recipients with hematological malignancies, we determined the association between HHV-6 reactivation by day +28 and 2-year cumulative incidence of relapse. In univariate analysis, the absence of HHV-6 reactivation (n = 32) was associated with less relapse (26 [18-35]% vs. 7 [0-17]% in groups with vs. without HHV-6 reactivation, respectively; P = .03). This difference was due to a remarkably low relapse incidence among patients without HHV-6 reactivation. In multivariable analysis, the absence of HHV-6 reactivation was associated with less relapse (hazard ratio [95% confidence interval]: 0.2 [0.05-0.9], P = .03). This association was independent of patient-, disease-, and transplant-related characteristics known to influence the risk of relapse. Natural killer cell and T-cell reconstitution at day +28 were similar between patients with vs. without HHV-6 reactivation. Our results suggest that CB allografts not complicated by HHV-6 reactivation by day +28 have a powerful graft-versus-tumor effect. Knowledge about early HHV-6 reactivation may stratify patients at day +28 into low vs. high relapse risk groups.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Maryam Ebadi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Bassil Said
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | - Nelli Bejanyan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Erica D. Warlick
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Jaime S. Green
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN
| | - Claudio G. Brunstein
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
40
|
Phan TL, Carlin K, Ljungman P, Politikos I, Boussiotis V, Boeckh M, Shaffer ML, Zerr DM. Human Herpesvirus-6B Reactivation Is a Risk Factor for Grades II to IV Acute Graft-versus-Host Disease after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol Blood Marrow Transplant 2018; 24:2324-2336. [PMID: 29684567 PMCID: PMC8934525 DOI: 10.1016/j.bbmt.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Graft-versus-host disease (GVHD) is an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). Many studies have suggested that human herpesvirus-6B (HHV-6B) plays a role in acute GVHD (aGVHD) after HCT. Our objective was to systematically summarize and analyze evidence regarding HHV-6B reactivation and development of aGVHD. PubMed and EMBASE databases were searched using terms for HHV-6, HCT, and aGVHD, yielding 865 unique results. Case reports, reviews, articles focusing on inherited chromosomally integrated HHV-6, poster presentations, and articles not published in English were excluded. The remaining 467 articles were reviewed for the following requirements: a statistical analysis of HHV-6B reactivation and a GVHD was described, HHV-6B reactivation was defined by PCR, and blood (plasma, serum, or peripheral blood mononuclear cells) was used for HHV-6B PCR. Data were abstracted from publications that met these criteria (n = 33). Publications were assigned to 1 of 3 groups: (1) HHV-6B reactivation was analyzed as a time-dependent risk factor for subsequent aGVHD (n = 14), (2) aGVHD was analyzed as a time-dependent risk factor for subsequent HHV-6B reactivation (n = 1), and (3) analysis without temporal specification (n = 18). A statistically significant association (P < .05) between HHV-6B reactivation and aGVHD was observed in 10 of 14 studies (71%) in group 1, 0 of 1 study (0%) in Group 2, and 8 of 18 studies (44.4%) in Group 3. Of the 14 studies that analyzed HHV-6B as a risk factor for subsequent aGVHD, 11 performed a multivariate analysis and reported a hazard ratio, which reached statistical significance in 9 of these s tudies. Meta-analysis of these 11 studies demonstrated a statistically significant association between HHV-6B and subsequent grades II to IV aGVHD (hazard ratio, 2.65; 95% confidence interval, 1.89 to 3.72; P < .001).HHV-6B reactivation is associated with aGVHD, and when studies have a temporal component to their design, HHV-6B reactivation is associated with subsequent aGVHD. Further research is needed to investigate whether antiviral prophylaxis reduces incidence or severity of aGVHD.
Collapse
Affiliation(s)
- Tuan L Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana; HHV-6 Foundation, Santa Barbara, California
| | - Kristen Carlin
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden; Division of Hematology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicki Boussiotis
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Boeckh
- Department of Medicine, Vaccine and Infectious Disease and Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Michele L Shaffer
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington; Department of Statistics, University of Washington, Seattle, Washington
| | - Danielle M Zerr
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington.
| |
Collapse
|
41
|
Genomic Integration of HHV-6 Mimicking Viral Reactivation after Autologous Stem Cell Transplantation. Mediterr J Hematol Infect Dis 2018. [PMID: 29531650 PMCID: PMC5841938 DOI: 10.4084/mjhid.2018.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The monitoring of Human Herpesvirus 6 (HHV-6) after allogeneic stem cell transplantation has proven to be useful in preventing life-threatening complications; however, the pathogenic role of HHV-6 after autologous transplantation is not well-characterized, although viral reactivation might be responsible for significant complications even after this type of transplant. Here we report, for the first time to our knowledge, the case of a patient with chromosomally integrated HHV-6 (ciHHV-6), presenting with high titers of HHV-6 DNA copies after autologous transplantation, mimicking HHV-6 reactivation. The presence of viral DNA in the follicle bulb confirmed the ciHHV-6 and allowed for the discontinuation of the antiviral treatment. Due to the increasing awareness of HHV-6 potential pathogenicity and the fact that ciHHV-6 is expected in 1–2% of the population, such a case might be helpful in recognizing ci HHV-6, thus avoiding unnecessary and potentially toxic antiviral therapy once the viral genomic integration is confirmed.
Collapse
|
42
|
Campidelli A, Qian C, Laroye C, Decot V, Reppel L, D'aveni M, Bensoussan D. Adenovirus-specific T-lymphocyte efficacy in the presence of methylprednisolone: An in vitro study. Cytotherapy 2018; 20:524-531. [PMID: 29496461 DOI: 10.1016/j.jcyt.2017.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
Virus-specific T-cell (VST) infusion becomes a promising alternative treatment for refractory viral infections after hematopoietic stem cell transplantation (HSCT). However, VSTs are often infused during an immunosuppressive treatment course, especially corticosteroids, which are a first-line curative treatment of graft-versus-host disease (GVHD). We were interested in whether corticosteroids could affect adenovirus (ADV)-VST functions. After interferon (IFN)-γ based immunomagnetic selection, ADV-VSTs were in vitro expanded according to three different culture conditions: without methylprednisolone (MP; n = 7), with a final concentration of MP 1 µg/mL (n = 7) or MP 2 µg/mL (n = 7) during 28 ± 11 days. Efficacy and alloreactivity of expanded ADV-VSTs was controlled in vitro. MP transitorily inhibited ADV-VST early expansion. No impairment of specific IFN-γ secretion capacity and cytotoxicity of ADV-VSTs was observed in the presence of MP. However, specific proliferation and alloreactivity of ADV-VSTs were decreased in the presence of MP. Altogether, these results and the preliminary encouraging clinical experiences of co-administration of MP 1 mg/kg and ADV-VSTs will contribute to safe and efficient use of anti-viral immunotherapy.
Collapse
Affiliation(s)
- Arnaud Campidelli
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; CHRU de Nancy, Unité de Transplantation Médullaire Allogénique, Vandoeuvre-Lès-Nancy, France
| | - Chongsheng Qian
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Caroline Laroye
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| | - Véronique Decot
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| | - Maud D'aveni
- CHRU de Nancy, Unité de Transplantation Médullaire Allogénique, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie cellulaire et Tissus and FR 3209, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 and FR 3209 CNRS-INSERM-UL-CHRU, Vandoeuvre-Lès-Nancy, France; Université de Lorraine, Faculté de Pharmacie, Département de Microbiologie-Immunologie, Nancy, France
| |
Collapse
|
43
|
Winestone LE, Punn R, Tamaresis JS, Buckingham J, Pinsky BA, Waggoner JJ, Kharbanda S. High human herpesvirus 6 viral load in pediatric allogeneic hematopoietic stem cell transplant patients is associated with detection in end organs and high mortality. Pediatr Transplant 2018; 22:10.1111/petr.13084. [PMID: 29181879 PMCID: PMC5820136 DOI: 10.1111/petr.13084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
Human Herpes Virus 6 (HHV-6) reactivation occurs in approximately half of patients following allogeneic hematopoietic stem cell transplant (HSCT). While encephalitis and delayed engraftment are well-documented complications of HHV-6 following HSCT, the extent to which HHV-6 viremia causes disease in children is controversial. We performed a retrospective review of HHV-6 reactivation and possible manifestations in pediatric allogeneic HSCT patients at a single institution. Of 89 children and young adults who underwent allogeneic HSCT over a three-and-a-half-year period, 34 patients reactivated HHV-6 early post-transplant. Unrelated donor stem cell source and lack of antiviral prophylaxis were risk factors for the development of HHV-6 viremia. Viremia correlated with the presence of acute graft-versus-host disease, but not chronic graft-versus-host disease. We identified two subgroups within the viremic patients-a high-risk viremic and tissue-positive group that reactivated HHV-6 and had suspected end-organ disease and a low-risk viremic but asymptomatic group that reactivated HHV-6 but did not exhibit symptoms or signs of end-organ disease. Peak viral load was found to be strongly associated with mortality. Prospective studies in larger numbers of patients are needed to further investigate the role of HHV-6 in causing symptomatic end-organ disease as well as the association of viral load with mortality.
Collapse
Affiliation(s)
- Lena E. Winestone
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rajesh Punn
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - John S. Tamaresis
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Buckingham
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse J. Waggoner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandhya Kharbanda
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
44
|
Telford M, Navarro A, Santpere G. Whole genome diversity of inherited chromosomally integrated HHV-6 derived from healthy individuals of diverse geographic origin. Sci Rep 2018; 8:3472. [PMID: 29472617 PMCID: PMC5823862 DOI: 10.1038/s41598-018-21645-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Human herpesviruses 6-A and -B (HHV-6A, HHV-6B) are ubiquitous in human populations worldwide. These viruses have been associated with several diseases such as multiple sclerosis, Hodgkin's lymphoma or encephalitis. Despite of the need to understand the genetic diversity and geographic stratification of these viruses, the availability of complete viral sequences from different populations is still limited. Here, we present nine new inherited chromosomally integrated HHV-6 sequences from diverse geographical origin which were generated through target DNA enrichment on lymphoblastoid cell lines derived from healthy individuals. Integration with available HHV-6 sequences allowed the assessment of HHV-6A and -6B phylogeny, patterns of recombination and signatures of natural selection. Analysis of the intra-species variability showed differences between A and B diversity levels and revealed that the HHV-6B reference (Z29) is an uncommon sequence, suggesting the need for an alternative reference sequence. Signs of geographical variation are present and more defined in HHV-6A, while they appear partly masked by recombination in HHV-6B. Finally, we conducted a scan for signatures of selection in protein coding genes that yielded at least 6 genes (4 and 2 respectively for the A and B species) showing significant evidence for accelerated evolution, and 1 gene showing evidence of positive selection in HHV-6A.
Collapse
Affiliation(s)
- Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Catalonia, Spain.
- Center for Genomic Regulation (CRG), PRBB, Barcelona, Catalonia, Spain.
| | - Gabriel Santpere
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
45
|
Ogata M, Takano K, Moriuchi Y, Kondo T, Ueki T, Nakano N, Mori T, Uoshima N, Nagafuji K, Yamasaki S, Shibasaki Y, Sakai R, Kato K, Choi I, Jo Y, Eto T, Kako S, Oshima K, Fukuda T. Effects of Prophylactic Foscarnet on Human Herpesvirus-6 Reactivation and Encephalitis in Cord Blood Transplant Recipients: A Prospective Multicenter Trial with an Historical Control Group. Biol Blood Marrow Transplant 2018; 24:1264-1273. [PMID: 29454651 DOI: 10.1016/j.bbmt.2018.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/08/2018] [Indexed: 11/15/2022]
Abstract
Cord blood transplantation (CBT) is a distinct risk factor for human herpesvirus-6 (HHV-6) reactivation and HHV-6 encephalitis. In a prospective multicenter trial we investigated the effects of prophylactic foscarnet (90 mg/kg i.v. infusion from days 7 to 27 after CBT) on the occurrence of HHV-6 reactivation, HHV-6 encephalitis, and acute graft-versus-host disease (aGVHD) in CBT recipients. Between 2014 and 2016, 57 patients were included in a foscarnet-prophylaxis group. Outcomes were compared with an historical control group who received CBT between 2010 and 2014 (standard-treatment group, n = 63). The cumulative incidence of high-level HHV-6 reactivation, defined as plasma HHV-6 DNA ≥ 104 copies/mL, at 60 days after CBT was significantly lower in the foscarnet-prophylaxis group than in the standard-treatment group (18.3% versus 57.3%, P < .001). Multivariate analysis revealed that myeloablative preconditioning and standard treatment were significant risk factors for high-level HHV-6 reactivation. The cumulative incidence of HHV-6 encephalitis at 60 days after CBT was not different between the groups (foscarnet-prophylaxis group, 12.4%; standard-treatment group, 4.9%; P = .14). The cumulative incidences of grades II to IV and grades III to IV aGVHD at 60 days after CBT were not different between the groups (grades II to IV aGVHD: foscarnet-prophylaxis group, 42.0%; standard-treatment group, 40.5%; P = .96; grades III to IV aGVHD: foscarnet-prophylaxis group, 14.5%; standard-treatment group, 14.5%; P = 1.00). In the setting of this study foscarnet significantly suppressed systemic HHV-6 reactivation in CBT recipients but failed to prevent the development of HHV-6 encephalitis. Suppression of HHV-6 reactivation by foscarnet did not show any effects against the incidence of aGVHD.
Collapse
Affiliation(s)
- Masao Ogata
- Department of Hematology, Oita University Faculty of Medicine, Oita, Japan.
| | - Kuniko Takano
- Department of Hematology, Oita University Faculty of Medicine, Oita, Japan
| | | | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimitsu Ueki
- Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of medicine, Kurume, Japan
| | - Satoshi Yamasaki
- Department of Hematology and Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasuhiko Shibasaki
- Division of Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Rika Sakai
- Department of Medical Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Yumi Jo
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Shinichi Kako
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kumi Oshima
- Department Hematology, Jyoban Hospital, Fukushima, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
46
|
[How to manage EBV reactivation and EBV-PTLD, CMV and human herpesvirus 6 reactivation and infection after allogeneic stem cell transplantation: A report of the SFGM-TC (update)]. Bull Cancer 2017; 104:S181-S187. [PMID: 29169653 DOI: 10.1016/j.bulcan.2017.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022]
Abstract
The French society of bone marrow transplantation and cell therapy (SFGM-TC) organizes annually workshops in the attempt to harmonize clinical practices between different francophone transplantation center. Here, we report our recommendations regarding the management of Epstein Barr virus reactivation and lymphoproliferative disorders, cytomegalovirus (CMV) and human herpes virus 6 (HHV6) after allogeneic stem cell transplantation.
Collapse
|
47
|
Impact of stem cell graft on early viral infections and immune reconstitution after allogeneic transplantation in adults. J Clin Virol 2017; 93:30-36. [PMID: 28601677 DOI: 10.1016/j.jcv.2017.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Viral infections are well-known complications after allogeneic stem cell transplant (allo-SCT). OBJECTIVES We compared prospectively incidences of DNAemia and active infections (AI) for five opportunistic viruses (Human Herpesvirus 6 (HHV-6), Epstein-Barr virus (EBV), BK polyomavirus (BKPyV), Cytomegalovirus (CMV) and Adenovirus (ADV)) and kinetics of immune reconstitution (IR) in adults receiving either double umbilical cord blood (dUCB group) or unrelated peripheral blood stem cell (uPBSC group) allo-SCT after a reduced-intensity conditioning (RIC) regimen. STUDY DESIGN Whole blood samples were collected at transplant, every 15days during the first 3 months and at 4, 5 and 6 months post-transplant. RESULTS Sixty-five patients were enrolled (uPBSC n=34; dUCB n=31). Incidences of HHV-6 and BKPyV DNAemia were significantly higher for dUCB (97% vs 23.5% and 58% vs 32%, respectively) while EBV DNAemia was more frequently detected in uPBSC (71% vs 26%). The incidence of CMV DNAemia was similar between both groups. ADV AI developed only in dUCB. HHV-6 AI were also higher in dUCB (84% vs 21%). In multivariate analysis, dUCB graft was the only independent factor associated with HHV-6 DNAemia (OR: 19.0; 95%CI: 5.2-69.1; p<0.0001) while EBV DNAemia were significantly associated with uPBSC (OR: 29.9; 95%CI: 5.68-158; p <0.0001). dUCB graft was also the only factor associated with HHV-6 AI. Finally, higher counts and faster recoveries of B lymphocytes (p<0.0001) and monocytes (p=0.0007) were observed in the dUCB group. CONCLUSION We demonstrate a strong correlation between sources of graft and patterns of viral DNAemia and AI and IR after RIC allo-SCT.
Collapse
|
48
|
Greco R, Crucitti L, Noviello M, Racca S, Mannina D, Forcina A, Lorentino F, Valtolina V, Rolla S, Dvir R, Morelli M, Giglio F, Barbanti MC, Lupo Stanghellini MT, Oltolini C, Vago L, Scarpellini P, Assanelli A, Carrabba MG, Marktel S, Bernardi M, Corti C, Clementi M, Peccatori J, Bonini C, Ciceri F. Human Herpesvirus 6 Infection Following Haploidentical Transplantation: Immune Recovery and Outcome. Biol Blood Marrow Transplant 2016; 22:2250-2255. [PMID: 27697585 DOI: 10.1016/j.bbmt.2016.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022]
Abstract
Human herpesvirus 6 (HHV-6) is increasingly recognized as a potentially life-threatening pathogen in allogeneic hematopoietic stem cell transplantation (alloSCT). We retrospectively evaluated 54 adult patients who developed positivity to HHV-6 after alloSCT. The median time from alloSCT to HHV-6 reactivation was 34 days. HHV-6 was present in plasma samples from 31 patients, in bone marrow (BM) of 9 patients, in bronchoalveolar lavage fluid and liver or gut biopsy specimens from 33 patients, and in cerebrospinal fluid of 7 patients. Twenty-nine patients developed acute graft-versus-host disease (GVHD), mainly grade III-IV, and 15 had concomitant cytomegalovirus reactivation. The median absolute CD3+ lymphocyte count was 207 cells/µL. We reported the following clinical manifestations: fever in 43 patients, skin rash in 22, hepatitis in 19, diarrhea in 24, encephalitis in 10, BM suppression in 18, and delayed engraftment in 11. Antiviral pharmacologic treatment was administered to 37 patients; nonetheless, the mortality rate was relatively high in this population (overall survival [OS] at 1 year, 38% ± 7%). A better OS was significantly associated with a CD3+ cell count ≥200/µL at the time of HHV-6 reactivation (P = .0002). OS was also positively affected by the absence of acute GVHD grade III-IV (P = .03) and by complete disease remission (P = .03), but was not significantly influenced by steroid administration, time after alloSCT, type of antiviral prophylaxis, plasma viral load, or organ involvement. Although HHV-6 detection typically occurred early after alloSCT, better T cell immune reconstitution seems to have the potential to improve clinical outcomes. Our findings provide new insight into the interplay between HHV-6 and the transplanted immune system.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maddalena Noviello
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Racca
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Mannina
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Forcina
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Valtolina
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Rolla
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roee Dvir
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mara Morelli
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Barbanti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Oltolini
- Infectious Disease Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Immunogenetics, Leukemia, Genomics, and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Scarpellini
- Infectious Disease Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
49
|
Drago F, Ciccarese G, Parodi A. Atypical exanthems related to human herpesvirus-6 reactivations in transplant recipients. Transpl Infect Dis 2016; 18:639-40. [DOI: 10.1111/tid.12543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 11/26/2022]
Affiliation(s)
- F. Drago
- Department of Dermatology; IRCCS A.O.U. San Martino-IST; Genoa Italy
| | - G. Ciccarese
- Department of Dermatology; IRCCS A.O.U. San Martino-IST; Genoa Italy
| | - A. Parodi
- Department of Dermatology; IRCCS A.O.U. San Martino-IST; Genoa Italy
| |
Collapse
|
50
|
Laboratory Diagnosis of Infections in Cancer Patients: Challenges and Opportunities. J Clin Microbiol 2016; 54:2635-2646. [PMID: 27280421 DOI: 10.1128/jcm.00604-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infections remain a significant cause of morbidity and mortality in cancer patients. The differential diagnosis for these patients is often wide, and the timely selection of the right clinical tests can have a significant impact on their survival. However, laboratory findings with current methodologies are often negative, challenging clinicians and laboratorians to continue the search for the responsible pathogen. Novel methodologies are providing increased sensitivity and rapid turnaround time to results but also challenging our interpretation of what is a clinically significant pathogen in cancer patients. This minireview provides an overview of the most common infections in cancer patients and discusses some of the challenges and opportunities for the clinical microbiologist supporting the care of cancer patients.
Collapse
|