1
|
Jaime-Pérez JC, Valdespino-Valdes J, Gómez-De León A, Barragán-Longoria RV, Dominguez-Villanueva A, Cantú-Rodríguez OG, Gutiérrez-Aguirre CH, Gómez-Almaguer D. A comparison of haploidentical versus HLA-identical sibling outpatient hematopoietic cell transplantation using reduced intensity conditioning in patients with acute leukemia. Front Immunol 2024; 15:1400610. [PMID: 39430740 PMCID: PMC11486716 DOI: 10.3389/fimmu.2024.1400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Background Hematopoietic cell transplantation (HCT) increases survival for acute leukemia. Outpatient allogeneic HCT reduces costs and increases transplant rates in developing countries. We report outcomes of outpatient HLA-identical and haploidentical HCT in acute leukemia. Methods This single-center retrospective cohort study analyzed 121 adult patients with acute myeloblastic (AML) and acute lymphoblastic leukemia (ALL) receiving an outpatient allogeneic HCT with peripheral blood allografts after reduced-intensity conditioning (RIC) from 2012-2022. Results There were 81 (67%) haploidentical and 40 (33%) HLA-identical transplants. Complete chimerism (CC) at day +100 was not different in HLA-identical compared to haploidentical HCT (32.5% and 38.2%, P=0.054). Post-HCT complications, including neutropenic fever (59.3% vs. 40%), acute graft-versus-host-disease (aGVHD) (46.9% vs. 25%), cytokine release syndrome (CRS) (18.5% vs. 2.5%), and hospitalization (71.6% vs 42.5%) were significantly more frequent in haploidentical HCT. Two-year overall survival (OS) was 60.6% vs. 46.9%, (P=0.464) for HLA-identical and haplo-HCT, respectively. There was no difference in the 2-year disease-free-survival (DFS) (33.3% vs. 35%, P=0.924) between transplant types. In multivariate analysis, positive measurable residual disease (MRD) at 30 days (HR 8.8, P=0.018) and 100 days (HR 28.5, P=0.022) was associated with lower OS, but not with non-relapse mortality (NRM) (P=0.252 and P=0.123, univariate). In univariate analysis, both 30-day and 100-day MRD were associated with lower DFS rates (P=0.026 and P=0.006), but only day 30 MRD was significant in multivariate analysis (P=0.050). In the case of relapse, only MRD at day 100 was associated with increased risk in the univariate and multivariate analyses (HR 4.48, P=0.003 and HR 4.67, P=0.008). Chronic graft-versus-host-disease (cGVHD) was protective for NRM (HR 0.38, P=0.015). There was no difference in cumulative incidence of relapse (CIR) between transplant types (P=0.126). Forty-four (36.4%) patients died, with no difference between HCT type (P=0.307). Septic shock was the most frequent cause of death with 17 cases, with no difference between transplant types. Conclusions Outpatient peripheral blood allogenic HCT after RIC is a valid and effective alternative for adult patients suffering acute myeloblastic or lymphoblastic leukemia in low-income populations.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Hematology Department, Internal Medicine Division, Dr. José E. González University Hospital, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Li Z, Wang J, Deng L, Liu X, Kong F, Zhao Y, Hou Y, Zhou F. The predictive value of T-cell chimerism for disease relapse after allogeneic hematopoietic stem cell transplantation. Front Immunol 2024; 15:1382099. [PMID: 38665912 PMCID: PMC11043518 DOI: 10.3389/fimmu.2024.1382099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Chimerism is closely correlated with disease relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, chimerism rate is dynamic changes, and the sensitivity of different chimerism requires further research. Methods To investigate the predictive value of distinct chimerism for relapse, we measured bone marrow (BM), peripheral blood (PB), and T-cell (isolated from BM) chimerism in 178 patients after allo-HSCT. Results Receiver operating characteristic (ROC) curve showed that T-cell chimerism was more suitable to predict relapse after allo-HSCT compared with PB and BM chimerism. The cutoff value of T-cell chimerism for predicting relapse was 99.45%. Leukemia and myelodysplastic syndrome (MDS) relapse patients' T-cell chimerism was a gradual decline from 2 months to 9 months after allo-HSCT. Higher risk of relapse and death within 1 year after allo-HSCT. The T-cell chimerism rates in remission and relapse patients were 99.43% and 94.28% at 3 months after allo-HSCT (P = 0.009), 99.31% and 95.27% at 6 months after allo-HSCT (P = 0.013), and 99.26% and 91.32% at 9 months after allo-HSCT (P = 0.024), respectively. There was a significant difference (P = 0.036) for T-cell chimerism between early relapse (relapse within 9 months after allo-HSCT) and late relapse (relapse after 9 months after allo-HSCT) at 2 months after allo-HSCT. Every 1% increase in T-cell chimerism, the hazard ratio for disease relapse was 0.967 (95% CI: 0.948-0.987, P<0.001). Discussion We recommend constant monitoring T-cell chimerism at 2, 3, 6, and 9 months after allo-HSCT to predict relapse.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Zhou
- Hematology Department, The 960th Hospital of The People’s Liberation Army (PLA) Joint Logistics Support Force, Jinan, China
| |
Collapse
|
3
|
Loke J, McCarthy N, Jackson A, Siddique S, Hodgkinson A, Mason J, Crawley C, Gilleece M, Peniket A, Protheroe R, Salim R, Tholouli E, Wilson K, Andrew G, Dillon R, Khan N, Potter V, Krishnamurthy P, Craddock C, Freeman S. Posttransplant MRD and T-cell chimerism status predict outcomes in patients who received allografts for AML/MDS. Blood Adv 2023; 7:3666-3676. [PMID: 37058448 PMCID: PMC10365943 DOI: 10.1182/bloodadvances.2022009493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Allogeneic stem-cell transplant allows for the delivery of curative graft-versus-leukemia (GVL) in patients with acute myeloid leukemia/myelodysplasia (AML/MDS). Surveillance of T-cell chimerism, measurable residual disease (MRD) and blast HLA-DR expression may inform whether GVL effectiveness is reduced. We report here the prognostic impact of these biomarkers in patients allografted for AML/MDS. One hundred eighty-seven patients from FIGARO, a randomized trial of reduced-intensity conditioning regimens in AML/MDS, were alive and relapse-free at the first MRD time-point and provided monitoring samples for flow cytometric MRD and T-cell chimerism, requested to month+12. Twenty-nine (15.5%) patients had at least 1 MRD-positive result posttransplant. MRD-positivity was associated with reduced overall survival (OS) (hazard ratio [HR], 2.18; P = .0028) as a time-varying Cox variable and remained significant irrespective of pretransplant MRD status in multivariate analyses (P < .001). Ninety-four patients had sequential MRD with T-cell chimerism results at months+3/+6. Patients with full donor T-cell chimerism (FDTC) had an improved OS as compared with patients with mixed donor T-cell chimerism (MDTC) (adjusted HR=0.4; P = .0019). In patients with MDTC (month+3 or +6), MRD-positivity was associated with a decreased 2-year OS (34.3%) vs MRD-negativity (71.4%) (P = .001). In contrast, in the group with FDTC, MRD was infrequent and did not affect the outcome. Among patients with posttransplant MRD-positivity, decreased HLA-DR expression on blasts significantly reduced OS, supporting this as a mechanism for GVL escape. In conclusion, posttransplant MRD is an important predictor of the outcome in patients allografted for AML/MDS and is most informative when combined with T-cell chimerism results, underlining the importance of a GVL effect in AML/MDS.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Shamyla Siddique
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Hodgkinson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - John Mason
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | - Rachel Protheroe
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Rahuman Salim
- Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | | | - Georgia Andrew
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King’s College, London, United Kingdom
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Sylvie Freeman
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Puzo CJ, Tormey CA, Rinder HM, Siddon AJ. Optimizing Donor Chimerism Threshold for Next Generation Sequencing Monitoring of Measurable Residual Disease Post-Allogeneic Stem Cell Transplant for Myeloid Neoplasms. Transplant Cell Ther 2023:S2666-6367(23)01237-X. [PMID: 37062510 DOI: 10.1016/j.jtct.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Next-Generation Sequencing (NGS) is used to monitor genetically-measurable residual disease (gMRD) following allogeneic stem cell transplant (aSCT). It is unknown whether an upper limit of chimerism exists such that gMRD NGS testing can be safely forgone. METHODS We reviewed 61 AML and 24 MDS patients between 2016-2020 with at least 1 NGS panel before and after aSCT. Donor chimerism was quantified. Logistic regression characterized which factors predicted gMRD. Receiver operator curves (ROC) determined the optimal chimerism threshold for which gMRD would not be detected. Data from an additional 22 patients with follow-up NGS testing in 2022, was also analyzed to validate our proposed threshold. RESULTS Donor chimerism (OR= 0.38, 95% CI[0.10,0.62], p=0.02), as expected, was a significant predictor of gMRD. Age, gender, conditioning regimen, presence of a related donor, and diagnosis were not associated with gMRD. A chimerism threshold of 92.5% optimized sensitivity (97.7) and specificity (95.4) such that values >92.5% strongly predicted absence of gMRD (AUC= .986). The validation cohort demonstrated similar strongly predictive capability (AUC= .974) with appropriate sensitivity (100%) and specificity (90.9%). CONCLUSION NGS monitoring of gMRD is redundant at chimerism values greater than a more conservative threshold of 92.5% after stem cell transplant.
Collapse
Affiliation(s)
| | | | - Henry M Rinder
- Yale School of Medicine, Department of Laboratory Medicine, New Haven CT, USA
| | - Alexa J Siddon
- Yale School of Medicine, Department of Laboratory Medicine, New Haven CT, USA; Yale School of Medicine, Department of Pathology, New Haven CT, USA.
| |
Collapse
|
5
|
Hoff FW, Chung SS, Patel PA, Premnath N, Khatib J, Tadic-Ovcina M, AhmedRabie A, Helton D, Yohannes S, Shahan J, Patel H, Geethakumari PR, Vusirikala M, Collins RH, Madanat YF. Post-transplant cyclophosphamide and early mixed donor Chimerism in myeloid malignancies; a single-center experience. Transpl Immunol 2023; 77:101808. [PMID: 36842566 DOI: 10.1016/j.trim.2023.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative option for high-risk myeloid malignancies. Post-transplant cyclophosphamide (PT-Cy) has proven to be effective for graft versus host disease (GVHD) prophylaxis. Given that graft-versus-tumor (GVT) effect plays a major role in reducing the risk of disease relapse, the application of PT-Cy must balance the risk of relapse. Mixed chimerism (MC) refers to a state of concurrent presence of recipient and donor cells post allo-HSCT which may precede relapse disease. OBJECTIVE We investigated the impact of PT-Cy on early MC (EMC) and disease relapse in patients with a myeloid malignancy post allo-HSCT. STUDY DESIGN This retrospective single-center study included patients that underwent allo-HSCT between 2015 and 2021. Patient and disease characteristics were collected from the electronic health records. EMC was defined as <95% donor cells at day 90-120 post allo-HSCT. RESULTS A total of 144 patient that received an allo-HSCT were included in the study. One hundred and eight (75%) patients received PT-Cy as part of the GVHD prophylaxis regimen. The majority underwent allo-HSCT for acute myeloid leukemia (62%) or myelodysplastic syndrome (31%). Sixty-five percent received allo-HSCT from a matched unrelated donor transplant and 65% received a myeloablative conditioning regimen. A lower rate of chronic GVHD (p = 0.03) and a higher rate of EMC (p = 0.04) were observed in patients that received PT-Cy. PT-Cy was not associated with overall survival (OS) and relapse-free survival (RFS). Multivariable analysis identified measurable residual disease status (p = 0.003), hematopoietic cell transplantation-specific comorbidity index (p = 0.012) and chronic GVHD (p = 0.006) as independent prognostic variables for OS. AML-adverse risk (p = 0.004) and EMC (p = 0.018) were independently prognostic for RFS. While EMC overall was not significantly associated with higher risk of relapse, EMC was associated with shorter RFS within adverse-risk AML patients. CONCLUSION Our study shows that PT-Cy was associated with an increased risk of EMC. The predictive value of EMC for relapse remains unclear and may depend on the underlying disease, which should be validated in a larger cohort.
Collapse
Affiliation(s)
- Fieke W Hoff
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Stephen S Chung
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Prapti A Patel
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Naveen Premnath
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Jude Khatib
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Mirjana Tadic-Ovcina
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Abeer AhmedRabie
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Debra Helton
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Selamawit Yohannes
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Jaime Shahan
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Hetalkumari Patel
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | | | - Madhuri Vusirikala
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Robert H Collins
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Yazan F Madanat
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
6
|
La Rosa C, Aldoss I, Park Y, Yang D, Zhou Q, Gendzekhadze K, Kaltcheva T, Rida W, Dempsey S, Arslan S, Artz A, Ball B, Nikolaenko L, Pullarkat VA, Nakamura R, Diamond DJ. Hematopoietic stem cell donor vaccination with cytomegalovirus triplex augments frequencies of functional and durable cytomegalovirus-specific T cells in the recipient: A novel strategy to limit antiviral prophylaxis. Am J Hematol 2023; 98:588-597. [PMID: 36594185 PMCID: PMC10294297 DOI: 10.1002/ajh.26824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
To enhance protective cytomegalovirus (CMV)-specific T cells in immunosuppressed recipients of an allogeneic hematopoietic cell transplant (HCT), we evaluated post-HCT impact of vaccinating healthy HCT donors with Triplex. Triplex is a viral vectored recombinant vaccine expressing three immunodominant CMV antigens. The vector is modified vaccinia Ankara (MVA), an attenuated, non-replicating poxvirus derived from the vaccinia virus strain Ankara. It demonstrated tolerability and immunogenicity in healthy adults and HCT recipients, in whom it also reduced CMV reactivation. Here, we report feasibility, safety, and immunological outcomes of a pilot phase 1 trial (NCT03560752 at ClinicalTrials.gov) including 17 CMV-seropositive recipients who received an HCT from a matched related donor (MRD) vaccinated with 5.1 × 108 pfu/ml of Triplex before cell harvest (median 15, range 11-28 days). Donor and recipient pairs who committed to participation in the trial resulted in exceptional adherence to the protocol. Triplex was well-tolerated with limited adverse events in donors and recipients, who all engrafted with full donor chimerism. On day 28 post-HCT, levels of functional vaccinia- and CMV-specific CD137+ CD8+ T cells were significantly higher (p < .0001 and p = .0174, respectively) in recipients of Triplex vaccinated MRD than unvaccinated MRD (control cohort). Predominantly, central and effector memory CMV-specific T-cell responses continued to steadily expand through 1-year follow-up. CMV viremia requiring antivirals developed in three recipients (18%). In summary, this novel approach represents a promising strategy applicable to different HCT settings for limiting the use of antiviral prophylaxis, which can impair and delay CMV-specific immunity, leading to CMV reactivation requiring treatment.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Yoonsuh Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Dongyun Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ketevan Gendzekhadze
- Histocompatibility Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | | | - Shannon Dempsey
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Brian Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Vinod A Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
7
|
Huo Y, Wu L, Pang A, Li Q, Hong F, Zhu C, Yang Z, Dai W, Zheng Y, Meng Q, Sun J, Ma S, Hu L, Zhu P, Dong F, Gao X, Jiang E, Hao S, Cheng T. Single-cell dissection of human hematopoietic reconstitution after allogeneic hematopoietic stem cell transplantation. Sci Immunol 2023; 8:eabn6429. [PMID: 36930730 DOI: 10.1126/sciimmunol.abn6429] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Hematopoietic stem cell transplantation is an effective regenerative therapy for many malignant, inherited, or autoimmune diseases. However, our understanding of reconstituted hematopoiesis in transplant patients remains limited. Here, we uncover the reconstitution dynamics of human allogeneic hematopoietic stem and progenitor cells (HSPCs) at single-cell resolution after transplantation. Transplanted HSPCs underwent rapid and measurable changes during the first 30 days after transplantation, characterized by a strong proliferative response on the first day. Transcriptomic analysis of HSPCs enabled us to observe that immunoregulatory neutrophil progenitors expressing high levels of the S100A gene family were enriched in granulocyte colony-stimulating factor-mobilized peripheral blood stem cells. Transplant recipients who developed acute graft-versus-host disease (aGVHD) infused fewer S100Ahigh immunoregulatory neutrophil progenitors, immunophenotyped as Lin-CD34+CD66b+CD177+, than those who did not develop aGVHD. Therefore, our study provides insights into the regenerative process of transplanted HSPCs in human patients and identifies a potential criterion for identifying patients at high risk for developing aGVHD early after transplant.
Collapse
Affiliation(s)
- Yingying Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Linjie Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Fang Hong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Zining Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Weiqian Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qianqian Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
8
|
La Rosa C, Chiuppesi F, Park Y, Zhou Q, Yang D, Gendzekhadze K, Ly M, Li J, Kaltcheva T, Ortega Francisco S, Gutierrez MA, Ali H, Otoukesh S, Amanam I, Salhotra A, Pullarkat VA, Aldoss I, Rosenzweig M, Aribi AM, Stein AS, Marcucci G, Dadwal SS, Nakamura R, Forman SJ, Al Malki MM, Diamond DJ. Functional SARS-CoV-2-specific T cells of donor origin in allogeneic stem cell transplant recipients of a T-cell-replete infusion: A prospective observational study. Front Immunol 2023; 14:1114131. [PMID: 36936918 PMCID: PMC10020189 DOI: 10.3389/fimmu.2023.1114131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration clinicaltrials.gov, identifier NCT04666025.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Flavia Chiuppesi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Yoonsuh Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Dongyun Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ketevan Gendzekhadze
- Histocompatibility Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Minh Ly
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Jing Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Sandra Ortega Francisco
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Miguel-Angel Gutierrez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Vinod A. Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Michael Rosenzweig
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ahmed M. Aribi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Anthony S. Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | | | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| |
Collapse
|
9
|
Donor HLA mismatch promotes full donor T-cell chimerism in the allogeneic stem cell transplant with reduced-intensity conditioning and post-transplant cyclophosphamide GVHD prophylaxis. Ann Hematol 2023; 102:613-620. [PMID: 36527460 DOI: 10.1007/s00277-022-05077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Full donor T-cell chimerism (FDTCC) after allogeneic stem cell transplant (allo-SCT) has been associated with improved outcomes in hematologic malignancy. We studied if donor human leukocyte antigen (HLA) mismatch improves achievement of FDTCC because mismatched HLA promotes donor T-cell proliferation where recipient T-cells had been impaired by previous treatment. Patients (N = 138) received allo-SCT with reduced-intensity conditioning (RIC) from 39 HLA mismatched donors (16 unrelated; 23 haploidentical) with post-transplant cyclophosphamide (PTCy) or 99 matched donors (21 siblings; 78 unrelated) with PTCy (N = 18) or non-PTCy (N = 81). Achievement of FDTCC by day 100 was higher with HLA mismatched donors than matched donors (82.1% vs. 27.3%, p < 00,001), which was further improved with 200 cGy total body irradiation (87.9%) or lymphoid (versus myeloid) malignancy (93.8%). Since all mismatched transplants used PTCy, FDTCC was higher with PTCy than non-PTCy (68.4% vs. 25.7%, p < 0.00001), but not in the matched transplant with PTCy (38.9%), negating PTCy as the primary driver. Lymphocyte recovery was delayed with PTCy than without (median on day + 30: 100 vs. 630/µL, p < 0.0001). The benefit of FDTCC was not translated into survival outcomes, especially in myeloid malignancies, possibly due to the insufficient graft-versus-tumor effects from the delayed lymphocyte recovery. Further studies are necessary to improve lymphocyte count recovery in PTCy transplants.
Collapse
|
10
|
Cheung V, Michelis FV, Sibai H. Improved donor chimerism in relapse myelofibrosis post allogenic stem cell transplant with azacitidine and oral decitabine-First case report. EJHAEM 2023; 4:269-272. [PMID: 36819176 PMCID: PMC9928792 DOI: 10.1002/jha2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
To date, allogenic stem cell transplant (ASCT) remains the only potential curative option for patients with primary myelofibrosis (PMF). However, relapse rates and associated mortality remain a concern. A second ASCT may not be feasible due to advancing age, declined functional status, donor unavailability, toxicities associated with a second ASCT. Herein, we report the first case of utilizing initially azacitidine and subsequently oral decitabine + cedazuridine (decitabine), in the context of relapsed PMF post-ASCT. Utilizing both hypomethylating agents provided disease control and improved donor/myeloid lineage chimerism levels, and the patient also remained transfusion independent, with preserved functional status and quality of life.
Collapse
Affiliation(s)
- Verna Cheung
- Princess Margaret Cancer CentreTorontoOntarioCanada
- University of TorontoTorontoOntarioCanada
| | - Fotios V. Michelis
- Hans Messner Allogeneic Transplant ProgramPrincess Margaret Cancer Centre, University Health NetworkTorontoONCanada
| | - Hassan Sibai
- Princess Margaret Cancer CentreTorontoOntarioCanada
- University of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Ciurea SO, Kothari A, Sana S, Al Malki MM. The mythological chimera and new era of relapse prediction post-transplant. Blood Rev 2023; 57:100997. [PMID: 35961800 DOI: 10.1016/j.blre.2022.100997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Allogeneic hemopoietic stem cell transplantation is the treatment of choice for high-risk or relapsed acute leukemia. However, unfortunately, relapse post-transplant continues to be the most common cause of treatment failure with 20-80% of patients relapsing based on disease risk and status at transplant. Advances in molecular profiling of different hematological malignancies have enabled us to monitor low level disease before and after transplant and develop a more personalized approach to the management of these disease including early detection post-transplant. While, in general, detectable disease by morphology remains the gold standard to diagnosing relapse, multiple approaches have allowed detection of cancer cells earlier, using peripheral blood-based methods with sensitivities as high as 1:106, together called minimal/measurable residual disease (MRD) detection. However, a in significant number of patients with acute leukemia where no such molecular markers exist it remains challenging to detect early relapse. In such patients who receive transplantation, chimerism monitoring remains the only option. An increase in mixed chimerism in post allogeneic HCT patients has been correlated with relapse in multiple studies. However, chimerism monitoring, while commonly accepted as a tool for assessing engraftment, has not been routinely used for relapse detection, at least in part because of the lack of standardized, high sensitivity, reliable methods for chimerism detection. In this paper, we review the various methods employed for MRD and chimerism detection post-transplant and discuss future trends in MRD and chimerism monitoring from the viewpoint of the practicing transplant physician.
Collapse
Affiliation(s)
- Stefan O Ciurea
- University of California Irvine, Orange, CA, United States of America.
| | | | - Sean Sana
- CareDx Inc., Brisbane, CA, United States of America
| | - Monzr M Al Malki
- City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
12
|
Lindahl H, Valentini D, Vonlanthen S, Sundin M, Björklund AT, Mielke S, Hauzenberger D. Early relapse prediction after allogeneic hematopoietic stem cell transplantation for acute lymphoblastic leukemia (ALL) using lineage-specific chimerism analysis. EJHAEM 2022; 3:1277-1286. [PMID: 36467849 PMCID: PMC9713209 DOI: 10.1002/jha2.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/17/2023]
Abstract
Relapse is a major cause of treatment failure after hematopoietic stem cell transplantation (HSCT) for acute leukemia. Here, we report a monocentric retrospective study of all HSCTs for B cell acute lymphoblastic leukemia (ALL) performed during the years 2005-2021 (n = 138, including 51 children), aiming to identify the optimal use of lineage-specific recipient-donor chimerism analysis for prediction of relapse. In adults, relapse was associated with increased recipient chimerism in CD3+ bone marrow cells sampled at least 30 days before a relapse. Relapse could be predicted with a sensitivity of 73% and a specificity of 83%. Results were similar for children but with a higher recipient chimerism cutoff. Additionally, adults that had at least one chimerism value <0.12% in CD3+ peripheral blood cells within the first 60 days after HSCT had 89% probability of being relapse-free after 2-years compared to 64%. Results were similar for children but again necessitating a higher chimerism cutoff. These results suggest that high-sensitive lineage-specific chimerism analysis can be used for (1) early ALL relapse prediction by longitudinal chimerism monitoring in CD3+ bone marrow cells and (2) relapse risk stratification by analyzing CD3+ blood cells early post-HSCT.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Davide Valentini
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholmSweden
| | - Sofie Vonlanthen
- Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
| | - Mikael Sundin
- Pediatric HematologyImmunology and HCTAstrid Lindgren Children's HospitalKarolinska University HospitalStockholmSweden
- PediatricsCLINTECKarolinska InstitutetStockholmSweden
| | - Andreas T. Björklund
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholmSweden
| | - Stephan Mielke
- Department of Cell Therapy and Allogeneic Stem Cell Transplantation (CAST)Department of Laboratory Medicine (LabMED)Karolinska University Hospital and InstitutetKarolinska Comprehensive Cancer CenterStockholmSweden
| | - Dan Hauzenberger
- Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
13
|
DeFilipp Z, Hefazi M, Chen YB, Blazar BR. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for nonmalignant diseases. Blood 2022; 139:3583-3593. [PMID: 34614174 PMCID: PMC9728560 DOI: 10.1182/blood.2020009014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Many congenital or acquired nonmalignant diseases (NMDs) of the hematopoietic system can be potentially cured by allogeneic hematopoietic cell transplantation (HCT) with varying types of donor grafts, degrees of HLA matching, and intensity of conditioning regimens. Unique features that distinguish the use of allogeneic HCT in this population include higher rates of graft failure, immune-mediated cytopenias, and the potential to achieve long-term disease-free survival in a mixed chimerism state. Additionally, in contrast to patients with hematologic malignancies, a priority is to completely avoid graft-versus-host disease in patients with NMD because there is no theoretical beneficial graft-versus-leukemia effect that can accompany graft-versus-host responses. In this review, we discuss the current approach to each of these clinical issues and how emerging novel therapeutics hold promise to advance transplant care for patients with NMDs.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | | | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Ye Y, Yang L, Yuan X, Huang H, Luo Y. Optimization of Donor Lymphocyte Infusion for AML Relapse After Allo-HCT in the Era of New Drugs and Cell Engineering. Front Oncol 2022; 11:790299. [PMID: 35155192 PMCID: PMC8829143 DOI: 10.3389/fonc.2021.790299] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Donor lymphocyte infusion (DLI) is a key strategy for the treatment of AML relapse after allogeneic hematopoietic cell transplantation (allo-HCT) and has been used for either prophylactic, pre-emptive, or therapeutic purposes. However, the prognosis of these patients remains dismal even after DLI infusion (2-year overall survival, ~25%), and the efficacy is achieved at the cost of toxicities such as graft-versus-host (GVH) disease. Attempts to optimize DLI efficacy and safety, such as dose/timing modification and the use of cytoreduction, before DLI have been performed previously. Recently, a great number of novel targeted and immunomodulatory agents have emerged. Some of them, such as hypomethylating agents, FLT3 and Bcl-2 inhibitors, have been used in combination with DLI, aiming to enhance the graft-versus-leukemia effect. Moreover, manipulation of the DLI graft through cell selection (e.g., donor NK cells) or cell engineering (donor CAR-T cells) has shown potentially superior anti-tumor effects but less GVH effect than conventional DLI in clinical trials. This review summarizes the recent advances on the use of DLI for the prophylaxis/treatment of AML relapse and discusses future strategies which may further improve the treatment efficacy.
Collapse
Affiliation(s)
- Yishan Ye
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Luxin Yang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaolin Yuan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yi Luo
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Wu D, Kanaan SB, Penewit K, Waalkes A, Urselli F, Nelson JL, Radich J, Salipante SJ. Ultrasensitive Quantitation of Genomic Chimerism by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing of Copy Number Deletion Polymorphisms. J Mol Diagn 2022; 24:167-176. [PMID: 34775030 PMCID: PMC8819186 DOI: 10.1016/j.jmoldx.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
Genomic chimerism represents co-existing cells with different genotypes and has diagnostic significance in transplant engraftment monitoring, residual cancer detection, and other contexts. We previously described an approach to chimerism detection by interrogating variably present or absent genomic loci using single-molecule molecular inversion probes (smMIPs) and next-generation sequencing, which provided ultrasensitive limits of detection (<1 in 10,000 cells) but was not reliably quantitative. Herein, smMIP testing was modified to accurately quantitate chimeric cells by incorporating copy number neutral control loci for data normalization and computationally modeling cell mixtures from individual-specific genotypes. Data demonstrate precision and accuracy over three orders of magnitude (0.01% to 50% chimerism). Seventy hematopoietic stem cell transplant specimens from single (n = 42) or double (n = 28) donors were evaluated, benchmarking smMIP against conventional variable number tandem repeat (VNTR) analysis and an unrelated, ultrasensitive polymorphism-specific quantitative PCR (PS-qPCR) assay. Quantitative concordance of all three assays was high (P < 0.0005, Pearson correlation coefficient), although smMIP correlated better with VNTR testing than PS-qPCR. smMIP and PS-qPCR collectively identified low-level chimerism in all specimens testing negative by VNTR (n = 41 and n = 45 of 48 specimens, respectively). This work demonstrates the feasibility of smMIP-based chimerism testing for quantitative and ultrasensitive measurement of genomic chimerism at practical levels approaching one in one million cells, and cross-validates the approach.
Collapse
Affiliation(s)
- David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington,Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Sami B. Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Chimerocyte, Inc., Seattle, Washington
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Francesca Urselli
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Chimerocyte, Inc., Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington,Brotman Baty Institute for Precision Medicine, Seattle, Washington,Address correspondence to Stephen J. Salipante, M.D., Ph.D., University of Washington, Box 357110, 1959 NE Pacific St., Seattle, WA 98195.
| |
Collapse
|
16
|
Outcomes of adults with lymphoma treated with nonmyeloablative TLI-ATG and radiation boost to high risk or residual disease before allogeneic hematopoietic cell transplant. Bone Marrow Transplant 2022; 57:106-112. [PMID: 34671121 DOI: 10.1038/s41409-021-01495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
We evaluated the impact on survival of antithymocyte globulin conditioning (TLI-ATG) with radiation (RT) boost to high risk or residual disease before allogeneic hematopoietic cell transplant (allo-HCT) for adults with lymphoma (excluding mycosis fungoides and low-grade NHL other than SLL/CLL). Of 251 evaluable patients, 36 received an RT boost within 3 months of allo-HCT at our institution from 2001 to 2016. At the time of TLI-ATG, patients who received boost vs no boost had a lower rate of CR (11% vs 47%, p = 0.0003), higher rates of bulky disease (22% vs 4%, p < 0.0001), extranodal disease (39% vs 5%, p < 0.0001), and positive PET (75% vs 28%, p < 0.00001). In the boost group, the median (range) largest axial lesion diameter was 5.2 cm (1.8-22.3). Median follow-up was 50.2 months (range: 1-196). There was no significant difference in OS, time to recurrence, or time to graft failure with vs without boost. A trend toward higher percent donor CD3+ chimerism was seen with vs without boost (p = 0.0819). The worst boost-related toxicity was grade 2 dermatitis. RT boost may help successfully mitigate the risk of high risk or clinically evident residual disease in adults with lymphoma undergoing allo-HCT.
Collapse
|
17
|
Delie A, Verlinden A, Beel K, Deeren D, Mazure D, Baron F, Breems D, De Becker A, Graux C, Lewalle P, Maertens J, Poire X, Schoemans H, Selleslag D, Van Obbergh F, Kerre T. Use of chimerism analysis after allogeneic stem cell transplantation: Belgian guidelines and review of the current literature. Acta Clin Belg 2021; 76:500-508. [PMID: 32362204 DOI: 10.1080/17843286.2020.1754635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment option in both adult and pediatric patients with malignant and non-malignant hematological diseases. Chimerism analysis, which determines the donor or recipient origin of hematopoietic cells in HSCT recipients, is an essential aspect of post-HSCT follow-up.Objectives: To review the current literature and develop Belgian consensus guidelines for the use of chimerism analysis in the standard of care after allogeneic HSCT.Methods: Non-systematic review of the literature in consultancy with the members of the BHS transplantation committee.Results: Clinical application with regards to prediction of graft failure or relapse as well as cell source are reviewed. A consensus guideline on the use of chimerism analysis after HSCT is presented.Conclusion: Monitoring of the dynamics or kinetics of a patient's chimerism status by serial analysis at fixed time points, as well as on suspicion of relapse or graft failure, is needed to monitor engraftment levels, as well as disease control and possible relapse.
Collapse
Affiliation(s)
- Anke Delie
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| | - Anke Verlinden
- Department of Hematology, University Hospital, University of Antwerp, Antwerp, Belgium
| | - Karolien Beel
- Department of Hematology, Ziekenhuis Netwerk, Antwerpen, Belgium
| | - Dries Deeren
- Department of Hematology, AZ Delta, Roeselare, Belgium
| | - Dominiek Mazure
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| | - Frédéric Baron
- Department of Hematology, University Hospital, University of Liège, Liège, Belgium
| | - Dimitri Breems
- Department of Hematology, Ziekenhuis Netwerk, Antwerpen, Belgium
| | - Ann De Becker
- Department of Hematology, University Hospital, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Graux
- Department of Hematology, University Hospital Namur, Université Catholique de Louvain, Belgium
| | - Philippe Lewalle
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Maertens
- Department of Hematology, University Hospital, KU Leuven, Leuven, Belgium
| | - Xavier Poire
- Department of Hematology, University Hospital Saint Luc, Univeristé Catholique de Louvain, Brussels, Belgium
| | - Helene Schoemans
- Department of Hematology, University Hospital, KU Leuven, Leuven, Belgium
| | | | | | - Tessa Kerre
- Department of Hematology, University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Wang L, Wang LN, Zhou JF, Gao WH, Jiang CH, Tang W, Zhao WL, Hu J, Jiang JL. Low-Dose Decitabine Monotherapy Reverses Mixed Chimerism in Adult Patients After Allogeneic Hematopoietic Stem Cell Transplantation With Myeloablative Conditioning Regimen: A Pilot Phase II Study. Front Med (Lausanne) 2021; 8:627946. [PMID: 33708780 PMCID: PMC7940531 DOI: 10.3389/fmed.2021.627946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
T cell mixed chimerism (MC) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with myeloablative conditioning for hematological malignancies may indicate engraftment failure or disease relapse. Immune modulation, such as donor lymphocyte infusion (DLI) or the rapid tapering-off or stopping of immunosuppressive treatment, can reverse MC to full donor chimerism (FDC). However, the development or aggravation of graft-versus-host disease (GvHD) and the related mortality remain major concerns with immune modulation. In this prospective, single-arm study (NCT03663751), we tested the efficacy and safety of low-dose decitabine (LD-DAC, 5 mg/m2 daily for 5 days and repeated every 6–8 weeks) without immune modulation in the treatment of patients with MC to prevent MC-associated relapse and/or graft failure. A total of 14 patients were enrolled. All the patients received myeloablative conditioning regimens, and MC was documented from day +30 to day +180 after allo-HSCT with a donor chimerism level ranging from 59 to 97% without detectable measurable residual disease (MRD). Eleven patients (78.6%) responded favorably to treatment, showing increased levels of donor chimerism (≥95%), while nine achieved FDC. All of these patients maintained their responses for a median of 11 months (3–22). The three patients who failed to respond favorably eventually either relapsed or experienced graft failure. All three were alive and in remission at the last follow-up after the second allo-HSCT. LD-DAC monotherapy was well tolerated and exerted limited hematological and nonhematological toxicities. New-onset GvHD symptoms were observed only in two patients. Overall, the estimated 2-year overall survival (OS) and event-free survival (EFS) after allo-HSCT were 90.9 ± 8.7% and 67.0 ± 13.7%, respectively. In conclusion, LD-DAC alone could reverse MC in most patients after allo-HSCT with myeloablative conditioning, while those who achieved FDC enjoyed long-term EFS without major complications. Further prospective studies with larger sample sizes are warranted to confirm the benefits of LD-DAC.
Collapse
Affiliation(s)
- Ling Wang
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ning Wang
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Fang Zhou
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Gao
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-He Jiang
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Ling Jiang
- Department of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Kim J, Yun W, Park YJ, Seo J, Lee RDW, Shin S, Lee HJ, Kim IS, Choi JR, Lee ST. Chimerism Assay Using Single Nucleotide Polymorphisms Adjacent and in Linkage-Disequilibrium Enables Sensitive Disease Relapse Monitoring after Hematopoietic Stem-Cell Transplantation. Clin Chem 2021; 67:781-787. [PMID: 33582770 DOI: 10.1093/clinchem/hvab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/31/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Short tandem repeat (STR)-based chimerism analysis has been widely used for chimerism monitoring after hematopoietic stem-cell transplantation (HSCT), but technical artifacts can be problematic. We designed a chimerism assay using single nucleotide polymorphisms (SNPs) adjacent and in linkage-disequilibrium (CASAL), which doubly checked for SNP pairs, and thus could reduce background errors and increase analytical sensitivity. METHODS CASAL targeted 84 SNP pairs within 10 bp distance and in perfect linkage-disequilibrium. Using undiluted and serially diluted samples, baseline error rates, and linearity was calculated. Clinical performance of CASAL was evaluated in comparison with a conventional STR assay, using 191 posttransplant samples from 42 patients with HSCT. RESULTS CASAL had ∼10 times lower baseline error rates compared to that of ordinary next-generation sequencing. Limit of detection and quantification of CASAL were estimated to be 0.09 and 0.39%, respectively, with a linear range of 0.1-100%. CASAL correlated well with STR assay (r2 = 0.99) and the higher sensitivity enabled detection of low-level recipient chimerism and earlier prediction of relapse. CONCLUSIONS CASAL is a simple, analytically sensitive and accurate assay that can be used in clinical samples after HSCT with a higher performance compared to that of traditional assays. It should also be useful in other forensic and archeological testing.
Collapse
Affiliation(s)
- JinJu Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woobin Yun
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Yu Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Armed Forces Yangju Hospital, Gyeonggi-do, South Korea
| | - Jieun Seo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun-Ji Lee
- Department of Laboratory Medicine, Pusan National University, Yangsan Hospital, Yangsan, South Korea
| | - In Suk Kim
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Pusan, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
20
|
Pasin C, Moy RH, Reshef R, Yates AJ. Variable selection methods for predicting clinical outcomes following allogeneic hematopoietic cell transplantation. Sci Rep 2021; 11:3230. [PMID: 33547331 PMCID: PMC7865009 DOI: 10.1038/s41598-021-82562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative procedure for a large number of diseases. However, the greatest barriers to the success of allo-HCT are relapse and graft-versus-host-disease (GVHD). Many studies have examined the reconstitution of the immune system after allo-HCT and searched for factors associated with clinical outcome. Serum biomarkers have also been studied to predict the incidence and prognosis of GVHD. However, the use of multiparametric immunophenotyping has been less extensively explored: studies usually focus on preselected and predefined cell phenotypes and so do not fully exploit the richness of flow cytometry data. Here we aimed to identify cell phenotypes present 30 days after allo-HCT that are associated with clinical outcomes in 37 patients participating in a trial relating to the prevention of GVHD, derived from 82 flow cytometry markers and 13 clinical variables. To do this we applied variable selection methods in a competing risks modeling framework, and identified specific subsets of T, B, and NK cells associated with relapse. Our study demonstrates the value of variable selection methods for mining rich, high dimensional clinical data and identifying potentially unexplored cell subpopulations of interest.
Collapse
Affiliation(s)
- Chloé Pasin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ryan H Moy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ran Reshef
- Columbia Center for Translational Immunology and Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Dholaria B, Savani BN, Hamilton BK, Oran B, Liu HD, Tallman MS, Ciurea SO, Holtzman NG, Ii GLP, Devine SM, Mannis G, Grunwald MR, Appelbaum F, Rodriguez C, El Chaer F, Shah N, Hashmi SK, Kharfan-Dabaja MA, DeFilipp Z, Aljurf M, AlShaibani A, Inamoto Y, Jain T, Majhail N, Perales MA, Mohty M, Hamadani M, Carpenter PA, Nagler A. Hematopoietic Cell Transplantation in the Treatment of Newly Diagnosed Adult Acute Myeloid Leukemia: An Evidence-Based Review from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2021; 27:6-20. [PMID: 32966881 DOI: 10.1016/j.bbmt.2020.09.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
The role of hematopoietic cell transplantation (HCT) in the management of newly diagnosed adult acute myeloid leukemia (AML) is reviewed and critically evaluated in this evidence-based review. An AML expert panel, consisting of both transplant and nontransplant experts, was invited to develop clinically relevant frequently asked questions covering disease- and HCT-related topics. A systematic literature review was conducted to generate core recommendations that were graded based on the quality and strength of underlying evidence based on the standardized criteria established by the American Society of Transplantation and Cellular Therapy Steering Committee for evidence-based reviews. Allogeneic HCT offers a survival benefit in patients with intermediate- and high-risk AML and is currently a part of standard clinical care. We recommend the preferential use of myeloablative conditioning in eligible patients. A haploidentical related donor marrow graft is preferred over a cord blood unit in the absence of a fully HLA-matched donor. The evolving role of allogeneic HCT in the context of measurable residual disease monitoring and recent therapeutic advances in AML with regards to maintenance therapy after HCT are also discussed.
Collapse
Affiliation(s)
- Bhagirathbhai Dholaria
- Department of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Bipin N Savani
- Department of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Betul Oran
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hien D Liu
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | | | | | - Noa G Holtzman
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Steven M Devine
- National Marrow Donor Program and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Gabriel Mannis
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Frederick Appelbaum
- Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Cesar Rodriguez
- Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Firas El Chaer
- Division of Hematology/Oncology, University of Virginia, Charlottesville, Virginia
| | - Nina Shah
- Division of Hematology-Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Zachariah DeFilipp
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Mahmoud Aljurf
- Department of Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - AlFadel AlShaibani
- Department of Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yoshihiro Inamoto
- Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tania Jain
- Sidney Kimmel Cancer Center, John Hopkins Hospital, Baltimore, Maryland
| | - Navneet Majhail
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mohamad Mohty
- Saint Antoine Hospital, INSERM UMR 938, Université Pierre et Marie Curie, TC, Paris, France; EBMT Paris Study Office, Paris, France
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul A Carpenter
- Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Arnon Nagler
- EBMT Paris Study Office, Paris, France; Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
22
|
Mountjoy L, Palmer J, Kunze KL, Khera N, Sproat LZ, Leis JF, Noel P, Slack JL, Jain T. Does early chimerism testing predict outcomes after allogeneic hematopoietic stem cell transplantation? Leuk Lymphoma 2020; 62:252-254. [PMID: 33012186 DOI: 10.1080/10428194.2020.1827249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luke Mountjoy
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jeanne Palmer
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Katie L Kunze
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Phoenix, AZ, USA
| | - Nandita Khera
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Lisa Z Sproat
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jose F Leis
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Pierre Noel
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - James L Slack
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Tania Jain
- Department of Medicine, Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
23
|
Philip J, Bajaj AK, Sharma S, Kushwaha N, Kumar S, Kumar Biswas A. Allogeneic Peripheral Blood Stem Cell Transplant: Correlation of Donor Factors with Yield, Engraftment, Chimerism, and Outcome: Retrospective Review of a Single Institute During a 3-Year Period. Lab Med 2020; 51:362-369. [PMID: 31758694 DOI: 10.1093/labmed/lmz069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Donor factors have a variable correlation with cluster of differentiation (CD)34+ cell dose in allogeneic peripheral blood stem cell (PBSC) harvests. CD34+ cell dose affects the speed of hematopoietic recovery and percentage of donor chimerism in the recipient. METHODS A total of 25 allogeneic PBSC transplants performed during a 3-year period were included. All donors underwent mobilization with filgrastim. Leukapheresis, flowcytometric CD34+ cell enumeration, and chimerism analysis were performed and correlated with recipient outcome. RESULTS Besides age, all other donor parameters had a positive correlation with CD34+ cell count. Engraftment kinetics and chimerism had a positive correlation with the CD34+ yield of the PBSC product. Acute graft-vs-host disease (GVHD) was observed in patients with complete chimerism at day 30 after transplantation. CONCLUSION Adequate CD34+ cell yield happens in healthy donors, independent of donor demographic patterns with G-CSF only. A diverse population of donors can thus be approached for Matched Unrelated Donor (MUD) transplants. An accurate quantitative analysis of early donor chimerism in the recipient (at day 30) is an excellent tool for post-transplant monitoring for acute GvHD.
Collapse
Affiliation(s)
- Joseph Philip
- Department of Immunohematology & Blood Transfusion (IH & BT), Armed Forces Medical College (AFMC), Pune, India
| | - Anantpreet Kaur Bajaj
- Department of Immunohematology & Blood Transfusion (IH & BT), Armed Forces Medical College (AFMC), Pune, India
| | | | - Neerja Kushwaha
- Department of Immunohematology & Blood Transfusion (IH & BT), Armed Forces Medical College (AFMC), Pune, India
| | - Sudeep Kumar
- Department of Immunohematology & Blood Transfusion (IH & BT), Armed Forces Medical College (AFMC), Pune, India
| | - Amit Kumar Biswas
- Department of Immunohematology & Blood Transfusion (IH & BT), Armed Forces Medical College (AFMC), Pune, India
| |
Collapse
|
24
|
Faridizadeh M, Alavi Majd H, Parkhideh S, Hajifathali A, Raei M, Ramezani N, Saeedi A, Baghestani AR. Analyzing Survival Rate of Leukemia Patients Applying Long Term Exponential Model. Asian Pac J Cancer Prev 2020; 21:1539-1543. [PMID: 32592346 PMCID: PMC7568893 DOI: 10.31557/apjcp.2020.21.6.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Making progressin treatment of all branches of cancers has increasedthe percent of patients that never experience the event of interest. These cases are called immune or cure and models for handling the data included cure fraction rate, are referred to as cure model or long-term survival models. METHODS The data for this historical cohort study, were collected from leukemia patients diagnosed between 2007 to 2014 and followed up until 2016 in Taleghani hospital and received BMT (Bone Marrow Transplant). Some data had to be excluded because of incomplete information. Using recorded files mostly and phone calls rarely, were made to confirm whether the patients were still alive or not. Death due to leukemia was regarded as interested event. Analysis were performed by R version 3.4.1and Stata version 14. RESULTS Number of recurrents after receiving BMT, pre-transplant Hb and age at diagnosis were found as significant prognostics of survival time. HD patients had the highest 5-years overall survival in category of diagnosis type with 81.3%. Cure fraction was estimated to be 64.1%. CONCLUSION According to high percentage of censoring, using long-term model had better fit.
Collapse
Affiliation(s)
- Mostafa Faridizadeh
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Alavi Majd
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Taleghani Bone Marrow Transplantation Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nazanin Ramezani
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Saeedi
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Baghestani
- Physiotherapy Research Center, Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Mixed chimerism established by hematopoietic stem cell transplantation is maintained by host and donor T regulatory cells. Blood Adv 2020; 3:734-743. [PMID: 30824417 DOI: 10.1182/bloodadvances.2018025502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
Transplantation is an effective treatment of many clinical disorders, but the mechanisms that regulate immunological tolerance are uncertain and remain central to improving patient outcome. Hemopoietic stem cell transplantation (SCT) often establishes "mixed chimerism" in which immune cells from both the donor and patient coexist in vivo in a setting of immunological tolerance. We studied immune function in 69 patients within 2 months following SCT; 37 were fully donor and 32 displayed mixed chimerism. The proportion of T regulatory (Treg) cells was increased during mixed chimerism and comprised equal numbers of donor and host-derived regulatory cells. This was associated with a tolerogenic PD-L1+ profile on dendritic cells. Importantly, effector T cells from patients with mixed chimerism exhibited reduced cytotoxicity against host target cells in vitro, but this was restored following depletion of CD4+ Treg cells. These data show that Treg cells play a major role in sustaining immunological tolerance during mixed chimerism. These insights should help to guide novel interventions to improve clinical transplantation.
Collapse
|
26
|
Xu L, Durruthy-Durruthy R, Eastburn DJ, Pellegrino M, Shah O, Meyer E, Zehnder J. Clonal Evolution and Changes in Two AML Patients Detected with A Novel Single-Cell DNA Sequencing Platform. Sci Rep 2019; 9:11119. [PMID: 31366893 PMCID: PMC6668401 DOI: 10.1038/s41598-019-47297-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing (NGS) is used to detect gene variants in genetically complex cell populations of cancer patient samples. Traditional bulk analysis can only provide average variant allele frequencies of the targeted genes across all sampled cells. It fails to resolve mutational co-occurrences and may miss rare cancer cells. Genome analysis at the single cell level offers the opportunity to more fully resolve clonal architecture. Peripheral blood mononuclear cells were sampled from acute myeloid leukemia patients longitudinally and single-cell DNA sequencing libraries were generated with a novel droplet-based microfluidics approach. Molecular profiling of single nucleotide variants across thousands of cells revealed genetic chimerism in patients after bone marrow transplantation (BMT). Importantly, hierarchical clustering analysis of single nucleotide variants (SNVs) uncovered a distinct oncogenic clone of cells carrying mutated tumor-suppressor and/or oncogene(s). This novel single-cell DNA sequencing approach enabled precise monitoring of engraftment and revealed clonal evolution of oncogenic cells during the progression and treatment of the disease.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Omid Shah
- Division of Blood and Marrow Transplantation. Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation. Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Mika T, Baraniskin A, Ladigan S, Wulf G, Dierks S, Haase D, Schork K, Turewicz M, Eisenacher M, Schmiegel W, Schroers R, Klein-Scory S. Digital droplet PCR-based chimerism analysis for monitoring of hematopoietic engraftment after allogeneic stem cell transplantation. Int J Lab Hematol 2019; 41:615-621. [PMID: 31225701 DOI: 10.1111/ijlh.13073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a curative approach for multiple hematologic diseases. The success of alloHSCT is evaluated by analyzing the proportion of living donor cells in blood and bone marrow samples of the recipient (chimerism analysis). To monitor the engrafted cells, donor's individual genetic markers are analyzed in peripheral blood and bone marrow samples, usually by using short tandem repeat (STR) analysis. An alternative method to measure chimerism is based on insertion and deletion markers (InDels) analyzed by digital droplet PCR (ddPCR); however, this approach is rarely evaluated in clinical practice. METHODS In this study, we examined the usefulness of ddPCR-based chimerism analysis against the standard STR analysis in samples around day+30 after alloHSCT in clinical practice using peripheral blood and bone marrow samples. RESULTS The median absolute difference between ddPCR and STR analysis was 0.55% points for bone marrow chimerisms and 0.25% points for peripheral blood chimerisms, respectively, including variation in the range of maximum 2% for both methods. The results of every single sample gave the same clinical message. CONCLUSION According to our data, chimerism analysis by ddPCR has an excellent correlation with STR-based analyses. Due to its fast and easy applicability, the ddPCR technique is suitable for chimerism monitoring in clinical practice.
Collapse
Affiliation(s)
- Thomas Mika
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Alexander Baraniskin
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Swedlana Ladigan
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Sascha Dierks
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Detlef Haase
- Department of Hematology and Oncology, Georg-August University Göttingen, Göttingen, Germany
| | - Karin Schork
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom Center, Ruhr-University Bochum, Bochum, Germany
| | - Wolff Schmiegel
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany.,IMBL Medical Clinic, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Susanne Klein-Scory
- IMBL Medical Clinic, Ruhr-University Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
28
|
Kinsella FAM, Inman CF, Gudger A, Chan YT, Murray DJ, Zuo J, McIlroy G, Nagra S, Nunnick J, Holder K, Wall K, Griffiths M, Craddock C, Nikolousis E, Moss P, Malladi R. Very early lineage-specific chimerism after reduced intensity stem cell transplantation is highly predictive of clinical outcome for patients with myeloid disease. Leuk Res 2019; 83:106173. [PMID: 31276965 DOI: 10.1016/j.leukres.2019.106173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The importance of chimerism status in the very early period after hematopoietic stem cell transplantation is unclear. We determined PBMC and T-cell donor chimerism 50 days after transplantation and related this to disease relapse and overall survival. METHODS 144 sequential patients underwent transplantation of which 90 had AML/MDS and 54 had lymphoma. 'Full donor chimerism' was defined as ≥99% donor cells and three patient groups were defined: 40% with full donor chimerism (FC) in both PBMC and T-cells; 25% with mixed chimerism (MC) within both compartments and 35% with 'split' chimerism (SC) characterised by full donor chimerism within PBMC and mixed chimerism within T-cells. RESULTS In patients with myeloid disease a pattern of mixed chimerism (MC) was associated with a one year relapse rate of 45% and a five year overall survival of 40% compared to values of 8% and 75%, and 17% and 60%, for those with SC or FC respectively. The pattern of chimerism had no impact on clinical outcome for lymphoma. CONCLUSION The pattern of lineage-specific chimerism at 50 days after transplantation is highly predictive of clinical outcome for patients with myeloid malignancy and may help to guide subsequent clinical management.
Collapse
Affiliation(s)
- Francesca A M Kinsella
- School of Cancer Sciences, University of Birmingham, Birmingham, UK; Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| | | | - Amy Gudger
- Heartlands Hospital, Heart of England NHS Foundation trust, Birmingham, UK
| | - Yuen T Chan
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Duncan J Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Graham McIlroy
- Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| | - Sandeep Nagra
- Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| | - Jane Nunnick
- Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| | - Kathy Holder
- Heartlands Hospital, Heart of England NHS Foundation trust, Birmingham, UK
| | - Kerry Wall
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Mike Griffiths
- School of Cancer Sciences, University of Birmingham, Birmingham, UK; West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| | | | - Paul Moss
- School of Cancer Sciences, University of Birmingham, Birmingham, UK; Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK.
| | - Ram Malladi
- School of Cancer Sciences, University of Birmingham, Birmingham, UK; Centre for Clinical Haematology, Queen Elizabeth NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
29
|
van Zelm MC, Pumar M, Shuttleworth P, Aui PM, Smart JM, Grigg A, Bosco JJ. Functional Antibody Responses Following Allogeneic Stem Cell Transplantation for TP53 Mutant pre-B-ALL in a Patient With X-Linked Agammaglobulinemia. Front Immunol 2019; 10:895. [PMID: 31105705 PMCID: PMC6498405 DOI: 10.3389/fimmu.2019.00895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with X-linked agammaglobulinemia (XLA) have failure of B-cell development with lack of immunoglobulin (Ig) production. While immunoglobulin replacement therapy (IgRT) is beneficial, XLA patients remain at risk for infections, structural lung damage, and rarely, neoplasia. Allogeneic stem cell transplantation (alloSCT) may offer a potential cure, but is associated with significant life-threatening complications. Here, we present a 25-year old XLA patient who developed pre-B acute lymphocytic leukemia (ALL) with somatic TP53 mutation, and treatment for this high-risk malignancy involved full myeloablative conditioning and a HLA-matched sibling alloSCT. Full donor chimerism was achieved for CD3+ and CD3- cell fractions. The patient remains in morphological and flow cytometric remission 14 months post-transplant, with late-onset oral GvHD requiring low dose prednisolone and cyclosporin. Following IgRT discontinuation at 4 months post-transplantation, humoral immunity was established within 14 months as reflected by normal numbers of total B cells, memory B cells, serum IgG, IgM, and IgA, and production of specific IgG responses to Prevenar-13 vaccination. This is only the second reported case of an XLA patient with pre-B-ALL, and the most detailed report of engraftment following alloSCT in XLA. Together with the two previous XLA cases treated with alloSCT, our report provides evidence for the potential for successful humoral reconstitution with alloSCT in patients with B-cell intrinsic antibody deficiency. These observations may be relevant given IgRT, while beneficial, remains an imperfect solution to long-term infectious complications.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Marsus Pumar
- Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Peter Shuttleworth
- Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Joanne M Smart
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew Grigg
- Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Crisalli LM, Hinkle JT, Walling CC, Sell M, Frey NV, Hexner EO, Loren AW, Luger SM, Stadtmauer EA, Porter DL, Reshef R. Higher Donor Apheresis Blood Volumes Are Associated with Reduced Relapse Risk and Improved Survival in Reduced-Intensity Allogeneic Transplantations with Unrelated Donors. Biol Blood Marrow Transplant 2018; 24:1203-1208. [PMID: 29408506 DOI: 10.1016/j.bbmt.2018.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) with reduced-intensity conditioning (RIC) offers a curative option for patients with hematologic malignancies who are unable to undergo myeloablative conditioning, but its success is limited by high rates of relapse. Several studies have suggested a role for T cell doses in peripheral blood stem cell grafts in RIC HSCT. Because T cell dose is typically not known until after the collection, and apheresis blood volume is easily modifiable, we hypothesized that higher donor apheresis blood volumes would improve transplantation outcomes through an effect on graft composition. Thus, we analyzed the relationships between apheresis volume, graft composition, and transplantation outcomes in 142 consecutive patients undergoing unrelated donor allogeneic RIC HSCT. We found that apheresis volume ≥15 L was associated with a significantly decreased risk of relapse (adjusted hazard ratio [aHR], .48; 95% confidence interval [CI], .28 to .84]; P = .01) and improved relapse-free survival (aHR, .56; 95% CI, .35 to .89; P = .02) and overall survival (aHR, .55; 95% CI, .34 to .91; P = .02). A high apheresis volume was not associated with increased rates of acute or chronic graft-versus-host disease. These results demonstrate that an apheresis volume of at least 15 L is independently predictive of improved transplantation outcomes after RIC allogeneic HSCT.
Collapse
Affiliation(s)
- Lisa M Crisalli
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joanne T Hinkle
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher C Walling
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary Sell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noelle V Frey
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth O Hexner
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alison W Loren
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Selina M Luger
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward A Stadtmauer
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David L Porter
- Abramson Cancer Center and the Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ran Reshef
- Blood and Marrow Transplantation Program and Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.
| |
Collapse
|
31
|
Koreth J, Antin JH, Cutler C. Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndrome in Adults. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Juchem KW, Sacirbegovic F, Zhang C, Sharpe AH, Russell K, McNiff JM, Demetris AJ, Shlomchik MJ, Shlomchik WD. PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2017; 200:834-846. [PMID: 29212909 DOI: 10.4049/jimmunol.1701076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/03/2017] [Indexed: 01/22/2023]
Abstract
Effector memory T cells (TEM) are less capable of inducing graft-versus-host disease (GVHD) compared with naive T cells (TN). Previously, in the TS1 TCR transgenic model of GVHD, wherein TS1 CD4 cells specific for a model minor histocompatibility Ag (miHA) induce GVHD in miHA-positive recipients, we found that cell-intrinsic properties of TS1 TEM reduced their GVHD potency relative to TS1 TN Posttransplant, TS1 TEM progeny expressed higher levels of PD-1 than did TS1 TN progeny, leading us to test the hypothesis that TEM induce less GVHD because of increased sensitivity to PD-ligands. In this study, we tested this hypothesis and found that indeed TS1 TEM induced more severe skin and liver GVHD in the absence of PD-ligands. However, lack of PD-ligands did not result in early weight loss and colon GVHD comparable to that induced by TS1 TN, indicating that additional pathways restrain alloreactive TEM TS1 TN also caused more severe GVHD without PD-ligands. The absence of PD-ligands on donor bone marrow was sufficient to augment GVHD caused by either TEM or TN, indicating that donor PD-ligand-expressing APCs critically regulate GVHD. In the absence of PD-ligands, both TS1 TEM and TN induced late-onset myocarditis. Surprisingly, this was an autoimmune manifestation, because its development required non-TS1 polyclonal CD8+ T cells. Myocarditis development also required donor bone marrow to be PD-ligand deficient, demonstrating the importance of donor APC regulatory function. In summary, PD-ligands suppress both miHA-directed GVHD and the development of alloimmunity-induced autoimmunity after allogeneic hematopoietic transplantation.
Collapse
Affiliation(s)
- Kathryn W Juchem
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | | | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Arlene H Sharpe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115
| | - Kerry Russell
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | | | - Mark J Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520.,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Warren D Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
33
|
Huffman AP, Richman LP, Crisalli L, Ganetsky A, Porter DL, Vonderheide RH, Reshef R. Pharmacodynamic Monitoring Predicts Outcomes of CCR5 Blockade as Graft-versus-Host Disease Prophylaxis. Biol Blood Marrow Transplant 2017; 24:594-599. [PMID: 29061535 DOI: 10.1016/j.bbmt.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/15/2017] [Indexed: 02/03/2023]
Abstract
Blocking lymphocyte trafficking after allogeneic hematopoietic stem cell transplantation is a promising strategy to prevent graft-versus-host disease (GVHD) while preserving the graft-versus-tumor response. Maraviroc, a CCR5 antagonist, has shown promise in clinical trials, presumably by disrupting the migration of effector cells to GVHD target organs. We describe a phosphoflow assay to quantify CCR5 blockade during treatment with maraviroc and used it to evaluate 28 patients in a phase II study. We found that insufficient blockade of CCR5 was associated with significantly worse overall survival (HR, 10.6; 95% CI, 2.2 to 52.0; P = .004) and higher rates of nonrelapse mortality (HR, 146; 95% CI, 1.0 to 20,600; P = .04) and severe acute GVHD (HR, 12; 95% CI, 1.9 to 76.6; P = .009). In addition, we found that pretransplant high surface expression of CCR5 on recipient T cells predicted higher nonrelapse mortality and worse GVHD- and relapse-free survival. Our results demonstrate that pharmacodynamic monitoring of CCR5 blockade unravels interpatient variability in the response to therapy and may serve as a clinically informative biomarker.
Collapse
Affiliation(s)
- Austin P Huffman
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology and the Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Lee P Richman
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Lisa Crisalli
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex Ganetsky
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Porter
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Ran Reshef
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology and the Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York.
| |
Collapse
|
34
|
Broglie L, Helenowski I, Jennings LJ, Schafernak K, Duerst R, Schneiderman J, Tse W, Kletzel M, Chaudhury S. Early mixed T-cell chimerism is predictive of pediatric AML or MDS relapse after hematopoietic stem cell transplant. Pediatr Blood Cancer 2017; 64. [PMID: 28266766 DOI: 10.1002/pbc.26493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
Patients with acute myeloid leukemia (AML) who relapse after hematopoietic stem cell transplantation (HCT) have dismal outcomes. Our ability to predict those at risk for relapse is limited. We examined chimerism trends post-HCT in 63 children who underwent HCT for AML or myelodysplastic syndrome (MDS). Mixed T-cell chimerism at engraftment and absence of chronic graft versus host disease (cGVHD) were associated with relapse (P = 0.04 and P = 0.02, respectively). Mixed T-cell chimerism at engraftment was predictive in patients without cGVHD (P = 0.03). Patients with engraftment mixed T-cell chimerism may warrant closer disease monitoring and consideration for early intervention.
Collapse
Affiliation(s)
- Larisa Broglie
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Irene Helenowski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lawrence J Jennings
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Reggie Duerst
- Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer Schneiderman
- Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Tse
- Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Morris Kletzel
- Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sonali Chaudhury
- Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
35
|
Prognostic Limitations of Donor T Cell Chimerism after Myeloablative Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biol Blood Marrow Transplant 2017; 23:840-844. [DOI: 10.1016/j.bbmt.2017.01.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 01/26/2023]
|
36
|
Rasche L, Röllig C, Stuhler G, Danhof S, Mielke S, Grigoleit GU, Dissen L, Schemmel L, Middeke JM, Rücker V, Schreder M, Schetelig J, Bornhäuser M, Einsele H, Thiede C, Knop S. Allogeneic Hematopoietic Cell Transplantation in Multiple Myeloma: Focus on Longitudinal Assessment of Donor Chimerism, Extramedullary Disease, and High-Risk Cytogenetic Features. Biol Blood Marrow Transplant 2016; 22:1988-1996. [PMID: 27590108 DOI: 10.1016/j.bbmt.2016.08.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023]
Abstract
Although generally not applied as first-line treatment of multiple myeloma, allogeneic hematopoietic cell transplantation (allo-SCT) can still be chosen as ultimate escalation approach in high-risk patients, preferentially within the framework of clinical trials. In this study, we investigated whether decreasing donor chimerism (DC) is predictive for relapse. In addition, we comprehensively determined the impact of several other disease- and treatment-related factors on outcome. One hundred fifty-five multiple myeloma patients whose DC status was followed serially by the short tandem repeat-based techniques at a single lab were included in this retrospective study. Outcome variables were studied in univariate and multivariable analyses. Available were 2.324 DC samples (median, 12 per patient). Loss of full DC was associated with shorter progression-free survival (PFS) (HR, 1.7; 95% CI, 1.1 to 2.6) but did not impact overall survival. Two-thirds of patients with International Myeloma Working Group-defined relapses still displayed a full DC in peripheral blood or bone marrow. Extramedullary manifestations were observed in 33% of patients, accounting for the discrepancy between DC analysis and the actual disease status. In multivariable analysis, the 2 most relevant variables for an unfavorable PFS were progressive disease before allo-SCT (HR, 3.0; 95% CI, 1.5 to 5.9) and allo-SCT at least the second relapse (HR, 2.8; 95% CI, 1.5 to 4.9), whereas for overall survival progressive disease or partial response before allo-SCT had the strongest negative effects (HR, 4.2; 95% CI, 1.9 to 9, and HR, 2.0; 95% CI, 1.0 to 3.8, respectively). Adverse cytogenetics such as del17p, t(4,14) or amp(1q21) were not associated with shorter survival after allo-SCT. Extensive DC sampling beyond robust engraftment does not appear to provide additional information helpful for disease management in most patients and is challenged by a significant incidence of extramedullary disease. In our series, allo-SCT overcame unfavorable cytogenetics.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Christoph Röllig
- Department of Internal Medicine I, Carl Gustav Carus University, Dresden, Germany
| | | | - Sophia Danhof
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Stephan Mielke
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Lea Dissen
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lea Schemmel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, Carl Gustav Carus University, Dresden, Germany
| | - Viktoria Rücker
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Martin Schreder
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, Carl Gustav Carus University, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, Carl Gustav Carus University, Dresden, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Christian Thiede
- Department of Internal Medicine I, Carl Gustav Carus University, Dresden, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Lange S, Steder A, Glass Ä, Killian D, Wittmann S, Machka C, Werner J, Schäfer S, Roolf C, Junghanss C. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model. Biol Blood Marrow Transplant 2016; 22:637-643. [DOI: 10.1016/j.bbmt.2016.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/11/2016] [Indexed: 12/01/2022]
|
38
|
Allogeneic hematopoietic cell transplantation in patients with myelofibrosis: A single center experience. Ann Hematol 2016; 95:973-83. [PMID: 27021303 DOI: 10.1007/s00277-016-2644-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
Myelofibrosis (MF) is a rare disease responsible for an increasing ineffective hematopoesis by a progressive fibrosing process in the bone marrow. The only curative treatment option is allogeneic hematopoietic cell transplantation (HCT). In this single-center analysis, we evaluated retrospectively 54 consecutive patients suffering from primary or secondary MF which underwent HCT from 1997 to 2014 after either myeloablative (MAC, n = 19) or reduced-intensity conditioning (RIC, n = 35). Overall survival (OS) and disease-free survival (DFS) after 3 years was 54/53 % for RIC versus 63/58 % for MAC (p = 0.8/0.97). Cumulative incidence of relapse was 34 % after RIC and 8 % after MAC (p = 0.16). Three-year non-relapse mortality (NRM) was 15 % after RIC and 34 % after MAC (p = 0.29). We found that RIC was associated with a lower incidence of acute graft versus host disease (GvHD; II-IV 26 vs. 0 %, p = 0.004). Evaluation of prognostic relevance of the Dynamic International Prognostic Scoring System (DIPSS) score showed a significant better OS in patient with risk score ≤3 versus >3 (after 3 years, 71 vs. 39 %, p = 0.008). While similar OS and DFS were observed with MAC or RIC, the use of RIC resulted in lower incidence of acute GvHD. RIC regimens may be therefore the preferred conditioning approach for allogeneic HCT in patients with MF.
Collapse
|
39
|
Reduced-intensity conditioning with fludarabine and busulfan for allogeneic hematopoietic cell transplantation in elderly or infirm patients with advanced myeloid malignancies. Ann Hematol 2015; 95:115-124. [PMID: 26411736 DOI: 10.1007/s00277-015-2512-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
We report a retrospective single-center analysis of 112 consecutive patients that underwent allogeneic hematopoietic cell transplantation (HCT) after reduced-intensity conditioning (RIC) with fludarabine (FLU) and busulfan (BU) for the treatment of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative syndrome (MPS) from 2005 to 2014. Three-year event-free survival (EFS) and overall survival (OS) were 46 and 58 %, respectively. Patients ≥60 years of age showed a similar outcome compared to younger patients (3-year OS 55 vs. 61 %, p = 0.96; 3-year EFS 46 vs. 46 %, p = 0.82). Cumulative incidence of non-relapse mortality (NRM) at 3 years adjusted for relapse as competing risk was 25 % for patients aged <60 years and 15 % for older patients (p = 0.15). Infusions of higher CD34(+) blood stem cell doses were associated with a significantly better outcome in the elderly subgroup (3-year OS 82 vs. 39 %, p = 0.007). Moreover, complete donor chimerism at day +100 was associated with a significantly improved survival (3-year OS 69 vs. 23 %, p = 0.003). In conclusion, our data suggest that RIC with FLU/BU enables long-term disease-free survival even in an elderly patient population. Age has no negative impact on the outcome of allogeneic HCT, and decision for transplant should be based on disease risk and performance status rather than age alone.
Collapse
|
40
|
Novel strategies to prevent relapse after allogeneic haematopoietic stem cell transplantation for acute myeloid leukaemia and myelodysplastic syndromes. Curr Opin Hematol 2015; 22:116-22. [PMID: 25575033 DOI: 10.1097/moh.0000000000000116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Relapse of haematological neoplasms after allogeneic haematopoietic stem cell transplantation (HSCT) remains one of the leading causes of death. Treatment of relapse post-HSCT is frequently ineffective and outcomes are poor, necessitating preventive strategies that are reviewed below. RECENT FINDINGS Current strategies to prevent relapse after HSCT are geared towards four general principles: improving the antitumour effects of conditioning regimens prior to HSCT, improving graft selection and engineering to augment the graft-versus-leukaemia effect, post-HSCT chemotherapeutic interventions to impair growth of residual clonal cells and post-HSCT immune-mediated interventions to enhance the graft-versus-leukaemia effect. Strategies based on cell manipulation, namely natural killer (NK) cell enrichment and adoptive T cell transfer, are emerging. Targeted therapies including vaccinations, FLT3 inhibitors, mAbs and chimeric antigen receptor T cell therapy represent a new avenue of treating acute myeloid leukaemia (AML) and myelodysplastic syndromes (MDS). Studies are underway to incorporate all of these strategies in the clinical setting to determine their impact on relapse and survival after HSCT. SUMMARY The most recent evidence suggests that strategies using NK cell therapy and targeted immune therapies after HSCT may change the current landscape of HSCT for AML and MDS.
Collapse
|
41
|
Jiang Y, Wan L, Qin Y, Wang X, Yan S, Xie K, Wang C. Donor Chimerism of B Cells and Nature Killer Cells Provides Useful Information to Predict Hematologic Relapse following Allogeneic Hematopoietic Stem Cell Transplantation. PLoS One 2015. [PMID: 26226104 PMCID: PMC4520605 DOI: 10.1371/journal.pone.0133671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study we investigated the correlation between donor chimerism status and disease relapse following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The chimerism of Fluorescence-activated cell sorter (FACS) sorted CD3+T lymphocytes of 153 cases, CD56+CD16+NK lymphocytes of 153 cases and CD19+B lymphocytes of 31 cases with acute B lymphoblastic leukemia (B-ALL) was analyzed post-transplant utilizing polymerase chain reaction amplification of short tandem repeats (PCR-STR). A total of 33 patients (33/153, 21.6%) had recurrent disease. The positive predictive values of declining donor chimerism for hematologic and isolated extramedullary relapse were 58.8% and 10% (P=0.018, Chi-Square). The positive predictive values of declining donor chimerism in BMB, BMT, BMNK and PBB for hematologic relapse were 11.6%, 0%, 0% and 0% under close monitoring in patients with B-ALL. Only the donor chimerism in BMB significantly decreased in the group with hematologic relapse as compared with the group without hematologic relapse (P=0.00, Independent-samples T test) in patients with B-ALL. The median drop of donor chimerism in PBT, BMT, PBNK and BMNK were 0%, 0%, 5.9% and 2.8% one or two weeks prior to hematologic relapse in patients with non-B-ALL. The donor chimerism in PBNK significantly decreased prior to hematologic relapse in the group with hematologic relapse as compared with the group without hematologic relapse (P=0.022, Independent-samples T test).These data suggest donor chimerism of BMB can be used to predict the occurrence of hematologic relapse in patients with B-ALL. Donor chimerism decrease in PBNKwas associated with a somewhat increased risk of hematologic relapse in patients with non-B-ALL. Therefore, our results reveal a more effective path to individually predict for hematologic relapse by dynamic monitoring different cell lineages in different disease.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Youwen Qin
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Xiaorui Wang
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Shike Yan
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Kuangcheng Xie
- Department of Central Laboratory, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Hematology, Shanghai First People’s Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Rettman P, Legrand N, Willem C, Lodé L, Chevallier P, Cesbron A, Senitzer D, Retière C, Gagne K. Use of killer cell immunoglobulin-like receptor genes as early markers of hematopoietic chimerism after double-umbilical cord blood transplantation. Haematologica 2015. [PMID: 26206801 DOI: 10.3324/haematol.2015.127993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Pauline Rettman
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et Polymorphisme Génétique, EA4271, France
| | - Nolwenn Legrand
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et Polymorphisme Génétique, EA4271, France
| | - Catherine Willem
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et Polymorphisme Génétique, EA4271, France
| | - Laurence Lodé
- Laboratoire d'Hématologie Biologique, CHU Hotel Dieu, Nantes, France
| | | | - Anne Cesbron
- Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Nantes, France LabEx Transplantex, Université de Strasbourg, France
| | - David Senitzer
- Division of Hematology and Bone Marrow Transplantation, City of Hope, National Medical Center, Duarte, CA, USA
| | - Christelle Retière
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et Polymorphisme Génétique, EA4271, France
| | - Katia Gagne
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et Polymorphisme Génétique, EA4271, France Laboratoire d'Histocompatibilité et d'Immunogénétique, EFS Nantes, France LabEx Transplantex, Université de Strasbourg, France
| |
Collapse
|
43
|
Lee HC, Saliba RM, Rondon G, Chen J, Charafeddine Y, Medeiros LJ, Alatrash G, Andersson BS, Popat U, Kebriaei P, Ciurea S, Oran B, Shpall E, Champlin R. Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biol Blood Marrow Transplant 2015; 21:1948-54. [PMID: 26183077 DOI: 10.1016/j.bbmt.2015.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/06/2015] [Indexed: 12/15/2022]
Abstract
Chimerism testing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represents a promising tool for predicting disease relapse, although its precise role in this setting remains unclear. We investigated the predictive value of T lymphocyte chimerism analysis at 90 to 120 days after allo-HSCT in 378 patients with AML/MDS who underwent busulfan/fludarabine-based myeloablative preparative regimens. Of 265 (70%) patients with available T lymphocyte chimerism data, 43% of patients in first or second complete remission (CR1/CR2) at the time of transplantation had complete (100%) donor T lymphocytes at day +90 to +120 compared with 60% of patients in the non-CR1/CR2 cohort (P = .005). In CR1/CR2 patients, donor T lymphocyte chimerism ≤ 85% at day +90 to +120 was associated with a higher frequency of 3-year disease progression (29%; 95% confidence interval [CI], 18% to 46% versus 15%; 95% CI, 9% to 23%; hazard ratio [HR], 2.1; P = .04). However, in the more advanced, non-CR1/CR2 cohort, mixed T lymphocyte chimerism was not associated with relapse (37%; 95% CI, 20% to 66% versus 34%; 95% CI, 25% to 47%; HR, 1.3; P = .60). These findings demonstrate that early T lymphocyte chimerism testing at day +90 to +120 is a useful approach for predicting AML/MDS disease recurrence in patients in CR1/CR2 at the time of transplantation.
Collapse
Affiliation(s)
- Hans C Lee
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julianne Chen
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Charafeddine
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefan Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Dynamical System Modeling of Immune Reconstitution after Allogeneic Stem Cell Transplantation Identifies Patients at Risk for Adverse Outcomes. Biol Blood Marrow Transplant 2015; 21:1237-45. [PMID: 25849208 DOI: 10.1016/j.bbmt.2015.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Systems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3(+) cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3(+) at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk.
Collapse
|
45
|
Reduced-intensity conditioned allogeneic SCT in adults with AML. Bone Marrow Transplant 2015; 50:759-69. [PMID: 25730186 DOI: 10.1038/bmt.2015.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/08/2023]
Abstract
AML is currently the most common indication for reduced-intensity conditioned (RIC) allo-SCT. Reduced-intensity regimens allow a potent GVL response to occur with minimized treatment-related toxicity in patients of older age or with comorbidities that preclude the use of myeloablative conditioning. Whether RIC SCT is appropriate for younger and more standard risk patients is not well defined and the field is changing rapidly; a prospective randomized trial of myeloablative vs RIC (BMT-CTN 0901) was recently closed when early results indicated better outcomes for myeloablative regimens. However, detailed results are not available, and all patients in that study were eligible for myeloablative conditioning. RIC transplants will likely remain the standard of care as many patients with AML are not eligible for myeloablative conditioning. Recent publication of mature results from retrospective and prospective cohorts provide contemporary efficacy and toxicity data for these attenuated regimens. In addition, recent studies explore the use of alternative donors, introduce regimens that attempt to reduce toxicity without reducing intensity, and identify predictive factors that pave the way to personalized approaches. These studies paint a picture of the future of RIC transplants. Here we review the current status of RIC allogeneic SCT in AML.
Collapse
|
46
|
Zeng W, Huang L, Meng F, Liu Z, Zhou J, Sun H. Reduced-intensity and myeloablative conditioning allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia and myelodysplastic syndrome: a meta-analysis and systematic review. Int J Clin Exp Med 2014; 7:4357-4368. [PMID: 25550955 PMCID: PMC4276213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND We performed a systematic review and meta-analysis to compare the clinical outcomes and toxicity of reduced-intensity conditioning (RIC) and myeloablative conditioning (MAC) allogeneic hematopoietic stem cell transplantation (alloHSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). EVIDENCE ACQUISITION A comprehensive PubMed and Embase search was performed using the following keywords: "reduced-intensity", "myeloablative", "AML", and "MDS". The primary endpoints were overall survival (OS) and event-free survival (EFS), and the secondary endpoints were relapse incidence (RI), non-relapse mortality (NRM), grade II-IV acute graft-versus-host disease (aGVHD), and chronic GVHD (cGVHD). RESULTS Eight studies (2 prospective and 6 retrospective) involving 6464 patients who received RIC (n = 1571) or MAC (n = 4893) alloHSCT were included in the analysis. Median age and the number of patients with low hematopoietic cell transplantation-specific comorbidity index scores and who received ex vivo or in vivo T cell depletion were higher in the RIC arm than in the MAC arm. Significant heterogeneity was not found among the studies for any of the endpoints except for grade II-IV aGVHD. OS (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.84-1.08; p = 0.47) and EFS (OR, 0.88; 95% CI, 0.77-1.00; p = 0.05) were similar in the RIC and MAC arms, whereas RI (OR, 1.41; 95% CI, 1.24-1.59; p < 0.00001) was higher in the RIC arm than in the MAC arm. The incidence of grade II-IV aGVHD (OR, 0.59; 95% CI, 0.36-0.96; p = 0.03) was lower in the RIC arm than in the MAC arm; however, NRM (OR, 0.99; 95% CI, 0.87-1.13; p = 0.85), total cGVHD (OR, 1.10; 95% CI, 0.88-1.38; p = 0.38), and extensive cGVHD (OR, 1.01; 95% CI, 0.75-1.37; p = 0.95) were not significantly different between the two arms. CONCLUSION RIC alloHSCT may be an effective treatment strategy for AML/MDS patients who are not suitable candidates for MAC alloHSCT. However, heterogeneity in baseline patient characteristics and treatment protocols may have influenced the outcomes of RIC alloHSCT in our analysis. Future randomized controlled trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Lifang Huang
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Zeming Liu
- Department of General surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology1277# Jiefang Avenue, Wuhan 430022, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| | - Hanying Sun
- Department of Hematology, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology1095# Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|