1
|
Raman D, Chêne C, Nicco C, Jeljeli M, Eu JQ, Clément MV, Batteux F, Pervaiz S. Therapeutic Potential of a Senolytic Approach in a Murine Model of Chronic GVHD. BIOLOGY 2023; 12:biology12050647. [PMID: 37237461 DOI: 10.3390/biology12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Graft-versus-host disease (GVHD) is a life-threatening systemic complication of allogeneic hematopoietic stem cell transplantation (HSCT) characterized by dysregulation of T and B cell activation and function, scleroderma-like features, and multi-organ pathology. The treatment of cGVHD is limited to the management of symptoms and long-term use of immunosuppressive therapy, which underscores the need for developing novel treatment approaches. Notably, there is a striking similarity between cytokines/chemokines responsible for multi-organ damage in cGVHD and pro-inflammatory factors, immune modulators, and growth factors secreted by senescent cells upon the acquisition of senescence-associated secretory phenotype (SASP). In this pilot study, we questioned the involvement of senescent cell-derived factors in the pathogenesis of cGVHD triggered upon allogeneic transplantation in an irradiated host. Using a murine model that recapitulates sclerodermatous cGVHD, we investigated the therapeutic efficacy of a senolytic combination of dasatinib and quercetin (DQ) administered after 10 days of allogeneic transplantation and given every 7 days for 35 days. Treatment with DQ resulted in a significant improvement in several physical and tissue-specific features, such as alopecia and earlobe thickness, associated with cGVHD pathogenesis in allograft recipients. DQ also mitigated cGVHD-associated changes in the peripheral T cell pool and serum levels of SASP-like cytokines, such as IL-4, IL-6 and IL-8Rα. Our results support the involvement of senescent cells in the pathogenesis of cGVHD and provide a rationale for the use of DQ, a clinically approved senolytic approach, as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Charlotte Chêne
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, 75014 Paris, France
| | - Carole Nicco
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, 75014 Paris, France
| | - Mohamed Jeljeli
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, 75014 Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'Immunologie Biologique, 75014 Paris, France
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Cancer Science Institute, National University of Singapore, Singapore 117597, Singapore
| | - Marie-Véronique Clément
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore 117597, Singapore
- Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore 117597, Singapore
| | - Frédéric Batteux
- Département 3I, Infection, Immunité et Inflammation, Institut Cochin, INSERM U1016, Université de Paris, 75014 Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'Immunologie Biologique, 75014 Paris, France
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore 117597, Singapore
- Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore 117597, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 117597, Singapore
| |
Collapse
|
2
|
Dekker L, Sanders E, Lindemans CA, de Koning C, Nierkens S. Naive T Cells in Graft Versus Host Disease and Graft Versus Leukemia: Innocent or Guilty? Front Immunol 2022; 13:893545. [PMID: 35795679 PMCID: PMC9250980 DOI: 10.3389/fimmu.2022.893545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation (allo-HCT) largely depends on the development and management of graft-versus-host disease (GvHD), infections, and the occurrence of relapse of malignancies. Recent studies showed a lower incidence of chronic GvHD and severe acute GvHD in patients receiving naive T cell depleted grafts compared to patients receiving complete T cell depleted grafts. On the other hand, the incidence of acute GvHD in patients receiving cord blood grafts containing only naive T cells is rather low, while potent graft-versus-leukemia (GvL) responses have been observed. These data suggest the significance of naive T cells as both drivers and regulators of allogeneic reactions. The naive T cell pool was previously thought to be a quiescent, homogenous pool of antigen-inexperienced cells. However, recent studies showed important differences in phenotype, differentiation status, location, and function within the naive T cell population. Therefore, the adequate recovery of these seemingly innocent T cells might be relevant in the imminent allogeneic reactions after allo-HCT. Here, an extensive review on naive T cells and their contribution to the development of GvHD and GvL responses after allo-HCT is provided. In addition, strategies specifically directed to stimulate adequate reconstitution of naive T cells while reducing the risk of GvHD are discussed. A better understanding of the relation between naive T cells and alloreactivity after allo-HCT could provide opportunities to improve GvHD prevention, while maintaining GvL effects to lower relapse risk.
Collapse
Affiliation(s)
- Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Evy Sanders
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Jeljeli M, Chêne C, Chouzenoux S, Thomas M, Segain B, Doridot L, Nicco C, Batteux F. LPS low-Macrophages Alleviate the Outcome of Graft- Versus-Host Disease Without Aggravating Lymphoma Growth in Mice. Front Immunol 2021; 12:670776. [PMID: 34413847 PMCID: PMC8369416 DOI: 10.3389/fimmu.2021.670776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant therapeutic advances, graft-versus-host disease (GvHD) remains the main life-threatening complication following allogeneic hematopoietic stem cell transplantation. The pathogenesis of GvHD is dominated by a dysregulated allogeneic immune response that drives fibrosis and autoimmunity in chronic forms. A multitude of cell therapy approaches, including infusion of myeloid cells, has been proposed to prevent GvHD through tolerance induction but yielded variable results. Myeloid cells like macrophages can be reprogrammed to develop adaptive-like features following antigenic challenge to reinforce or inhibit a subsequent immune response; a phenomenon termed ‘trained immunity’. Here we report that, whereas LPSlow-trained macrophages elicit a suppressor effect on allogeneic T cell proliferation and function in vitro in an IL-10-dependent manner, Bacille Calmette et Guérin (BCG)-trained macrophages exert an opposite effect. In a murine model of sclerodermatous chronic GvHD, LPSlow-trained macrophages attenuate clinical signs of GvHD with significant effects on T cell phenotype and function, autoantibodies production, and tissue fibrosis. Furthermore, infusion of LPSlow-macrophages significantly improves survival in mice with acute GvHD. Importantly, we also provide evidence that LPSlow-macrophages do not accelerate A20-lymphoma tumor growth, which is significantly reduced upon transfer of BCG-macrophages. Collectively, these data indicate that macrophages can be trained to significantly inhibit in vitro and in vivo allo-reactive T cell proliferation without exhibiting pro-tumoral effect, thereby opening the way to promising clinical applications.
Collapse
Affiliation(s)
- Mohamed Jeljeli
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| | - Charlotte Chêne
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Benjamin Segain
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Ludivine Doridot
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Carole Nicco
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| |
Collapse
|
4
|
Ehx G, Ritacco C, Hannon M, Dubois S, Delens L, Willems E, Servais S, Drion P, Beguin Y, Baron F. Comprehensive analysis of the immunomodulatory effects of rapamycin on human T cells in graft-versus-host disease prophylaxis. Am J Transplant 2021; 21:2662-2674. [PMID: 33512760 DOI: 10.1111/ajt.16505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of toxicity after allogeneic hematopoietic cell transplantation (allo-HCT). While rapamycin (RAPA) is commonly used in GVHD prophylaxis in combination with a calcineurin inhibitor (CNI), the understanding of its mechanism of action on human T cells is still incomplete. Here, we performed an extensive analysis of RAPA effects on human T cells in a humanized mouse model of GVHD, in ex-vivo T cell cultures and in patients given RAPA plus tacrolimus as GVHD prophylaxis after nonmyeloablative allo-HCT. We demonstrate that RAPA mitigates GVHD by decreasing T cell engraftment and differentiation, inhibiting CD8+ T cell activation and increasing the long-term IL-2 secretion, thereby supporting regulatory T cell (Treg) proliferation. In contrast, graft-versus-leukemia effects were not abrogated, as RAPA-treated T cells had increased resistance to apoptosis and retained their effector function and proliferative capacity upon re-stimulation. Importantly, we found that RAPA impact on Treg and CD8+ T cells was closely dependent upon IL-2 signaling and that therapeutic options interfering with IL-2, such as calcineurin inhibitors, antagonize the IL-2-dependent promotion of Treg mediated by RAPA. Our results suggest that RAPA immunological efficacy could be improved in combination with drugs having possible synergistic effects such as the hypomethylating agent 5-azacytidine.
Collapse
Affiliation(s)
- Grégory Ehx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Caroline Ritacco
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Sophie Dubois
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loic Delens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Sophie Servais
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery, GIGA-R & Credec, University of Liège, Liège, Belgium
| | - Yves Beguin
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Frédéric Baron
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Adhikary SR, Cuthbertson P, Nicholson L, Bird KM, Sligar C, Hu M, O'Connell PJ, Sluyter R, Alexander SI, Watson D. Post-transplant cyclophosphamide limits reactive donor T cells and delays the development of graft-versus-host disease in a humanized mouse model. Immunology 2021; 164:332-347. [PMID: 34021907 DOI: 10.1111/imm.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+ hCD25+ hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Leigh Nicholson
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katrina M Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Min Hu
- Westmead Institute for Medical Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Weiner J, Svetlicky N, Kang J, Sadat M, Khan K, Duttargi A, Stovroff M, Moturi S, Kara Balla A, Hyang Kwon D, Kallakury B, Hawksworth J, Subramanian S, Yazigi N, Kaufman S, Pasieka HB, Matsumoto CS, Robson SC, Pavletic S, Zasloff M, Fishbein TM, Kroemer A. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation. Am J Transplant 2021; 21:1878-1892. [PMID: 33226726 PMCID: PMC10364625 DOI: 10.1111/ajt.16405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GvHD) is a common, morbid complication after intestinal transplantation (ITx) with poorly understood pathophysiology. Resident memory T cells (TRM ) are a recently described CD69+ memory T cell subset localizing to peripheral tissue. We observed that T effector memory cells (TEM ) in the blood increase during GvHD and hypothesized that they derive from donor graft CD69+TRM migrating into host blood and tissue. To probe this hypothesis, graft and blood lymphocytes from 10 ITx patients with overt GvHD and 34 without were longitudinally analyzed using flow cytometry. As hypothesized, CD4+ and CD8+CD69+TRM were significantly increased in blood and grafts of GvHD patients, alongside higher cytokine and activation marker expression. The majority of CD69+TRM were donor derived as determined by multiplex immunostaining. Notably, CD8/PD-1 was significantly elevated in blood prior to transplantation in patients who later had GvHD, and percentages of HLA-DR, CD57, PD-1, and naïve T cells differed significantly between GvHD patients who died vs. those who survived. Overall, we demonstrate that (1) there were significant increases in TEM at the time of GvHD, possibly of donor derivation; (2) donor TRM in the graft are a possible source; and (3) potential biomarkers for the development and prognosis of GvHD exist.
Collapse
Affiliation(s)
- Joshua Weiner
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Nina Svetlicky
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Mohammed Sadat
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Anju Duttargi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Merrill Stovroff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Sangeetha Moturi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Abdalla Kara Balla
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Dong Hyang Kwon
- Department of Pathology, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Jason Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia.,Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Nada Yazigi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Stuart Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Helena B Pasieka
- Division of Dermatology, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia
| | - Cal S Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Simon C Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven Pavletic
- National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
7
|
Mammadli M, Huang W, Harris R, Xiong H, Weeks S, May A, Gentile T, Henty-Ridilla J, Waickman AT, August A, Bah A, Karimi M. Targeting SLP76:ITK interaction separates GVHD from GVL in allo-HSCT. iScience 2021; 24:102286. [PMID: 33851101 PMCID: PMC8024657 DOI: 10.1016/j.isci.2021.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs. GVHD effects after allo-HSCT. CD8+ and CD4+ donor T cells from mice expressing a Y145F mutation in SLP-76 did not cause GVHD but preserved GVL effects against B-ALL cells. SLP76Y145FKI CD8+ and CD4+ donor T cells also showed less inflammatory cytokine production and migration to GVHD target organs. We developed a novel peptide to specifically inhibit SLP76:ITK interactions, resulting in decreased phosphorylation of PLCγ1 and ERK, decreased cytokine production in human T cells, and separation of GVHD from GVL effects. Altogether, our data suggest that inhibiting SLP76:ITK interaction could be a therapeutic strategy to separate GVHD from GVL effects after allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Hui Xiong
- Department of Radiology, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Teresa Gentile
- Division of Hematology, translational research, SUNY Upstate Medical University, Syracuse NY 13210, USA
| | - Jessica Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Schreurs RRCE, Sagebiel AF, Steinert FL, Highton AJ, Klarenbeek PL, Drewniak A, Bakx R, The SML, Ribeiro CMS, Perez D, Reinshagen K, Geijtenbeek TBH, van Goudoever JB, Bunders MJ. Intestinal CD8 + T cell responses are abundantly induced early in human development but show impaired cytotoxic effector capacities. Mucosal Immunol 2021; 14:605-614. [PMID: 33772147 PMCID: PMC8075922 DOI: 10.1038/s41385-021-00382-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023]
Abstract
Gastrointestinal viral infections are a major global cause of disease and mortality in infants. Cytotoxic CD8+ T cells are critical to achieve viral control. However, studies investigating the development of CD8+ T cell immunity in human tissues early in life are lacking. Here, we investigated the maturation of the CD8+ T cell compartment in human fetal, infant and adult intestinal tissues. CD8+ T cells exhibiting a memory phenotype were already detected in fetal intestines and increased after birth. Infant intestines preferentially harbored effector CCR7-CD45RA-CD127-KLRG1+/- CD8+ T cells compared to tissue-resident memory CD69+CD103+CD8+ T cells detected in adults. Functional cytotoxic capacity, including cytokine and granzyme B production of infant intestinal effector CD8+ T cells was, however, markedly reduced compared to adult intestinal CD8+ T cells. This was in line with the high expression of the inhibitory molecule PD-1 by infant intestinal effector CD8+ T cells. Taken together, we demonstrate that intestinal CD8+ T cell responses are induced early in human development, however exhibit a reduced functionality. The impaired CD8+ T cell functionality early in life contributes to tolerance during foreign antigen exposure after birth, however functions as an immune correlate for the increased susceptibility to gastrointestinal viral infections in infancy.
Collapse
Affiliation(s)
- R. R. C. E. Schreurs
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Pediatrics, Emma Children’s Hospital, AUMC, UvA, Amsterdam, The Netherlands
| | - A. F. Sagebiel
- grid.418481.00000 0001 0665 103XHeinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - F. L. Steinert
- grid.418481.00000 0001 0665 103XHeinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - A. J. Highton
- grid.418481.00000 0001 0665 103XHeinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - P. L. Klarenbeek
- grid.7177.60000000084992262Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, AUMC, UvA, Amsterdam, The Netherlands ,grid.16872.3a0000 0004 0435 165XAmsterdam Rheumatology & Immunology Center, AUMC, UvA, Amsterdam, The Netherlands
| | - A. Drewniak
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands ,grid.467476.00000 0004 0483 1848Kiadis Pharma B.V., Amsterdam, The Netherlands
| | - R. Bakx
- Department of Pediatric Surgery, Pediatric Surgery Center of Amsterdam, AUMC, Amsterdam, The Netherlands
| | - S. M. L. The
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands ,Department of Pediatric Surgery, Pediatric Surgery Center of Amsterdam, AUMC, Amsterdam, The Netherlands
| | - C. M. S. Ribeiro
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - D. Perez
- grid.13648.380000 0001 2180 3484Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - K. Reinshagen
- grid.13648.380000 0001 2180 3484Department of Pediatric Surgery, UKE, Hamburg, Germany
| | - T. B. H. Geijtenbeek
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - J. B. van Goudoever
- grid.7177.60000000084992262Department of Pediatrics, Emma Children’s Hospital, AUMC, UvA, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Pediatrics, Emma Children’s Hospital, AUMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - M. J. Bunders
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center (AUMC), University of Amsterdam (UvA), Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Pediatrics, Emma Children’s Hospital, AUMC, UvA, Amsterdam, The Netherlands ,grid.418481.00000 0001 0665 103XHeinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
9
|
Alhaj Hussen K, Michonneau D, Biajoux V, Keita S, Dubouchet L, Nelson E, Setterblad N, Le Buanec H, Bouaziz JD, Guimiot F, Socié G, Canque B. CD4 +CD8 + T-Lymphocytes in Xenogeneic and Human Graft-versus-Host Disease. Front Immunol 2020; 11:579776. [PMID: 33329550 PMCID: PMC7732609 DOI: 10.3389/fimmu.2020.579776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mechanisms driving acute graft-versus-host disease (aGVHD) onset in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) are still poorly understood. To provide a detailed characterization of tissue-infiltrating T lymphocytes (TL) and search for eventual site-specific specificities, we developed a xenogeneic model of aGVHD in immunodeficient mice. Phenotypic characterization of xenoreactive T lymphocytes (TL) in diseased mice disclosed a massive infiltration of GVHD target organs by an original CD4+CD8+ TL subset. Immunophenotypic and transcriptional profiling shows that CD4+CD8+ TL comprise a major PD1+CD62L−/+ transitional memory subset (>60%) characterized by low level expression of cytotoxicity-related transcripts. CD4+CD8+ TL produce high IL-10 and IL-13 levels, and low IL-2 and IFN-γ, suggestive of regulatory function. In vivo tracking of genetically labeled CD4+ or CD8+ TL subsequently found that CD4+CD8+ TL mainly originate from chronically activated cytotoxic TL (CTL). On the other hand, phenotypic profiling of CD3+ TL from blood, duodenum or rectal mucosa in a cohort of allo-HSCT patients failed to disclose abnormal expansion of CD4+CD8+ TL independent of aGVHD development. Collectively, our results show that acquisition of surface CD4 by xenoreactive CD8+ CTL is associated with functional diversion toward a regulatory phenotype, but rule out a central role of this subset in the pathogenesis of aGVHD in allo-HSCT patients.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.,Service d'Hématologie Biologique, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| | - David Michonneau
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Vincent Biajoux
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Laetitia Dubouchet
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Niclas Setterblad
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Helene Le Buanec
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Jean-David Bouaziz
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Gérard Socié
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
10
|
Mrazek F. Systemic biomarkers of allogeneic haematopoietic stem cell transplantation outcome—Brief introduction. HLA 2019; 94 Suppl 2:25-29. [DOI: 10.1111/tan.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Frantisek Mrazek
- Department of Immunology, University Hospital and Faculty of Medicine and DentistryPalacky University Olomouc Czech Republic
| |
Collapse
|
11
|
Cho C, Perales MA. Expanding Therapeutic Opportunities for Hematopoietic Stem Cell Transplantation: T Cell Depletion as a Model for the Targeted Allograft. Annu Rev Med 2019; 70:381-393. [DOI: 10.1146/annurev-med-120617-041210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a fundamental part of the treatment of hematologic malignancies and marrow failure syndromes, but complications including graft-versus-host disease, prolonged immune deficiency and infection, and organ toxicities, as well as relapse, remain obstacles to improved overall survival. As the cellular characteristics of the allograft can exert significant impact on outcomes, the development of more strategically designed grafts represents a rich area for therapeutic intervention. We describe the use of ex vivo T cell–depleted grafts as a model for the targeted graft and review evolving knowledge and approaches for further refinement of allografts to improve patient outcomes.
Collapse
Affiliation(s)
- Christina Cho
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA;,
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA;,
| |
Collapse
|
12
|
Effect of bone marrow CD34+cells and T-cell subsets on clinical outcomes after myeloablative allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2018; 54:775-781. [DOI: 10.1038/s41409-018-0380-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/02/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
|
13
|
Rubio MT, Bouillié M, Bouazza N, Coman T, Trebeden-Nègre H, Gomez A, Suarez F, Sibon D, Brignier A, Paubelle E, Nguyen-Khoc S, Cavazzana M, Lantz O, Mohty M, Urien S, Hermine O. Pre-transplant donor CD4 - invariant NKT cell expansion capacity predicts the occurrence of acute graft-versus-host disease. Leukemia 2016; 31:903-912. [PMID: 27740636 DOI: 10.1038/leu.2016.281] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Clinically useful pre-transplant predictive factors of acute graft-versus-host-disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT) are lacking. We prospectively analyzed HSC graft content in CD34+, NK, conventional T, regulatory T and invariant natural killer T (iNKT) cells in 117 adult patients before allo-SCT. Results were correlated with occurrence of aGVHD and relapse. In univariate analysis, iNKT cells were the only graft cell populations associated with occurrence of aGVHD. In multivariate analysis, CD4- iNKT/T cell frequency could predict grade II-IV aGVHD in bone marrow and peripheral blood stem cell (PBSC) grafts, while CD4- iNKT expansion capacity was predictive in PBSC grafts. Receiver operating characteristic analyses determined the CD4- iNKT expansion factor as the best predictive factor of aGVHD. Incidence of grade II-IV aGVHD was reduced in patients receiving a graft with an expansion factor above versus below 6.83 (9.7 vs 80%, P<0.0001), while relapse incidence at two years was similar (P=0.5).The test reached 94% sensitivity and 100% specificity in the subgroup of patients transplanted with human leukocyte antigen 10/10 PBSCs without active disease. Analysis of this CD4- iNKT expansion capacity test may represent the first diagnostic tool allowing selection of the best donor to avoid severe aGVHD with preserved graft-versus-leukemia effect after peripheral blood allo-SCT.
Collapse
Affiliation(s)
- M-T Rubio
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM UMRs 938, Centre de Recherche de l'hôpital Saint Antoine, Paris, France.,Université Pierre et Marie Curie, Paris VI, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - M Bouillié
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - N Bouazza
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France
| | - T Coman
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - H Trebeden-Nègre
- Département de Biothérapie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - A Gomez
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM UMRs 938, Centre de Recherche de l'hôpital Saint Antoine, Paris, France.,Université Pierre et Marie Curie, Paris VI, France
| | - F Suarez
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - D Sibon
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - A Brignier
- Therapeutic Apheresis Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - E Paubelle
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - S Nguyen-Khoc
- Service d'Hématologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - M Cavazzana
- Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM U1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - O Lantz
- INSERM U932, Département de Biologie des Tumeurs, Institut Curie, Paris, France.,Centre d'Investigation Clinique, CICBT507 IGR/Curie, Paris, France
| | - M Mohty
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM UMRs 938, Centre de Recherche de l'hôpital Saint Antoine, Paris, France.,Université Pierre et Marie Curie, Paris VI, France
| | - S Urien
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France.,INSERM CIC 1419, EAU08 Université Paris Descartes, Paris, France
| | - O Hermine
- INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France.,Institut Hospitalo-Universitaire (IHU) Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| |
Collapse
|
14
|
Arai Y, Kondo T, Yamazaki H, Takenaka K, Sugita J, Kobayashi T, Ozawa Y, Uchida N, Iwato K, Kobayashi N, Takahashi Y, Ishiyama K, Fukuda T, Ichinohe T, Atsuta Y, Mori T, Teshima T. Allogeneic unrelated bone marrow transplantation from older donors results in worse prognosis in recipients with aplastic anemia. Haematologica 2016; 101:644-52. [PMID: 26858357 DOI: 10.3324/haematol.2015.139469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Allogeneic bone marrow transplantation is an essential therapy for acquired aplastic anemia and prognosis has recently improved. However, engraftment failure and graft-versus-host disease are potential fatal complications. Various risk factors for poor prognosis have been identified, such as patient age and human-leukocyte antigen disparity, but the relationship between donor age and prognosis is still unknown. Therefore, we performed a cohort study to compare the prognosis of unrelated bone marrow transplantation from younger and older donors using the registry database in Japan. We evaluated 427 patients (age 16-72 years) with aplastic anemia who underwent bone marrow transplantation from younger (≤39 years, n=281) or older (≥40 years, n=146) unrelated donors. Overall survival of the older donor group was significantly inferior to that of the younger donor group (adjusted hazard ratio 1.64; 95% confidence interval 1.15-2.35; P<0.01). The incidence of fatal infection was significantly higher in the older donor group (13.7% vs. 7.5%; P=0.03). Primary engraftment failure and acute graft-versus-host disease were significantly more frequent in the older donor group (9.7% vs. 5.0%; adjusted hazard ratio 1.30; P=0.01, and 27.1% vs. 19.7%; adjusted hazard ratio 1.56; P=0.03, respectively). Acute graft-versus-host disease was related to a worse prognosis in the whole cohort. This study showed the inferiority of older donors in aplastic anemia; thus, donor age should be considered when multiple donors are available. A large-scale prospective study is warranted to establish a better donor selection algorithm for bone marrow transplantation in aplastic anemia.
Collapse
Affiliation(s)
- Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Tokyo, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Tokyo, Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine, Kanazawa University Hospital, Tokyo, Japan
| | - Katsuto Takenaka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicinal Sciences, Fukuoka, Tokyo, Japan
| | - Junichi Sugita
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Koji Iwato
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Hematology, Sapporo Hokuyu Hospital, Tokyo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Tokyo, Japan
| | - Ken Ishiyama
- Department of Hematology, Kanazawa University Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Hiroshima University Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Tokyo, Japan Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Tokyo, Japan
| | | |
Collapse
|
15
|
Baron F, Labopin M, Ruggeri A, Mohty M, Sanz G, Milpied N, Bacigalupo A, Rambaldi A, Bonifazi F, Bosi A, Sierra J, Yakoub-Agha I, Santasusana JMR, Gluckman E, Nagler A. Unrelated cord blood transplantation for adult patients with acute myeloid leukemia: higher incidence of acute graft-versus-host disease and lower survival in male patients transplanted with female unrelated cord blood--a report from Eurocord, the Acute Leukemia Working Party, and the Cord Blood Committee of the Cellular Therapy and Immunobiology Working Party of the European Group for Blood and Marrow Transplantation. J Hematol Oncol 2015; 8:107. [PMID: 26445106 PMCID: PMC4594748 DOI: 10.1186/s13045-015-0207-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Background In the setting of allogeneic human leukocyte antigen (HLA)-matched bone marrow transplantation, transplanting male patients with grafts from female donors has been associated with a higher incidence of graft-versus-host disease (GVHD) and of nonrelapse mortality (NRM). The aim of the current analysis was to compare transplantation outcomes in male patients given female unrelated cord blood (UCB) versus other gender combinations. Patients and methods Data from 552 consecutive patients with acute myeloid leukemia (AML) given a single UCB transplantation between 2000 and 2014 were included. Results In comparison with other gender combination, male patients given female UCB (n = 131) had a trend for a higher incidence of grades II–IV acute GVHD (33 versus 25 %, P = 0.08), a trend for a higher incidence of NRM (41 versus 33 %, P = 0.06), and a lower leukemia-free (LFS, 30 versus 41 %, P = 0.01) and overall survival (OS, 33 versus 45 %, P = 0.008). In multivariate analyses, taking into consideration all patients for which data on HLA-matching and cell dose transplanted were fully available (n = 363), male patients transplanted with a female UCB had a trend for a higher incidence of grade III–IV acute GVHD (hazard ratio (HR) = 2.0, P = 0.06), a trend for a higher NRM (HR = 1.5, P = 0.06), and a worse LFS (HR = 1.4, P = 0.04) and OS (HR = 1.3, P = 0.06). Conclusions Our data suggest that male patients transplanted with female UCB might have higher risk of acute GVHD and of NRM leading to worse LFS and OS. These results should be confirmed in other large cohorts of patients before used for determining the choice of an UCB unit. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0207-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Baron
- Department of Hematology, University of Liège, CHU Sart-Tilman, 4000, Liège, Belgium.
| | - Myriam Labopin
- EBMT Paris Office, Hospital Saint Antoine, Paris, France.
| | - Annalisa Ruggeri
- Eurocord, Hospital Saint Louis, AP-HP, and IUH University Paris VII, Paris, France. .,AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France.
| | - Mohamad Mohty
- AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France.
| | - Guillermo Sanz
- Hospital Universitario La Fe - Servicio de Hematologia, Valencia, Spain.
| | - Noel Milpied
- CHU Bordeaux - Hôpital Haut-leveque, Pessac, France.
| | | | - Alessandro Rambaldi
- Azienda Ospedaliera Papa Giovanni XXIII-Hematology and Bone Marrow Transplant Unit, Bergamo, Italy.
| | - Francesca Bonifazi
- Institute of Hematology and Medical, Oncology L and A Seràgnoli, S.Orsola-Malpighi Hospital, Bologna University, Bologna, Italy.
| | - Alberto Bosi
- BMT Unit Department of Hematology, Ospedale di Careggi, Firenze, Italy.
| | - Jorge Sierra
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | | - Eliane Gluckman
- Eurocord, Hospital Saint Louis, AP-HP, and IUH University Paris VII, France Monacord, Centre Scientifique de Monaco, Monaco, Monaco.
| | - Arnon Nagler
- EBMT Paris Office, Hospital Saint Antoine, Paris, France. .,Division of Hematology and Bone Marrow Transplantation, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| |
Collapse
|